Robust output feedbackstabilization via risk-sensitive control

Size: px
Start display at page:

Download "Robust output feedbackstabilization via risk-sensitive control"

Transcription

1 Automatica 38 22) Robust output feedbackstabilization via risk-sensitive control Valery A. Ugrinovskii, Ian R. Petersen School of Electrical Engineering, Australian Defence Force Academy, Canberra AC 26, Australia Received 2 February 2; received in revised form 24 October 2; accepted 2 November 2 Abstract We consider a problem of robust linear quadratic Gaussian LQG) control for discrete-time stochastic uncertain systems with partial state measurements. For a nite-horizon case, the problem was recently introduced by Petersen et al. IEEE rans. Automat. Control 45 2) 398). In this paper, an innite horizon extension of the results of Petersen et al. IEEE rans. Automat. Control 45 2) 398) is discussed. We show that for a broad class of uncertain systems under consideration, a controller constructed in terms of the solution to a specially parameterized risk-sensitive stochastic control problem absolutely stabilizes the stochastic uncertain system.? 22 Elsevier Science Ltd. All rights reserved. Keywords: Robust control; LQG control; Stochastic control; Stochastic risk-sensitive control. Introduction For systems with partial state measurements, the linear quadratic Gaussian LQG) methodology has proved to be a useful technique for designing output feedbackcontrollers. However, the development of a robust version of the LQG technique has been a challenging problem. It is known that LQG controllers may lead to very poor robustness in terms of gain and phase robustness margins Doyle, 978). herefore, considerable eorts have recently been undertaken to develop a robust version of the LQG control synthesis methodology. For dierent uncertainty models, this problem has been attacked using the H and mixed H 2 =H control approach e.g., see Mustafa & Bernstein, 99; Haddad et al., 99; Basar & Bernhard, 995), the guaranteed cost and quadratic stabilization approach Fu, de Souza, & Xie, 99), the minimax optimization approach based on sum quadratic constraints Moheimani, Savkin, & Petersen, 995). It has recently been demonstrated in Petersen, James, and Dupuis 2a) that one possibility to enhance the his workwas ported by he Australian Research Council and he Defence Science and echnology Organization. his paper was not presented at any IFAC meeting. Corresponding author. el.: ; fax: addresses: V.A. Ugrinovskii), I.R. Petersen). robustness of an LQG controller is to use a risk-sensitive control approach to the controller synthesis. he risksensitive control approach has a number of attractive features. Apart from the enhanced robustness of a controller, this approach leads to a tractable minimax design procedure which can be viewed as a direct extension of the existing LQG control technique, see Petersen, Ugrinovskii, and Savkin 2b). Note that the results in Petersen et al. 2a) which concern the output feedbackrobust control of linear systems, are incomplete in that they address the nite-horizon control problem and lead to time-varying controllers, whereas in practical robust controller design problems, time-invariant controllers are most useful. he derivation of time-invariant output feedbackrobust controllers requires that an innite-horizon version of the partial information minimax optimal control problem of Petersen et al. 2a) be considered. Although a steady-state version of the minimax optimal controller was discussed by Petersen et al. 2a), the stabilizing properties of this controller were not addressed. In this paper, we rigorously address an innite-horizon robust control problem which can be regarded as an extension of the problems considered by Petersen et al. 2a) to the innite time horizon case. he contribution of this paper is to show that the resulting optimal control schemes guarantee the absolute stability of the closed loop system against the class of admissible uncertainty perturbations under consideration; see also Ugrinovskii and Petersen 2a), Petersen et al. 2b) and Dupuis et al. 998) in the continuous-time case. 5-98/2/$ - see front matter? 22 Elsevier Science Ltd. All rights reserved. PII: S 5-98)288-6

2 946 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) he main result of the paper is a robust LQG control synthesis procedure based on a pair of discrete-time algebraic Riccati equations arising in a risk-sensitive optimal control; see Glover and Doyle 988). We show that solutions to a certain specially parameterized risk-sensitive control problem provide us with a controller which guarantees an optimal upper bound on the time-averaged performance of the closed-loop system in the presence of admissible uncertainties. his result is analogous to the corresponding continuous-time result of Ugrinovskii and Petersen 2a). 2. Denitions We adopt the stochastic uncertain system model introduced in Petersen et al. 2a). his model includes a nominal system model and also a description of a class of admissible uncertain perturbations. In this section, we present a modication of the model of Petersen et al. 2a) which is required in order to obtain an innite-horizon minimax LQG control result. he nominal system and measurement dynamics are described by the following equation: x t+ = Ax t + B u t + B 2 w t+ ; z t = C x t + D u t ; y t+ = C 2 x t + v t+ : ) In the above equations x t R n is the state, z t R p is the uncertainty output, and y t R q is the measured output. Also, w := {w t } t= ;v := {v t } t= are two sequences of i.i.d. Gaussian variables with zero mean and covariance matrices W ;, respectively. It is assumed that w t R r ;v t R q ;t=; 2;:::.WeletP w ;P v denote marginal probability measures of w t ;v t. he sequence w corresponds to the system noise, while the sequence v is referred to as the measurement noise. For simplicity, we pose that the reference system noise and the reference measurement noise are independent. All coecients in Eqs. ) are assumed to be constant matrices of corresponding dimensions. Also for the sake of simplicity, we assume that C D =. he initial state of system ) is a Gaussian random vector x R n with mean x and non-singular covariance matrix Y. he corresponding Gaussian probability measure associated with x is denoted P x. he random variable x is assumed to be independent of the reference noise sequences w ;v. he joint probability measure on the initial condition vector x and the reference noise sequences w and v is hroughout the paper, t ; t will denote sequences of random variables as follows t := { t; t+ ;:::; }; t := { t; t+ ;:::}. denoted by P : P dx dw dv ) = P x dx ) P w dw t ) P v dv t ): t= his probability measure is dened on measurable sets of the ltration {F ;=; ;:::}. For each =; ;:::;the -algebra F is generated by the initial condition x of system ) and the noise sequences w, v and is completed by including all sets of P -probability zero. he sets of the -algebra F are subsets of the noise space W, W = {x ;w ;v )}: From Kolmogorov s theorem, the family of probability measures P gives rise to a probability measure P dened on measurable space W; F); F = {F ;=; ;:::}. 2.. Stochastic uncertain system We now introduce an uncertainty model. he uncertainty will be modeled in terms of perturbations of corresponding joint probability distributions of the noise inputs w, v and the initial condition of the system. It is demonstrated in Section 2.3 that such a model provides a meaningful description of stochastic uncertain systems modeled using a linear fractional transformation LF); also, see Petersen et al. 2a,b) and Ugrinovskii and Petersen 999). he rigorous denition of our uncertainty model is the following. Let Q := {Q ;Q 2 ;:::} be a collection of conditional probability measures referred to as an uncertainty; i.e., for each t =; 2;:::; Q t dw t dv t x ;w t ;v t ) is a probability measure dened on measurable subsets of R r R q.itisassumed that Q t dw t dv t x ;w t ;v t ) Pdw t dv t x ;w t ;v t ); t =; 2;::: 2) Here, the notation means that the probability measure is absolutely continuous with respect to the reference probability measure. Using the collection Q, the joint probability measure of the initial condition vector x and the perturbed noise sequences w and v is dened by Q dx dw dv ) = P x dx ) t= Q t dw t dv t x ;w t ;v t ): t= It follows from Eq. 2) that Q P. Also, for any F -measurable set W; Q )=Q ). As in Petersen et al. 2a), we will require that each uncertainty Q = {Q ;Q 2 ;:::} has the property hq P ) for all :

