Redox reaction is the sum of half-reactions 1 and 2 and involves the simultaneous loss and gain of electrons:

Size: px
Start display at page:

Download "Redox reaction is the sum of half-reactions 1 and 2 and involves the simultaneous loss and gain of electrons:"

Transcription

1 Chapter 4: - (Redox) Titrations A redox titration is a type of titration based on a redox reaction between the analyte and titrant. Redox titration may involve the use of a redox indicator and/or a potentiometer. 1. Redox Reaction Whereas acid-base reactions can be characterized as proton-transfer processes, the class of reactions called oxidation-reduction, or redox, reactions are considered electron transfer reactions. The term oxidation reaction refers to the half-reaction that involves loss of electrons. A reduction reaction is a half-reaction that involves gain of electrons. Thus an oxidizing agent (or oxidant) is one which accepts electrons while a reducing agent (or reductant) is one which loses the electrons. An oxidizing agent oxidizes the other substance by stripping off electrons from it. A reducing agent reduces the other substance by donating electrons to it. and reduction reactions always occur simultaneously. One cannot take place in isolation from the other. During a redox reaction the oxidizing agent itself undergoes reduction while the reducing agent undergoes its oxidation. Thus, reaction is represented as: Reductant1 (reducing agent) Oxidant1 (oxidizing agent) + ne; half-reaction 1 reaction is represented as: Oxidant2 (oxidizing agent) + ne Reductant2 (reducing agent); half-reaction 2 Redox reaction is the sum of half-reactions 1 and 2 and involves the simultaneous loss and gain of electrons: Example: Therefore, Reductant1 + Oxidant2 Oxidant1 + Reductant2; Fe 2+ Fe 3+ + e Ce 4+ + e Ce 3+ Fe 2+ + Ce 4+ Fe 3+ + Ce 3+ () () (Redox reaction) redox reaction of a substance leads to increase in its oxidation number while of a substance lead to decrease in the oxidation number. The relative tendency to accept or lose electrons by any reagent is measured in terms of their standard reduction potential values. 2. Redox Titrations (or Indicators) In the redox titrations, we need a chemical species that can change color in the potential range corresponding to the sharp change at the end point. A chemical substance, which changes color when the potential of the solution reaches a definite value, is termed as an oxidation-reduction or redox indicator. A half-reaction can be written for the indicator: In Ox + ne In Red Color A Color B A redox indicator may be defined as a substance whose oxidized form is of different color from that of its reduced form. The oxidation and reduction of the indicator is readily reversible. So the ratio [InRed]/[InOx], and therefore the color will change as the potential of the solution changes. The redox indicator reaction must be rapid and eversible, if the reaction is slow or is irreversible, the color change will be gradual and a sharp end point will be not detected

2 The main redox titration (or indicators) types are: Redox Titration (or Indicators) Iodometry Permanganometry Chromotometry Cerimetry Bromatometry Titrant Iodine (I2) Potassium permanganate (KMnO4) Potassium dichromate (K2Cr2O7) Cerium (IV) salts Bromine (Br2) 2.1. Iodometry The titration of iodine against sodium thiosulfate, using starch as the indicator of color change, is one of the most accurate volumetric redox processes. The descriptive term for the titration procedure depends on which reagent is used as the titrant. If iodine, I2, is used as the titrant, then the process is termed an iodimetric titration (Iodimetry: a direct titration with only one reaction). Analyte (unknown) + Titrant (Iodine: known) Product If on the other hand thiosulfate, S2O3 2-, is used as the titrant, then this type of titration is termed an iodometric titration (Iodometry: Not a direct titration because there are two reactions). Analyte (unknown) + I - I2 I2 + Titrant (standard thiosulfate: known) Product In either iodimetric and iodometric titration, the principal reaction is the oxidation of thiosulfate by iodine to produce iodide ion, I -, and the tetrathionate ion, S4O6 2-. This process is showed in the following reaction: I 2 (aq) + 2S 2O 3 (aq) 2I (aq) + 2S 4 O 6 (aq) The brown color of molecular iodine in an aqueous solution is sufficiently intense to serve as an indicator of color change, because the brown color will begin disappearing at the same time as I2 is consumed, but this color change is possible only if there are no other colored substances present to interfere. Usually though, an indicator is preferred, and starch is commonly used for this purpose. "Soluble" starch forms an intensely blue-colored complex with molecular iodine. Even traces of iodine produce a visible color, making an indicator blank unnecessary. The blue color of the complex disappears if the solution is heated, but returns again with cooling. When iodine is titrated with thiosulfate (an iodometric titration), starch should be added only after most of the iodine has been consumed; otherwise, the disappearance of the blue color at the end point is sluggish. Example: Iodometric Titration of Copper (Cu) An excess of iodide ions react with copper(ii) ions thus: The reaction of iodine with thiosulphate ions is: 2Cu 2+ (aq) + 4I excess(aq) 2CuI (s) + I 2 (aq) I 2 (aq) + 2S 2O 3 (aq) 2I (aq) + 2S 4 O 6 (aq) 2.2. Permanganometry Permanganatometry is a method based on a redox reaction, which is often used in analytical chemistry for determining the concentration of various compounds. A useful property of potassium permanganate solution is its intense purple color, which to serve as an indicator for most titrations

