# VALU PROBL FOR NONLI SECOND ORDER

Save this PDF as:

Size: px
Start display at page:

Download "VALU PROBL FOR NONLI SECOND ORDER"

## Transcription

1 Journal ofapplied Mathematics and Stochastic Analysis 4, Number 1, Spring 1991, NOGATIVE SOLUTIONS OF TO-POT BOUNDARY VALU PROBL FOR NONLI SECOND ORDER INTEGRODIFFEKENTIAL EQUATIONS IN BANACH SPACES 1 DAJUN GUO Department of Mathematics Shandong University, Jinan, PEOPLES REPUBLIC OF CHINA and Department of Mathematics University of Alberta Edmonton, CANADA T6G ABSTILCT In this paper, we combine the fixed point theory, fixed point index theory and cone theory to investigate the nonnegative solutions of two-point BVP for nonlinear second order integrodifferential equations in Banach spaces. As application, we get some results for the third order case. Finally, we give several examples for both infinite and finite systems of ordinary nonlinear integrodifferential equations. Key words: Integrodifferential equation in Banach measure of noncompactness, strict set contraction, fixed point index. space, AMS (MOS) subject classification: 45J, 47G. 1Received" June, Revised: December, Printed in the U.S.A. (C) 1991 The Society of Applied Mathematics, Modeling and Simulation 47

2 48 DAJUN GUO 1. Introduction In [1] (see also [21 Section 5.3), several existence theorems were established for the BVP of nonlinear second order differential equation in Banach space" -x"= f(t,x,x ), 0 < t <_ 1; ax(o) bx (O) = Zo, cx(1)+ dx (1) = x. (1) Now, in this paper, we shall combine the fixed point theory, fixed point index theory and cone theory to extend some results of [1] integrodifferential equation of mixed type in Banach space: to the BVP of nonlinear second order -x" = f(t, x, x, Tx, Sx), ax(o)- bx (O) = xo, 0_<t_<l; cx(1) + dx (1) = x, (2) where T (t) = S (t) = h(t, We get more results about the existence of nontrivial non.negative solutions and multiple nonnegative solutions. As application, we obtain some results for the following BVP of third order integrodifferential equation: -x " = f(t,x, z,x " x(o) = O, ax (O) bx"(o) = xo, 0 <_ t _< 1; cz (1) + dx"(1) = X 1. (4) Finally, we give severn examples for both infinite and finite systems of ordinary nonlinear integrodifferential equations. 2. Several Lemmas Let E be a real Banach space and P be a cone in E which defines a partial ordering in E by z < y iff y-x P. P is said to be normal if there exists a positive constant N such that 0 _< x _< y implies I[=ll Nil,all,

3 Nonnegative Solutions of Two-Point Boundary Value Problems 49 where 19 denotes the zero element of E, and N is called the normal constant of P. P is said to be solid if its interior int(p) is not empty. In this case., we write x << y if y- x int(p). For details on cone theory, see [3]. In the following, I = [0, 1]. LEMMA 1. Let P be a solid cone in E, uo E, 0 <_ to <_ tx <_ 1 and F= {x t C[I, El x(t) >> uo / or t0_<t_<t,}. Then F is e convex open set in C[I, El. PROOF" The convexity of F is obvious, so, we need only to prove that F is open. Choose v e in(p) and let x0 e F. For anyfixed t [t0,t], there exists a sma21 r(t )> 0 such that xo(t ), uo +r(t )v. Since xo(t) is continuous, there is a small interval I(t ) = (t - r,t + r ) such that o(t) > o + (t )v o t e Now, {I(t )" t e [to,t1]} forms an open coveting of [to,tl], so, Heine-Borel theorem implies that a finite set {I(ti)" i = 2,3,...,m} already covers [t0,t]. Hence where r0 = min{r(t2),...,r(tm)} > 0. Since v e int(p), there exists rl > 0 such that v + z 0 fo ny z e E, ilzll x. (6) Let x e C[I, E satisfying i[x x011 < 0. Then, for any t e [to, t], we have by (5) and (6), (t) = o(t)+ (t) o(t) >,o + o[v ((t) o(t))] >_,o,