3 Here, hq P ) is the relative entropy functional; e.g., see Dupuis and Ellis 997). his requirement will allow us to rule out the possibility of singular uncertain probability measure perturbations. he class of uncertain systems considered in this paper comprises the systems of the form ) in which the marginal conditional probability measures of the noise inputs w, v are required to satisfy the above requirements. he set of such uncertainties Q will be denoted as Q. From the denition and properties of the relative entropy functional, it follows that the set Q is convex. V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) Relative entropy constraint on stochastic uncertainty LF uncertainty models require that a magnitude constraint be imposed on the uncertainty. For example, it is often required that the unmodeled dynamics transfer function has a bounded H norm. As shown in Ugrinovskii and Petersen 999, 2a) and Petersen et al. 2b), for stochastic LF systems with additive noise, the constraint on the H norm of the uncertainty transfer function can be replaced by a constraint on the relative entropy of the associated perturbation probability measure. For discrete time systems, this leads to an extension of the sum quadratic constraint uncertainty description Moheimani et al., 995); see Section 2.3. Let E Q denote the expectation with respect to the probability measure Q. Denition. Let d be a given positive constant. A collection of conditional probability measures Q Q is said to dene an admissible uncertainty if the following stochastic uncertainty constraint is satised: hq P ) 6 d + 2 EQ z s 2 + ) 3) for all =; 2;:::.In3);z t is the uncertainty output dened by Eq. ). Also; ) as. We denote the set of uncertainties Q Q satisfying condition 3) by. he corresponding probability measures Q are also called admissible probability measures. Observe that the set is not empty. Indeed, consider the reference probability measure P. Since the Gaussian random variables w t, v t are independent, the corresponding reference conditional probability measures are simply the marginal probability measures: P t dw t dv t x ;w t ;v t )=P w dw t ) P v dv t ): Also, the fact that hp P ) = and the condition d imply that the corresponding collection of conditional probabilities P := {P ;P 2 ;:::} is admissible, P. Note that in this case, constraint 3) is satised strictly. Hence, P is an interior point of the set. Fig.. An uncertain control system A connection between uncertainty input signals and uncertain probability measures In order to give a further insight into Denition, we show that the uncertainty class introduced in Section 2.2 includes uncertainty models which often arise in control systems such as H norm-bounded uncertainty and bounded exogenous uncertainty. Consider an uncertain system shown in Fig.. he system is described by the equations x t+ = Ax t + B u t + B 2 t z t = C x t + D u t ; y t+ = C 2 x t + t + ex t + w t+ ); + ex t +ṽ t+ ); 4) and is driven by the system and measurement noises w t, ṽ t, exogenous disturbance processes ex t, ex t and uncertainty inputs t, t which are generated by a stable linear time-invariant uncertainty. he latter is due to the presence of unmodeled dynamics which are described by a stable transfer function z). It is assumed that! ; W =2 e j! ) =2 6 2 : 5) Condition 5) constitutes a H type norm bound on the size of unmodeled dynamics in system 4). System 4) is considered in a complete probability space W; F; Q); w,ṽ are Gaussian white noise processes in this probability space, E Q w t w t =W, E Qṽ t ṽ t =. It follows from 5) that the processes, are adapted to the ltration {F ;=; ;:::;} generated by the noise inputs