3 Potassium permanganate is a very strong oxidizing agent and is employed in the estimation of reducing agents like ferrous salts, oxalic acid, arsenious oxide, etc. The permanganate ion, MnO4 -, gets reduced to Mn 2+ ion in acidic medium according to following equation: MnO 4 (intense purple color) + 8H + + 5e Mn 2+ (colourless) + 4H 2 O +VII Titrations involving potassium permanganate are usually carried out in acidic medium. This is due to higher oxidizing power of permanganate ion in acidic medium than in neutral or alkaline medium; secondly, the formation of brown colored, MnO2 in alkaline medium interferes with the detection of the end point. For acidification of KMnO4 solution, only H2SO4 is suitable whereas the other mineral acids like HCl and HNO3 are not. HCl is not used because some of the KMnO4 will oxidize Cl - ions to chlorine gas according to the following equation and thus interferes in the quantitative estimations of reducing agents: 2MnO H Cl 2 Mn H 2 O + 5Cl 2 Nitric acid (HNO3) cannot be used because it is itself a strong oxidizing agent and may oxidize the reducing agent, thereby introducing error. Example: Permanganometry Titration of Iron (Fe) In this redox titration you will use potassium permanganate, KMnO4, as the titrant in the analysis of an unknown sample containing iron. In acidic solution, potassium permanganate rapidly and quantitatively oxidizes iron(ii) to iron(iii), while itself being reduced to manganese(ii). The half reactions for the process are: MnO 4 + 8H + + 5e Mn H 2 O; 5 x (Fe 2+ Fe 3+ + e ); When these half-reactions are combined to give the overall balanced chemical reaction equation, a factor of five must be used with the iron half-reaction so that the number of electrons lost in the overall oxidation will equal the number of electrons gained in the reduction: MnO 4 + 8H + + 5Fe 2+ Mn H 2 O + 5Fe 3+ Potassium permanganate is one of the most commonly used oxidizing agents because it is extremely powerful, inexpensive, and readily available. It does have some drawbacks, however. Because KMnO4 is such a strong oxidizing agent, it reacts with practically anything that can be oxidized. This tends to make solutions of KMnO4 difficult to store without decomposition or a change in concentration. Because of this limitation, it is common to prepare, standardize, and then use KMnO4 solutions for an analysis all on the same day. It is not possible to prepare KMnO4 standard solutions determinated directly by mass: solid potassium permanganate cannot by obtained in a completely pure state due to the high reactivity mentioned above. Rather, potassium permanganate solutions are prepared to be an approximate concentration, and are then standardized against a known primary standard sample of the same substance which is to be analyzed in the unknown sample. Potassium permanganate is particularly useful among titrants since it requires no indicator to signal the endpoint of a titration. Potassium permanganate solutions even at fairly dilute concentrations are intensely colored purple. The product of the permanganate reduction half-reaction, manganese(ii), in dilute solution shows almost no color. Therefore, during a titration using KMnO4, when one drop excess of potassium permanganate has been added to the sample, the sample will take on a pale red/pink color (since there are no more analyte ions remaining to convert the purple MnO - 4 ions to the colorless Mn 2+ ions) Chromimetry Chromimetry is a method based on a redox reaction, which is often used in analytical chemistry for determining the concentration of various compounds. Potassium dichromate is also a very strong oxidizing agent. However it is not as strong oxidizing agent as permanganate. Still it is widely used in +II