4 948 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) and W =2 t 2 + =2 t 2 ) 6 2 E Q z t 2 : E Q Also, it is assumed that the exogenous disturbances ex, ex are adapted to the ltration {F ;=; ;:::;} and E Q W =2 ex t 2 + =2 ex t 2 ) 6 d + ); 6) where d is a given constant, and ) as. Condition 6) imposes a bound on the size of uncertain exogenous perturbations in system 4). In particular, one can see the role of the constant d from Denition in this example. he introduction of this constant reects the fact that the power seminorm of the input disturbances does not exceed d. he above constraints on the exogenous disturbance and unmodeled dynamics lead to an uncertainty constraint which can be represented in the form of the relative entropy uncertainty constraint 3). Indeed, the above assumptions imply that the processes ex, ex t := t + ex t ; t := t + ex t satisfy the condition 2 E Q W =2 t 2 + =2 t 2 ) 6 d + 2 E Q z t 2 + ): 7) In order to express constraint 7) in the form of condition 3), we introduce the probability measure transformation dp = exp { d Q tw w t+ 2 } F tw t exp { t ṽ t+ 2 } t t : 8) Using the discrete-time version of the Girsanov s theorem Elliott, Aggoun, & Moore, 994) we conclude that under the probability measure P the sequences w ;v dened by the equations w t+ = w t+ + t ; v t+ =ṽ t+ + t ; t =; ; 2;::: : 9) are the sequences of i.i.d. Gaussian random variables. Furthermore, when considered with respect to the probability measure P, system 4) becomes a system of the form ) driven by the i.i.d. Gaussian white noises w t ;v t. Finally, using the chain rule Dupuis & Ellis, 997), we obtain h Q P )= 2 E Q W =2 t 2 + =2 t 2) : Here, Q and P denote the restrictions of the probability measures Q and P to W; F ). hus, from 7), condition 3) of Denition 2 follows. herefore, the uncertain system considered in this section belongs to the class of uncertain systems dened in Denition. It can be shown in a similar fashion that Denition encompasses some other important classes of uncertainty arising in control systems such as, for example, the cone-bounded uncertainty Absolutely stabilizing control In this paper, our attention will be restricted to linear output-feedbackcontrollers of the form ˆx t+ = A c ˆx t + B c y t+ ; u t = C c ˆx t ; ) where ˆx R ˆn is the state of the controller, A c R ˆn ˆn, B c R ˆn q, and C c R m ˆn. Let U denote this class of linear controllers. Note that controller ) is adapted to the ltration {Y t ;t } generated by the observation process y; Y t = {y s ;s=;:::;t}. he closed-loop system corresponding to system ) and controller ) is described by a linear dierence equation of the form x t+ = A x t + B w t+ ; z t = C x t ; u t = C c x t : ) In Eq. ), x =x ˆx R n+ˆn and w t =w t v t are the state and the noise input of the closed loop system. Also, the following notation is used: A B C c B2 A = ; B = ; B c C 2 A c B c C =C D C c : 2) In the sequel, we will consider a subclass of controllers ) which satisfy some additional stabilizability and observability requirements. We say that a controller K belongs to the class U U if for this controller, the corresponding matrix pair A; B) is stabilizable 2 and the pair A c ;C c )is observable. It was shown in Petersen et al. 2a) that in the steady-state case, the minimax optimal LQG controller has the structure given in equation ). As mentioned above, we wish to investigate the stabilizing properties of this optimal controller as. First, we introduce a denition 2 For example, this condition holds if the matrix pairs A; B 2 ) and A c;b c) are stabilizable.

5 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) of stabilizability which allows for uncertain control systems driven by additive noise whose solutions are not square summable. Denition 2. A controller K of the form ) is said to be an absolutely stabilizing controller for the uncertain system ) with uncertainty satisfying the relative entropy constraint 3); if the system state process x ; the controller state process ˆx and the control process u dened by the closed-loop system ) corresponding to this controller satisfy the following condition. here exist constants c ; c 2 such that for any admissible uncertainty Q ; x t 2 + ˆx t 2 + u t 2 ) E Q +hq P ) 6 c + c 2 d: 3) In particular, for the uncertain system shown in Fig. above property means that in a stable closed-loop system, time-average norms of the system state, controller state as well as control input and uncertainty inputs are bounded regardless the value of the transfer function z) and disturbances ex, ex. In the special case of the uncontrolled uncertain system ), 3), the above denition reduces to the property of absolute stability the system. hat is, the uncertain system ), 3) with u t = is absolutely stable if for any admissible uncertainty Q, x t 2 + hq P ) 6 c + c 2 d: E Q 4) Lemma. Suppose the stochastic nominal closed-loop system ) is mean square stable; i.e. E x t 2 : 5) Also; pose the pair A; B) is stabilizable. hen; the matrix A must be stable. he proof of this lemma is identical to the proof of the corresponding continuous-time result in Ugrinovskii and Petersen 2a,b) and Petersen et al. 2b). 3. he main results he steady-state minimax LQG control problem considered in Petersen et al. 2a) was to nd a controller which attained an upper value inf J K; Q) 6) K Q of the cost functional J K; Q) = 2 EQ Fx t ;u t ); Fx; u):=x Rx + u Gu; 7) R and G are symmetric positive denite matrices, R R n n, G R m m. Here, x t denotes the solution to system ) corresponding to a given controller K and an admissible uncertainty Q. he minimax optimal controller for problem ), 3), 7) proposed in Petersen et al. 2a) was constructed using a pair of parameter dependent algebraic Riccati equations X = A X + B G + D D ) B B 2WB 2) A + R + C C ; 8) Y = A Y + C 2 C 2 ) R C C A + B 2 WB 2: 9) Here, is a positive constant which was chosen as follows. For each such that the Riccati equations 8), 9) admit positive denite stabilizing solutions satisfying the conditions Y + C 2 C 2 R C C ; X B 2WB 2 ; X Y 2) dene the quantity V = det 2 log I ) Y R + C C ) det 2 log I X I ) ) Y X ; 2) where := K + C 2 I ) ) Y R + C C ) Y C K ; K := A Y + C 2 C 2 ) R C C C 2 : 22) he set of the parameters satisfying the above requirement is denoted. In order to obtain the minimax optimal LQG controller, the parameter is chosen to achieve the inmum in inf V + d): 23) Using this optimal value of, the corresponding minimax optimal steady-state controller K is dened by the

6 95 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) equations u t = L ˆx t ; 24) L := G + D D ) B X + B G + D D ) B B 2WB 2 A I ) Y X ; where ˆx t was generated by the lter ˆx t+ = A ˆx t + B u t + Ky t+ C 2 ˆx t ) + A Y + C 2 C 2 ) R C C R + C C )ˆx t ; ) ˆx =x : 25) he above solution to the minimax optimal LQG control problem was obtained in Petersen et al. 2a) by letting in the corresponding nite horizon problem. However, as we let approach, two important issues arise which were not addressed in Petersen et al. 2a). ) he ability of an optimal controller to stabilize the system is an important issue in optimal control on an in- nite time interval. In our case, it is desired that the resulting minimax optimal controller stabilizes the system ) for all admissible uncertainties Q. 2) It was shown in Petersen et al. 2a) that on a nite interval, the minimax optimal LQG controller exists if and only if associated parameter dependent dierence Riccati equations have positive denite solutions. In the innite horizon case, the design methodology outlined in Petersen et al. 2a) provides only a sucient condition for the minimax optimal controller to exist. However, it is often useful to know that the only if claim holds as well. Necessary conditions usually give a good indication as to how conservative the proposed controller is. hese issues are addressed in the statements given below. heorem shows that the existence of stabilizing solutions to the algebraic Riccati equations 8) and 9) is a sucient as well as a necessary condition for the innite-horizon minimax optimal LQG control problem 26) to have a solution. Furthermore, heorem 2 shows that the minimax LQG controller proposed in Petersen et al. 2a) is an absolutely stabilizing controller. heorem. i) If the set is non-empty, then the minimax optimal control problem inf J K; Q) 26) K U Q has a nite value. ii) Conversely, if there exists an absolutely stabilizing controller K U which attains the inmum in 26); then the set is not empty. he innite-horizon version of the minimax optimal LQG control result of Petersen et al. 2a) now follows from heorem. heorem 2. Suppose that and attains the inmum in 23). hen; the corresponding controller K = K dened by 24); 25); guarantees that the worst case of the cost functional 7) does not exceed the value 23). Furthermore; this controller is an absolutely stabilizing controller for stochastic uncertain system ) satisfying relative entropy constraint 3). Remark. Note that the controller resulting from heorem 2 is the steady-state limit of the nite horizon minimax optimal controller proposed in the reference Petersen et al. 2a). Also; the worst-case performance 23) is the steady-state limit of the performance guaranteed by the nite-horizon minimax optimal controller. he proofs of the above theorems will be given in Sections 3.3 and Preliminary remarks he proof of heorem relies on a duality relationship between free energy and relative entropy established in Dupuis and Ellis 997) and Dai Pra, Meneghini and Runggaldier 996). Associated with system ), consider the parameter dependent risksensitive cost functional I ; K)= {exp log E 2 } F x t ;u t ) ; 27) where is a given constant, K is a controller dened by Eq. ). Also, F x; u):=x R + C C )x + u G + D D )u: 28) When applied to system ) and the risksensitive cost functional 27), the duality result states that for each admissible controller K, I ; K) = Q : hq P ) 2 EQ F x t ;u t ) : hq P ) 29) he use of the above duality result is a key step in this paper in that it enables us to replace a guaranteed cost control problem by the following risksensitive optimal control problem:

7 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) Find an output feedbackcontroller of form ) which attains the inmum in inf lim I ;K): 3) K In this paper, we use the solution to this risksensitive control problem presented in Whittle 99). Note that similar results concerning problem 3) were obtained in Iglesias, Mustafa, and Glover 99) and Glover and Doyle 988) 3 where the problem was shown to be equivalent to a problem of constructing an output feedbackcontroller which maximizes the entropy functional I d K;)= log deti H e j! )H e j! )) d! 2 3) over the set of stabilizing output feedbackcontrollers satisfying the following bound: H := H e j! )H e j! ) : 32)! ; Here, H s) is the transfer function of the closed loop system dened by the equations x t+ = Ax t + B u t +B 2 W =2 t+ ; 33) R =2 z t = x t + G =2 u t; C D y t+ = C 2 x t + =2 t+ ; and a stabilizing linear controller u t =Ky t ). In particular, for a linear controller of the form ), the transfer function H s) is given by R =2 H s) := G =2 C c si A) C D C c B2 W =2 : 34) B c =2 It follows from the results of Iglesias et al. 99), Glover and Doyle 988) and Whittle 99) that the solution to the above maximum entropy problem and equivalently, the solution to the risksensitive control problem 3) is given by the central solution to the corresponding H control problem; see Basar and Bernhard 995). 4 his controller is dened by Eqs. 24) and 25) and involves positive denite solutions 3 Iglesias et al. 99), Glover and Doyle 988) consider a slightly dierent information pattern which allows the control u t to instantaneously access y t+. his leads to an optimal controller which is not strictly causal. 4 Also, the links between the problem considered in this paper and H control were discussed in Petersen et al. 2a). to the Riccati equations 8) and 9). Furthermore, the minimum risk-sensitive cost corresponding to this controller is given by Eq. 2) Absolutely stabilizing properties of risk-sensitive control In this section, we establish the absolutely stabilizing properties of the risk-sensitive controller. Lemma 2. Let K be a controller which guarantees a nite risk-sensitive cost: V K := lim I ;K) : hen; the controller K is an absolutely stabilizing controller for the stochastic uncertain system ) satisfying the relative entropy constraint 3). Furthermore; J K; Q) 6 V K + d: 35) Q Proof. We wish to prove that the controller K satises condition 3) of Denition 2. Consider an uncertain system with an admissible uncertainty Q governed by the controller K. Recall that the system is described by Eq. ) where the control process u is generated by the given controller K. Also, the joint probability distribution of the noise inputs w, v and the initial condition x is dened by the given collection of conditional probability measures Q. Note that since the uncertainty Q is admissible, then the corresponding probability measures Q have the property hq P ) for every =; 2;:::. his allows us to apply duality condition 29). From this equation, we obtain + { 2 EQ 2 EQ Fx s ;u s ) } z s 2 hq P ) 6 V K : 36) Furthermore since Q, satisfaction of Eq. 35) follows from 36) and 3). We now show that the controller K is absolutely stabilizing. Since the matrices R and G are positive denite, then inequality 35) implies EQ x s 2 + u s 2 ) 6 V K + d); 37) where is a constant which depends only on R and G. Next, we show that there exist constants c ;c 2 such that hq P ) c + c 2 d: 38)