4 redox titrations because of several advantages over permanganate. Unlike potassium permanganate, potassium dichromate is available in high purity and is highly stable up to its melting point. Its aqueous solutions are not attacked by oxidisable impurities and thus composition of aqueous solution does not change on keeping. The aqueous solutions are quite stable towards light. It is thus an excellent primary standard and its standard solutions can be prepared by direct weighing of an amount of it and dissolving in a known volume of distilled water. Potassium dichromate acts as oxidizing agent in acidic medium only. The neutral aqueous solution of Potassium dichromate is 1:1 equilibrium mixture of dichromate and chromate, a consequence of hydrolysis of dichromate ions according following equation: Cr 2 O 7 + H 2 O 2CrO 4 + 2H + Chromate ions are weaker oxidizing agent than dichromate. Thus oxidizing strength of dichromate is reduced in neutral solution. The above hydrolysis reaction however can be reversed by adding acid to the solution and this explains the necessity of acidic medium for the reaction. Also the reduction reaction of dichromate can be represented as: Cr 2 O 7 (orange) + 14H + + 6e 2Cr 3+ (green) + 7H 2 O +VI +III The medium is generally acidified with dilute H2SO4. Unlike permanganate case, cold HCl can be used here for acidifying the reaction mixture provided the acid conc. Does not increase beyond 1-2 M. Though the dichromate solutions are intensely orange colored solutions and a single drop of it imparts yellow color to a colorless solution, it can t be used as a self-indicator like KMnO4. This is because its reduction product (Cr 3+ ) is green which hinders in the visual detection of end point by observing dichromate color. Thus an indicator is must in this titration. The indicator should be redox active and must be properly chosen keeping in mind the electrode potential values of the reducing agent being titrated with dichromate. Suitable indicators for dichromate titrations are Diphenylamine (specifically sodium diphenylamine sulphonate) in presence of orthophosphoric acid, and N- phenylanthranilic acid. Example: Chromimetry Titration of Iron (Fe) Based on the same principle of permanganometry titration of Iron (Fe). But the endpoint of this titration as indicated earlier has to be defined with the help of an indicator. Cr 2 O H + + 6e 2Cr H 2 O; 6 x (Fe 2+ Fe 3+ + e ); When these half-reactions are combined to give the overall balanced chemical reaction equation, a factor of six must be used with the iron half-reaction so that the number of electrons lost in the overall oxidation will equal the number of electrons gained in the reduction: Cr 2 O H + + 6Fe 2+ 2Cr H 2 O + 6Fe 3+ Diphenylamine is one such indicator (internal indicator as it is added to the reaction mixture). The endpoint is marked with an intense blue violet coloration Cerimetry - Titrations involving ceric sulfate, symbolized here by Ce 4+, as an oxidizing agent are sometimes grouped under the generic term cerimetry. Most of the time, ceric sulfate is used. Ceric sulfate is a powerful oxidant and can be used only in acidic solution. In neutral solution ceric hydroxide or basic salts precipitate Ce(OH)4. Ceric sulfate have intense yellow color and endpoint detection can be possible without any indicator in hot solutions. The advantage of ceric salts (sulfate) over permanganate and dichromate as a standard oxidizing agent are:

5 - Ceric sulfate solution is indefinitely stable; the concentration does not vary in sunlight or even on boiling. - It may be employed in the titration of reducing agent in the presence of a high concentration of HCl. - In acid solution with reducing agent, the simple valence change Ce 4+ + e Ce 3+ is assumed to take place. No intermediate products are formed. - Cerous Ce(III) salt, which is the reduction product in ceric titrations, is practically colorless and hence allows a more effective use of indicators. Example: Cerimetry Titration of Oxalic Acid (H2C2O4) Ceric sulfate solution reacts with hot solution of oxalic acid acidified with dilute sulfuric acid by the following reaction: H 2 C 2 O 4 + 2Ce 4+ 2Ce CO 2 + 2H + In this reaction, an electron is transferred from H 2 C 2 O 4 to Ce 4+ to form Ce 3+ and (CO2+H + ). A substance that has a strong affinity for electrons, such as Ce 4+, is called an oxidizing agent, or an oxidant. A reducing agent, or reductant, is a species, such as H 2 C 2 O 4, that easily donates electrons to another species. We can split any oxidation-reduction equation into two half-reactions that show which species gains electrons and which loses them. H 2 C 2 O 4 2CO 2 + 2H + + 2e ; 2(Ce 4+ + e Ce 3+ ); The titration is carried out until the reaction mixture gets a pale yellow color. The ceric sulfate solution acts as a self-indicator