8 952 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) o this end, we note that for any Q, t t hqt P t ) 6 d + ˆ + t 2t EQ z s 2 : 39) t t Here, ˆ := t t) as. Inequality 39) takes into account the fact that the probability measure Q t satises the relative entropy constraint 3). herefore, inequalities 37) and 39) imply hq P ) 6 d + 6 c + c 2 d; 2 EQ z s 2 where the constants c, c 2 are dened by V K,,, C, D, and hence independent of Q. o complete the proof, it remains to prove that the process ˆx satises condition 3) of Denition 2. Indeed, consider the uncertain closed loop system ) corresponding to the controller K and an admissible uncertainty Q. Using the duality relation between free energy and relative entropy established in Dupuis and Ellis 997) and Dai Pra et al. 996), we obtain Q 2 EQ x t 2 hq P ) 6 Q :hq P ) 2 EQ x t 2 hq P ) { } =log E exp x t 2 : 2 From this equation, it follows that for any Q, 2 EQ x t 2 6 hq P ) { } + lim log E exp x t 2 : 4) 2 Note that the process x on the left-hand side of Eq. 4) corresponds to the uncertain system ) while the process x that appears in the second term on the right-hand side of Eq. 4) is generated by the nominal closed loop system ). Since this nominal system is driven by the Gaussian process w, one can choose suciently small such that the second term on the right-hand side of Eq. 4) is nite; e.g., see Glover and Doyle 988) and Whittle 99). his term is independent of Q. Since we have already proved 38), then condition 3) follows. Remark 2. It follows from Lemma 2 that the controller solving the risksensitive control problem 3) is an absolutely stabilizing controller for the uncertain system under consideration. Lemma 3. Suppose 5 that for any K U J K; Q)= : 4) Q Q If there exists an absolutely stabilizing controller K U such that J K; Q) c ; 42) Q then there exists a such that V. Proof. Since the given controller K U absolutely stabilizes the uncertain system ); 3); then condition 3) of Denition 2 is satised. Note that it follows from 3) and Lemma that the matrix A corresponding to the controller K is stable. Also; condition 3) implies that there exists a positive constants c ; such that for all Q ; lim inf 2 EQ + lim inf Fx s ;u s ) 2 EQ x s 2 + ˆx s 2 ) 6 c: 43) Consider the functionals G Q) := c lim inf lim inf G Q):= d lim inf 2 EQ 2 EQ Fx s ;u s ) x s 2 + ˆx s 2 ); 2 EQ z s 2 hq P ) : 44) It is readily proved that satisfaction of condition 43) implies that the following condition is satised: If G Q) 6 then G Q) : 45) he proof of this fact follows along the same lines as the proof of the corresponding fact in Ugrinovskii and Petersen 2a); see also Petersen et al. 2b). Furthermore; the set of uncertainties satisfying the condition G Q) 6 has an interior point; see the remarkfollowing Denition. Also; it follows from the properties of the relative entropy functional that the functionals G ) and G ) are convex. 5 Condition 4) is similar to a corresponding condition in Petersen et al. 2a). his condition was introduced in Petersen et al. 2a) to rule out the case = in the proof of heorem 3:. In the continuous-time case, this condition holds if the pair A; B) corresponding to the given controller K U is controllable; e.g., see Ugrinovskii and Petersen 2a) and Petersen et al. 2b). Obviously, in the discrete time case, condition 4) can be replaced by a similar controllability condition.

9 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) We have now veried all of the conditions needed to apply the Lagrange multiplier result e.g.; see Luenberger; 969). Indeed; heorem on p. 27 of Luenberger 969) implies that there exists a constant such that lim inf + EQ lim inf + lim inf 2 Fx t;u t ) 2 EQ 2 EQ x t 2 + ˆx t 2 ) z t 2 hq P ) 6 c d: 46) for all Q Q. Also; condition 4) rules out the possibility that =. hus;. Condition 46) implies the satisfaction of condition 32) for the transfer function H s) corresponding to the system 33) and the given controller K. his claim can be established using the same arguments as those used in proving the corresponding fact in Ugrinovskii and Petersen 2b) and Petersen et al. 2b). For the sake of brevity, we only outline the proof. Consider an augmented version of the closed loop system corresponding to system 33) and the given controller K: B2 x t+ = W =2 A x t + t ; 47) B c =2 R =2 G =2 C c z ;t = C D C c x t : I I his system is posed to be driven by a deterministic input disturbance which has a nite autocorrelation matrix and also has a power spectral density function Makila, Partington, & Norlander 998; Ljung, 987). We denote the set of such signals by P +. he transfer function of system 47) is denoted H ; z). We will establish condition 32) by showing that H ; 6 : 48) he proof is by establishing a contradiction. First, we observe that the failure of condition 48) to hold must lead to the existence of a sequence of deterministic inputs { N ;N =; 2;:::} P+ such that z ;t 2 t N 2 ) N 49) 2 for all ; N), where is a suciently small constant. hen, we show that the satisfaction of condition 49) must lead to a contradiction with 46). Indeed, for each input N, a collection of conditional probability measures Q N = {Q N ;QN 2 ;:::} Q can be dened using a corresponding probability measure transformation; see Section 2.3. o this end, the input N has to be partitioned as follows: N t W =2 = N =2 t : N t Also as in Section 2.3, the probability measures Q N; are dened, hq N; P )= 2 W =2 N t 2 + =2 N t 2 : 5) Next, it is shown using 49) that the closed loop system ) driven by the deterministic inputs N, N and considered on the probability space W; F ;Q N; ), satises the following condition: N; M N := lim 2 EQ Fx t;u t )+ x t 2 Q Q + z t 2 W =2 N t 2 =2 N t 2 N: 5) Letting N in Eq. 5) and using Eq. 5), we obtain the following contradiction with 46): lim inf EQ 2 Fx t;u t ) + lim inf + lim inf 2 EQ 2 EQ x t 2 z t 2 hq P ) M N = : N he above contradiction shows that condition 48) must hold. Since condition 48) implies 32), the lemma now follows from condition 32) and the results of Glover and Doyle 988) and Whittle 99) Proof of heorem Part i) of the theorem follows from Lemma 2. Indeed, if, then the corresponding Riccati equations 8) and

10 954 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) ) have stabilizing solutions. his ensures that the corresponding controller 24) solves the maximum entropy control problem and equivalently, the risksensitive control problem 3). he corresponding value of the risk-sensitive cost in 3) is therefore nite. hus, controller 24) corresponding to also satises the conditions of Lemma 2. From this lemma, part i) of heorem follows. Part ii) follows from Lemma Proof of heorem = = = It has been observed that for each, controller 24), 25) solves the corresponding risk-sensitive optimal control problem. Hence from Lemma 2, this controller is an absolutely stabilizing controller. Also from Eq. 35) in Lemma 2, it follows that the risk-sensitive controller corresponding to guarantees that the cost is not greater than the value dened by Eq. 23). 4. Illustrative example o illustrate our theory, we consider an example discussed in Petersen et al. 2a). In this example, an uncertain system was considered which had the structure shown in Fig.. he system is dened by the equations :52 :5 :53 x t+ = :52 x t + :52 u t + :53 :52 t + w t+ ); x 4 Fig. 2. he graph of xt 2 versus. equations 8), 9) is given by the transfer function 76:85z +78:3 Hz)= z 2 53) +:48z +:386 which corresponds to =:8. o verify stabilizing properties of this controller, the closed loop system 52), 53) was simulated with dierent values of and the graphs of x t 2 ; u t 2 ; t 2 were plotted. It was observed that the above quantities showed a tendency to remain bounded over the time of simulation. One of these graphs is shown in Fig. 2. z t =:5u t ; y t+ = x t + t +ṽ t+ ): 52) he reference noise signals w t, v t are assumed to be Gaussian white noise signals with covariances W =, = 4, respectively. he uncertainty is assumed to satisfy the stochastic sum constraint 7) with d = 8. Also in Petersen et al. 2a), cost functional 7) was considered in which R = ; G = 4 : For this system, the robust LQG controller designed in Petersen et al. 2a) using the steady-state Riccati References Basar,., & Bernhard, P. 995). H -optimal control and related minimax design problems: a dynamic game approach. 2nd edition. Boston, Birkhauser. Dai Pra, P., Meneghini, L., & Runggaldier, W. 996). Connections between stochastic control and dynamic games. Mathematics of Control, Systems and Signals, 94), Doyle, J. C. 978). Guaranteed margins for LQG regulators. IEEE ransactions on Automatic Control, 23. Dupuis, P., & Ellis, R. 997). A Weak Convergence Approach to the heory of Large Deviations. New York: Wiley. Dupuis, P., James, M. R., & Petersen, I. R. 998). Robust properties of risk-sensitive control. In Proceedings of the IEEE Conference on Decision and Control, Vol. 2. pp ), ampa, FL, December. Elliott, R. J., Aggoun, L., & Moore, J. B. 994). Hidden Markov models. Estimation and Control. New York: Springer.