OXIDATION-REDUCTION TITRATIONS-Permanganometry

OXIDATION-REDUCTION TITRATIONS-Permanganometry Experiment No. Date OXIDATION-REDUCTION TITRATIONS-Permanganometry INTRODUCTION Potassium permanganate, KMnO 4, is probably the most widely used of all volumetric oxidizing agents. It is a powerful oxidant

More information

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach CHEM 311L Quantitative Analysis Laboratory Revision 2.3 A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach In this laboratory exercise, we will determine the concentration of the active

More information

Practical Lesson No 4 TITRATIONS

Practical Lesson No 4 TITRATIONS Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution

More information

Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

More information

REACTIONS OF SOME TRANSITION METAL IONS

REACTIONS OF SOME TRANSITION METAL IONS Transition Metals 2815 1 REACTIONS OF SOME TRANSITION METAL IONS COBALT Cobalt(II) aqueous solutions contain the pink, octahedral hexaaquacobalt(ii) ion. hexaaqua ions can also be present in solid samples

More information

Additional Lecture: TITRATION BASICS

Additional Lecture: TITRATION BASICS Additional Lecture: TITRATION BASICS 1 Definition and Applications Titration is the incremental addition of a reagent solution (called titrant) to the analyte until the reaction is complete Common applications:

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:

More information

Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration

Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration Sirromet Wines Pty Ltd 850-938 Mount Cotton Rd Mount Cotton Queensland Australia 4165 www.sirromet.com Courtesy of Jessica Ferguson Assistant Winemaker & Chemist Downloaded from seniorchem.com/eei.html

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

Coordination Compounds with Copper (II) Prelab (Week 2)

Coordination Compounds with Copper (II) Prelab (Week 2) Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination

More information

REACTIONS OF SOME TRANSITION METAL IONS COBALT

REACTIONS OF SOME TRANSITION METAL IONS COBALT Transition Metals 1 REACTIONS OF SOME TRANSITION METAL IONS COBALT Cobalt(II) aqueous solutions contain the pink, octahedral hexaaquacobalt(ii) ion hexaaqua ions can also be present in solid samples of

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL. Name: Group: Date: THE CHEMISTRY OF COPPER AND IRON

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL. Name: Group: Date: THE CHEMISTRY OF COPPER AND IRON JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL Name: Group: Date: COPPER THE CHEMISTRY OF COPPER AND IRON 1. To a solution of Cu 2+ ions add aqueous sodium hydroxide and heat the

More information

1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions 1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

More information

hij Teacher Resource Bank GCE Chemistry PSA10: A2 Inorganic Chemistry Carry out a redox titration

hij Teacher Resource Bank GCE Chemistry PSA10: A2 Inorganic Chemistry Carry out a redox titration hij Teacher Resource Bank GCE Chemistry : A2 Inorganic Chemistry Copyright 2009 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

Standardization of Potassium Permanganate solution with Standard Sodium Oxalate Solution.