11 V.A. Ugrinovskii, I.R. Petersen / Automatica 38 22) Fu, M., de Souza, C. E., & Xie, L. 99). Quadratic stabilization and H control of discrete-time uncertain systems. In Proceedings of the International Symposium on Mathematical heory of Networks and Systems, Kobe, Japan. Glover, K., & Doyle, J. C. 988). State-space formulae for all stabilizing controllers that satisfy an H -norm bound and relations to risk-sensitivity. Systems & Control Letters,, Haddad, W. H., Bernstein, D. S., & Mustafa, D. 99). Mixed-norm H 2 =H regulation and estimation: he discrete-time case. Systems & Control Letters, 64), Iglesias, P. A., Mustafa, D., & Glover, K. 99). Discrete time H controllers satisfying a minimum entropy criterion. Systems & Control Letters, 4, Ljung, L. 987). System Identication:heory for the User. Englewood-Cli, NJ: Prentice-Hall. Luenberger, D. G. 969). Optimization by Vector Space Methods. New York: Wiley. Makila, P. M., Partington, J. R., & Norlander,. 998). Bounded power signal spaces for robust control and modeling. SIAM J. Control Opt., 37), Moheimani, S. O. R., Savkin, A. V., & Petersen, I. R. 995). A connection between H control and the absolute stabilizability of discrete-time uncertain systems. Automatica, 38), Mustafa, D., & Bernstein, D. S. 99). LQG bounds in discrete-time H 2 =H control. ransactions of the Institute of Measurement and Control, 3, Petersen, I. R., James, M. R., & Dupuis, P. 2a). Minimax optimal control of stochastic uncertain systems with relative entropy constraints. IEEE ransactions on Automatic Control, 45, Petersen, I. R., Ugrinovskii, V., & Savkin, A. V. 2b). Robust Control Design using H Methods. Berlin: Springer. Ugrinovskii, V. A., & Petersen, I. A. 999). Finite horizon minimax optimal control of stochastic partially observed time varying uncertain systems. Mathematics of Control, Signals and Systems, 2), 23. Ugrinovskii, V. A., & Petersen, I. R. 2a). Minimax LQG control of stochastic partially observed uncertain systems. SIAM J. Control Optim., 44), Ugrinovskii, V. A., & Petersen, I. R. 2b). Robust stability and performance of stochastic uncertain systems on an innite time interval. Systems & Control Letters, 444), Whittle, P. 99). Risk-sensitive optimal control. Chichester, UK: Wiley. Ian R. Petersen was born in Victoria, Australia in 956. He received the Bachelor of Engineering Electrical) degree from the University of Melbourne in 979. He received a Master of Science degree in 984 and a Ph.D in Electrical Engineering in 984 both from the University of Rochester. From 983 to 985 he was a Postdoctoral Fellow in the Department of Systems Engineering, Australian National University. In 985 he was appointed as a Lecturer in the Department of Electrical Engineering, Australian Defence Force Academy and he is currently a Professor in this department. In 989, he was a visitor in the Department of Engineering, Cambridge University. He served as an Associated Editor for the IEEE ransactions on Automatic Control and Systems and Control Letters. Currently he is an Associate Editor for Automatica and SIAM Journal on Control and Optimization. His main research interests are in robust control theory, H control, robust ltering, and optimal control theory. Valery A. Ugrinovskii was born in Ukraine in 96. He received the M.Sc. degree in Applied Mathematics in 982 and a Ph.D in Physics and Mathematics in 99 both from the State University of Nizhny Novgorod, Russia. From 982 to 995 he held research positions with the Radiophysical Research Institute, Nizhny Novgorod. From 995 to 996 he was a Postdoctoral Fellow at the University of Haifa. Since 996, he has been a Research Associate and Lecturer in the School of Electrical Engineering, Australian Defence Force Academy, Canberra. He is the coauthor of the research monograph Robust Control Design using H Methods, Springer, London, 2, with Ian R. Petersen and Andrey V. Savkin. His current research interests include stochastic control theory, robust control theory and H control.

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory Jun WuÝ, Sheng ChenÞand Jian ChuÝ ÝNational Laboratory of Industrial Control Technology Institute of Advanced Process Control Zhejiang University,

More information

An interval linear programming contractor

An interval linear programming contractor An interval linear programming contractor Introduction Milan Hladík Abstract. We consider linear programming with interval data. One of the most challenging problems in this topic is to determine or tight

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Relations Between Time Domain and Frequency Domain Prediction Error Methods - Tomas McKelvey

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Relations Between Time Domain and Frequency Domain Prediction Error Methods - Tomas McKelvey COTROL SYSTEMS, ROBOTICS, AD AUTOMATIO - Vol. V - Relations Between Time Domain and Frequency Domain RELATIOS BETWEE TIME DOMAI AD FREQUECY DOMAI PREDICTIO ERROR METHODS Tomas McKelvey Signal Processing,

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Analysis of a Production/Inventory System with Multiple Retailers

Analysis of a Production/Inventory System with Multiple Retailers Analysis of a Production/Inventory System with Multiple Retailers Ann M. Noblesse 1, Robert N. Boute 1,2, Marc R. Lambrecht 1, Benny Van Houdt 3 1 Research Center for Operations Management, University

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel

Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel Lizhong Zheng, Student

More information

Stochastic Linear Control Over a Communication Channel

Stochastic Linear Control Over a Communication Channel Stochastic Linear Control Over a Communication Channel Sekhar atikonda Yale University New Haven, C 06520 sekhar.tatikonda@yale.edu 203-432-474 Anant Sahai University of California, Berkeley Berkeley,

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

TD(0) Leads to Better Policies than Approximate Value Iteration

TD(0) Leads to Better Policies than Approximate Value Iteration TD(0) Leads to Better Policies than Approximate Value Iteration Benjamin Van Roy Management Science and Engineering and Electrical Engineering Stanford University Stanford, CA 94305 bvr@stanford.edu Abstract

More information

Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 313 Lecture #10 2.2: The Inverse of a Matrix Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

A NOTE ON AN LQG REGULATOR WITH MARKOVIAN SWITCHING AND PATHWISE AVERAGE COST*

A NOTE ON AN LQG REGULATOR WITH MARKOVIAN SWITCHING AND PATHWISE AVERAGE COST* A NOTE ON AN LQG REGULATOR WITH MARKOVIAN SWITCHING AND PATHWISE AVERAGE COST* Mrinal K. Ghosh, Aristotle Arapostathis and Steven I. Marcus Abstract. We study a linear system with a Markovian switching

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

On closed-form solutions of a resource allocation problem in parallel funding of R&D projects

On closed-form solutions of a resource allocation problem in parallel funding of R&D projects Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closed-form solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed

More information

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne

More information

LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1

LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1 LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1 Henrik Niemann Jakob Stoustrup Mike Lind Rank Bahram Shafai Dept. of Automation, Technical University of Denmark, Building 326, DK-2800 Lyngby, Denmark

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Optimal Investment with Derivative Securities

Optimal Investment with Derivative Securities Noname manuscript No. (will be inserted by the editor) Optimal Investment with Derivative Securities Aytaç İlhan 1, Mattias Jonsson 2, Ronnie Sircar 3 1 Mathematical Institute, University of Oxford, Oxford,

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written

More information

The Method of Least Squares

The Method of Least Squares The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

Online Convex Optimization

Online Convex Optimization E0 370 Statistical Learning heory Lecture 19 Oct 22, 2013 Online Convex Optimization Lecturer: Shivani Agarwal Scribe: Aadirupa 1 Introduction In this lecture we shall look at a fairly general setting