Standardization of Potassium Permanganate solution with Standard Sodium Oxalate Solution. Experiment Number: 07 Name of the experiment: Standardization of Potassium Permanganate solution with Standard Sodium Oxalate Solution. Course: Chem-114 Name: Noor Nashid Islam Roll: 0105044 Group: A2

More information

One problem often faced in qualitative analysis is to test for one ion in a

One problem often faced in qualitative analysis is to test for one ion in a Chemistry 112 Laboratory: Silver Group Analysis Page 11 ANALYSIS OF THE SILVER GROUP CATIONS Ag + Pb Analysis of a Mixture of Cations One problem often faced in qualitative analysis is to test for one

More information

K + Cl - Metal M. Zinc 1.0 M M(NO

K + Cl - Metal M. Zinc 1.0 M M(NO Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question

More information

Electrochemistry - ANSWERS

Electrochemistry - ANSWERS Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

More information

6 Reactions in Aqueous Solutions

6 Reactions in Aqueous Solutions 6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

This experiment involves the separation and identification of ions using

This experiment involves the separation and identification of ions using Chemistry 112: Reactions Involving Complex Ions Page 27 COMPLEX IONS AND AMPHOTERISM This experiment involves the separation and identification of ions using two important reaction types: (i) the formation

More information

Chapter 12: Oxidation and Reduction.

Chapter 12: Oxidation and Reduction. 207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following

More information

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations

Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations hemistry 211 Spring 2011 Purpose: Determination of Ascorbic Acid in Vitamin Tablets by Redox and Acid/Base Titrations To determine the quantity of Vitamin (ascorbic acid) found in commercially available

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

12. REDOX EQUILIBRIA

12. REDOX EQUILIBRIA 12. REDOX EQUILIBRIA The electrochemical series (reference table) 12.1. Redox reactions 12.2. Standard electrode potentials 12.3. Calculations involving electrochemical cells 12.4. Using Eʅ values to predict

More information

Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz

Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz Introduction Titration is a process by which the concentration of an unknown substance in solution is determined

More information

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V 44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts

More information

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Acid-Base Titrations. Setup for a Typical Titration. Titration 1 Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these

More information

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) NCEA Level 3 Chemistry (91391) 2013 page 1 of 8 Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) Evidence Statement Q Evidence Achievement Achievement

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

Writing and Balancing Chemical Equations

Writing and Balancing Chemical Equations Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

More information

EXPERIMENT 8: Activity Series (Single Displacement Reactions)

EXPERIMENT 8: Activity Series (Single Displacement Reactions) EPERIMENT 8: Activity Series (Single Displacement Reactions) PURPOSE a) Reactions of metals with acids and salt solutions b) Determine the activity of metals c) Write a balanced molecular equation, complete

More information

HOMEWORK 4A. Definitions. Oxidation-Reduction Reactions. Questions

HOMEWORK 4A. Definitions. Oxidation-Reduction Reactions. Questions HOMEWORK 4A Oxidation-Reduction Reactions 1. Indicate whether a reaction will occur or not in each of following. Wtiring a balcnced equation is not necessary. (a) Magnesium metal is added to hydrochloric

More information

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY Phillip Bigelow Chemists make two common types of "standard solutions": Molar solutions Normal solutions Both of these solutions are concentrations (or strengths

More information

Decomposition. Composition

Decomposition. Composition Decomposition 1. Solid ammonium carbonate is heated. 2. Solid calcium carbonate is heated. 3. Solid calcium sulfite is heated in a vacuum. Composition 1. Barium oxide is added to distilled water. 2. Phosphorus

More information

AP Chemistry 2010 Scoring Guidelines Form B

AP Chemistry 2010 Scoring Guidelines Form B AP Chemistry 2010 Scoring Guidelines Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

More information

2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES

2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES 2. ATOMIC, MOLECULAR AND EQUIVALENT MASSES INTRODUCTION: EQUIVALENT WEIGHT Since hydrogen is the lightest of all elements, it was chosen as a standard for determination of equivalent weights. On this basis,

More information

OBJECTIVE: To measure Chemical Oxygen Demand. BACKGROUND AND PRINCIPLE: SELECTION OF METHODS. Page 1

OBJECTIVE: To measure Chemical Oxygen Demand. BACKGROUND AND PRINCIPLE: SELECTION OF METHODS. Page 1 Page 1 Indian Institute of Technology Delhi Department of Civil Engineering CEL212 Environmental Engineering (Second Semester 2013-14) Experiment 5: Chemical Oxygen Demand OBJECTIVE: To measure Chemical

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

General Chemistry Lab Experiment 6 Types of Chemical Reaction

General Chemistry Lab Experiment 6 Types of Chemical Reaction General Chemistry Lab Experiment 6 Types of Chemical Reaction Introduction Most ordinary chemical reactions can be classified as one of five basic types. The first type of reaction occurs when two or more

More information

Physical Changes and Chemical Reactions

Physical Changes and Chemical Reactions Physical Changes and Chemical Reactions Gezahegn Chaka, Ph.D., and Sudha Madhugiri, Ph.D., Collin College Department of Chemistry Objectives Introduction To observe physical and chemical changes. To identify

More information

Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration.

Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration. Module 9 : Experiments in Chemistry Lecture 38 : Titrations : Acid-Base, Redox and Complexometric Objectives In this lecture you will learn the techniques to do following Determination of the amount of

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform and observe the results of a variety of chemical reactions. To become familiar with the observable signs of chemical

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Nomenclature of Ionic Compounds

Nomenclature of Ionic Compounds Nomenclature of Ionic Compounds Ionic compounds are composed of ions. An ion is an atom or molecule with an electrical charge. Monatomic ions are formed from single atoms that have gained or lost electrons.

More information

20 Applications of Oxidation/Reduction Titrations

20 Applications of Oxidation/Reduction Titrations 20 Applications of Oxidation/Reduction Titrations 20A AUXILIARY OXIDIZING AND REDUCING REAGENTS 20A1 Auxiliary Reducing Reagents Table 201 Uses of the Walden Reductor and the Jones Reductor Jones Walden

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

Preparation of frequently used solutions

Preparation of frequently used solutions Preparation of frequently used solutions Content 1. Diluting Concentrated Acids (Last Login: 08/08/2009) 2. Indicators (Last Login: 27/07/2009) 3. Standard Buffer Solutions (Last Login: 27/07/2009) 4.

More information

Question Bank Electrolysis

Question Bank Electrolysis Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Complexometric Titrations

Complexometric Titrations Complexometric Titrations Complexometric titrations are based on the formation of a soluble complex upon the reaction of the species titrated with the titrant. M + L ML In the module Chemistry 2 you were

More information

W1 WORKSHOP ON STOICHIOMETRY

W1 WORKSHOP ON STOICHIOMETRY INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

More information

Stoichiometry and Aqueous Reactions (Chapter 4)

Stoichiometry and Aqueous Reactions (Chapter 4) Stoichiometry and Aqueous Reactions (Chapter 4) Chemical Equations 1. Balancing Chemical Equations (from Chapter 3) Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.

More information

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights.

TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights. TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights. Atomic structure revisited. In Topic 2, atoms were described as ranging from the simplest atom, H, containing a single proton and usually

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER

More information

Balancing Chemical Equations Worksheet

Balancing Chemical Equations Worksheet Balancing Chemical Equations Worksheet Student Instructions 1. Identify the reactants and products and write a word equation. 2. Write the correct chemical formula for each of the reactants and the products.

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

Molarity of Ions in Solution

Molarity of Ions in Solution APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.

More information

80. Testing salts for anions and cations

80. Testing salts for anions and cations Classic chemistry experiments 203 80. Testing salts for anions and cations Topic Qualitative analysis. Timing Description 12 hours. Students attempt to identify the anions and cations present in a salt

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

TEACHER VERSION: Micro scale How Can We Determine the Actual Percentage of H 2 O 2 in a Commercial (Drugstore) Bottle of Hydrogen Peroxide?

TEACHER VERSION: Micro scale How Can We Determine the Actual Percentage of H 2 O 2 in a Commercial (Drugstore) Bottle of Hydrogen Peroxide? TEACHER VERSION: Micro scale How Can We Determine the Actual Percentage of H 2 O 2 in a Commercial (Drugstore) Bottle of Hydrogen Peroxide? This is a micro scale revision of the AP chemistry Guided - Inquiry

More information

Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

More information

Laboratory 22: Properties of Alcohols

Laboratory 22: Properties of Alcohols Introduction Alcohols represent and important class of organic molecules. In this experiment you will study the physical and chemical properties of alcohols. Solubility in water, and organic solvents,

More information

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ Experiment 5 Chemical Reactions OBJECTIVES 1. To observe the various criteria that are used to indicate that a chemical reaction has occurred. 2. To convert word equations into balanced inorganic chemical