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

15 Limit sets. Lyapunov functions

15 Limit sets. Lyapunov functions 15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior

More information

Stability of the LMS Adaptive Filter by Means of a State Equation

Stability of the LMS Adaptive Filter by Means of a State Equation Stability of the LMS Adaptive Filter by Means of a State Equation Vítor H. Nascimento and Ali H. Sayed Electrical Engineering Department University of California Los Angeles, CA 90095 Abstract This work

More information

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Modeling and Performance Evaluation of Computer Systems Security Operation 1 Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

A Log-Robust Optimization Approach to Portfolio Management

A Log-Robust Optimization Approach to Portfolio Management A Log-Robust Optimization Approach to Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Analysis of Load Frequency Control Performance Assessment Criteria

Analysis of Load Frequency Control Performance Assessment Criteria 520 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 3, AUGUST 2001 Analysis of Load Frequency Control Performance Assessment Criteria George Gross, Fellow, IEEE and Jeong Woo Lee Abstract This paper presents

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Fuzzy Probability Distributions in Bayesian Analysis

Fuzzy Probability Distributions in Bayesian Analysis Fuzzy Probability Distributions in Bayesian Analysis Reinhard Viertl and Owat Sunanta Department of Statistics and Probability Theory Vienna University of Technology, Vienna, Austria Corresponding author:

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005 2475. G. George Yin, Fellow, IEEE, and Vikram Krishnamurthy, Fellow, IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005 2475. G. George Yin, Fellow, IEEE, and Vikram Krishnamurthy, Fellow, IEEE IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005 2475 LMS Algorithms for Tracking Slow Markov Chains With Applications to Hidden Markov Estimation and Adaptive Multiuser Detection G.

More information

A Direct Numerical Method for Observability Analysis

A Direct Numerical Method for Observability Analysis IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

A Simple Proof of Duality Theorem for Monge-Kantorovich Problem

A Simple Proof of Duality Theorem for Monge-Kantorovich Problem A Simple Proof of Duality Theorem for Monge-Kantorovich Problem Toshio Mikami Hokkaido University December 14, 2004 Abstract We give a simple proof of the duality theorem for the Monge- Kantorovich problem

More information

LINEAR PROGRAMMING WITH ONLINE LEARNING

LINEAR PROGRAMMING WITH ONLINE LEARNING LINEAR PROGRAMMING WITH ONLINE LEARNING TATSIANA LEVINA, YURI LEVIN, JEFF MCGILL, AND MIKHAIL NEDIAK SCHOOL OF BUSINESS, QUEEN S UNIVERSITY, 143 UNION ST., KINGSTON, ON, K7L 3N6, CANADA E-MAIL:{TLEVIN,YLEVIN,JMCGILL,MNEDIAK}@BUSINESS.QUEENSU.CA

More information

Weakly Secure Network Coding

Weakly Secure Network Coding Weakly Secure Network Coding Kapil Bhattad, Student Member, IEEE and Krishna R. Narayanan, Member, IEEE Department of Electrical Engineering, Texas A&M University, College Station, USA Abstract In this

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Markov random fields and Gibbs measures

Markov random fields and Gibbs measures Chapter Markov random fields and Gibbs measures 1. Conditional independence Suppose X i is a random element of (X i, B i ), for i = 1, 2, 3, with all X i defined on the same probability space (.F, P).

More information

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

A Robust Optimization Approach to Supply Chain Management

A Robust Optimization Approach to Supply Chain Management A Robust Optimization Approach to Supply Chain Management Dimitris Bertsimas and Aurélie Thiele Massachusetts Institute of Technology, Cambridge MA 0139, dbertsim@mit.edu, aurelie@mit.edu Abstract. We

More information

Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves

Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves Abstract: This paper presents a model for an insurance company that controls its risk and dividend

More information

Analysis of Mean-Square Error and Transient Speed of the LMS Adaptive Algorithm

Analysis of Mean-Square Error and Transient Speed of the LMS Adaptive Algorithm IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002 1873 Analysis of Mean-Square Error Transient Speed of the LMS Adaptive Algorithm Onkar Dabeer, Student Member, IEEE, Elias Masry, Fellow,

More information

SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION

SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION SPARE PARS INVENORY SYSEMS UNDER AN INCREASING FAILURE RAE DEMAND INERVAL DISRIBUION Safa Saidane 1, M. Zied Babai 2, M. Salah Aguir 3, Ouajdi Korbaa 4 1 National School of Computer Sciences (unisia),

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

A New Generic Digital Signature Algorithm

A New Generic Digital Signature Algorithm Groups Complex. Cryptol.? (????), 1 16 DOI 10.1515/GCC.????.??? de Gruyter???? A New Generic Digital Signature Algorithm Jennifer Seberry, Vinhbuu To and Dongvu Tonien Abstract. In this paper, we study

More information

1 Short Introduction to Time Series

1 Short Introduction to Time Series ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property Venkat Chandar March 1, 2008 Abstract In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve

More information

On the D-Stability of Linear and Nonlinear Positive Switched Systems

On the D-Stability of Linear and Nonlinear Positive Switched Systems On the D-Stability of Linear and Nonlinear Positive Switched Systems V. S. Bokharaie, O. Mason and F. Wirth Abstract We present a number of results on D-stability of positive switched systems. Different

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 126 Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

More information

Risk Management for IT Security: When Theory Meets Practice

Risk Management for IT Security: When Theory Meets Practice Risk Management for IT Security: When Theory Meets Practice Anil Kumar Chorppath Technical University of Munich Munich, Germany Email: anil.chorppath@tum.de Tansu Alpcan The University of Melbourne Melbourne,

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

The Student-Project Allocation Problem

The Student-Project Allocation Problem The Student-Project Allocation Problem David J. Abraham, Robert W. Irving, and David F. Manlove Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK Email: {dabraham,rwi,davidm}@dcs.gla.ac.uk.

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information