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

WRITING CHEMICAL FORMULA

WRITING CHEMICAL FORMULA WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

1. Qualitative Analysis of Chromium, Iron, and Copper

1. Qualitative Analysis of Chromium, Iron, and Copper 1. Qualitative Analysis of Chromium, Iron, and Copper Introduction We have used copper and iron as basic materials since the Bronze and Iron Ages, but our extensive use of chromium began only after the

More information

AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States

AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States Chemical reactions in which the oxidation state of a substance changes are called oxidation-reduction reactions (redox reactions). Oxidation

More information

Summer 2003 CHEMISTRY 115 EXAM 3(A)

Summer 2003 CHEMISTRY 115 EXAM 3(A) Summer 2003 CHEMISTRY 115 EXAM 3(A) 1. In which of the following solutions would you expect AgCl to have the lowest solubility? A. 0.02 M BaCl 2 B. pure water C. 0.02 M NaCl D. 0.02 M KCl 2. Calculate

More information

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes* CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity

More information

Experiment 16-Acids, Bases and ph

Experiment 16-Acids, Bases and ph Definitions acid-an ionic compound that releases or reacts with water to form hydrogen ion (H + ) in aqueous solution. They taste sour and turn litmus red. Acids react with certain metals such as zinc,

More information

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides

More information

Name AP CHEM / / Collected Essays Chapter 17 Answers

Name AP CHEM / / Collected Essays Chapter 17 Answers Name AP CHEM / / Collected Essays Chapter 17 Answers 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the

More information

Carolina s Solution Preparation Manual

Carolina s Solution Preparation Manual 84-1201 Carolina s Solution Preparation Manual Instructions Carolina Biological Supply Company has created this reference manual to enable you to prepare solutions. Although many types of solutions may

More information

Oxidation / Reduction Handout Chem 2 WS11

Oxidation / Reduction Handout Chem 2 WS11 Oxidation / Reduction Handout Chem 2 WS11 The original concept of oxidation applied to reactions where there was a union with oxygen. The oxygen was either furnished by elemental oxygen or by compounds

More information

Simulation of the determination of lead azide content in waste water from explosives manufacture

Simulation of the determination of lead azide content in waste water from explosives manufacture Simulation of the determination of lead azide content in waste water from explosives manufacture Lead azide ranks in the category of intensive explosives, which may, even in an insignificant amount, initiate

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

Determination of Aspirin using Back Titration

Determination of Aspirin using Back Titration Determination of Aspirin using Back Titration This experiment is designed to illustrate techniques used in a typical indirect or back titration. You will use the NaH you standardized last week to back

More information

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions. 1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

More information

Oxidation of Cyclohexanol to Cyclohexanone

Oxidation of Cyclohexanol to Cyclohexanone Reminder: These notes are meant to supplement, not replace, the laboratory manual. Oxidation of Cyclohexanol to Cyclohexanone History and Application: Oxidation reactions are incredibly important in the

More information

Building Electrochemical Cells

Building Electrochemical Cells Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the

More information

Redox and Electrochemistry

Redox and Electrochemistry Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+

More information

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination

More information

This value, called the ionic product of water, Kw, is related to the equilibrium constant of water

This value, called the ionic product of water, Kw, is related to the equilibrium constant of water HYDROGEN ION CONCENTRATION - ph VALUES AND BUFFER SOLUTIONS 1. INTRODUCTION Water has a small but definite tendency to ionise. H 2 0 H + + OH - If there is nothing but water (pure water) then the concentration

More information

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must

More information

TITRATION OF VITAMIN C

TITRATION OF VITAMIN C TITRATION OF VITAMIN C Introduction: In this lab, we will be performing two different types of titrations on ascorbic acid, more commonly known as Vitamin C. The first will be an acid-base titration in

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Formulae, stoichiometry and the mole concept

Formulae, stoichiometry and the mole concept 3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

More information

1A Rate of reaction. AS Chemistry introduced the qualitative aspects of rates of reaction. These include:

1A Rate of reaction. AS Chemistry introduced the qualitative aspects of rates of reaction. These include: 1A Rate of reaction AS Chemistry introduced the qualitative aspects of rates of reaction. These include: Collision theory Effect of temperature Effect of concentration Effect of pressure Activation energy

More information