4 50 DAJUN GUO i.e. z F, and the proof is complete. COROLLARY 1. Le P be a solid cone in E, uo E, 0 < to <_ ti <_ 1 and F= {x C [I,E] x(t) > uo for to <_ t <_ t}. Then F is a convex open se i12 C 1 [I, El. REMARK 1" The norm in space C( )[I,E] will be defined by [[xl[, = max{[ix[[o, I[x l[o,..., ][x(m)llo }, (7) where (n = 0,1,...,m). (8) In particular, when rn = 1 we have Ilxll = mx{llxllo, I! 11o} mx{mxllz(t)ll, maxllz (t)ll}.,e. (9) LEMMA 2. Let H be a bounded set of C[I,E]. Suppose that H = {x " x e H} is equicontinuous. Then a(h) max{sup a(h(t)), sup a(h (t)) } tel tel (10) a(s) = max{a(h(i)), a(h (i)) }, (li) where a denotes the Kuratowski measure of noncompactness, H(t) {x(t) x e H}, H (t)= {x (t) x e H}, H(I)= {x(t) x e S,t e I} and

5 Nonnegative Sohtions of Two.Point Boundary Value Problems 51 r,() = PROOF" (10) is known, see [2] Theorem To prove (11), we first show that For any e>0, H can be expressed as H= USi such that i----1 (12) diam(si) < a(h ) + e, i = 1,2,..., m. (13) Since H is equicontinuous, there exists a partition I such tha {t} (j =0,1,...,n) of Leg Tij = {x (t)" x Si, t I} then H (I)= O U Tij. For any x (t) j=l i=1 V (s) Tij (z,v Si, t,s Ij), we have by (13) and (14), (14) _< s + diam(si) < a(h) + 2e, and therefore diam(tij) _< a(h)+ 2s (i = 1,...,m; j = 1,...,n). a(h (I)) _< a(h)+ 2s, which implies (12) since e is arbitrary. On the other hand, i is known (see [2] Lemma 1.4.4) Hence ((z)) _< (n). (15) Observing (n(t)) _< (n(z)), (n (t)) _< (n (z)), t e z,

6 52 DAJUN GUO (11) follows from (10), (12) and (15). Our 1emma is proved. temark 2" (a) If we only assume that H is a bouaded set in C[I,E], then (see [2] Lemma 1.4.4) > (H (Z)) (6) (b) We will also use the following conclusion (see [2] Remark 1.4.1): Let B be a bounded set of E and S be a bounded set of real numbers. Then, for SB = {tx x B,t S}, we have (7) (c) By the same method, we can prove the following extension of Lemma 2" Let H be a bounded set of c(m)[i,e] (m > 1). Suppose that H (m) = {x(m) x H} is equicontinuous. Then a(h) = max{sup a(s(t)), sup a(h (t)),...,sup a(h(m)(t))} t.i t.i t.i (18) and a(h) max{a (H(I)), a(h (I)),..., a (H(m)(I))}. (19) In order to investigate BVP (2), we first consider the integral operator 1 Am(t) = a(t, s)f (s, x(s), x (s), Tx(s), Sz(s))ds + y(t), (20) where f C[I x P x E x P x P, P], V e C2[I,E], y(t) >_ 8 for ti and a(t,s)= (at+ ( 1- )+d), J-(as + b)(c(1 ]-a b) c( s t)+ d), (.91)

7 Nonnegative Solutions of Two-Point Boundary Value Problems 53 here a_>0, b>0, c>_0, d>0 and J=ac+ad+bc>0. Moreover, T and S are defined by (3), where k e C[D,R+], h e C[Do,R+], D = {(t,s) e R" a,< s _< t_< 1} and Do = {(t,s) R 2 0 <_t, s < 1}. in the following, let BR = { e P" Ilxll < FR = {x e E" Ilxll < R) ( > 0) d k0 = max k(t,s), ho = max h(t,s). (22) (t,s)6d (t,s)6do Furthermore, let cone in C1[I, E]. P(O {x e C[I,E]lx(t) >_ 0 for t e I}. Usually, P(I) is not normal even if P Then, P(I) is a is a normal cone in LEMMA 3. Let f be uniformly continuous on I x BR x FR x BR x BR [or any R > O. Suppose tha here exis constants Li >_ 0 (i = 1, 2, 3, 4) wih L + 2L2 + kola + hol4 < p (23) such that a(f(t,x,y,,z,w)) <_ L,a(X) + La(Y) + La(Z) + L4o( V ) (24) for any bonded X, Z, W C P, Y C E and t 6 I, where p = min{1, q- } (25) ( max{j-l(bc + bd), J-l(ad q= max { ac # 0; ac-- 0o into P(I), A is bounded and continuous and there exists 0 < r < 1 a(a(q)) <_ r(q) for any bounded Q C P(I). such that

8 5,\$ DAJUN GUO PROOF" By direct differentiation of (20), we have for x e P(I), 1 (Ax(t)) = C(t, s)f (s, x(s), x (s), Tx(s), Sx(s))ds -t- (27) where j-1 (--c)(as + b) t < (es) and (Ax(t))" = -f (t,x(t),x (t),tz(t),sx(t)) + y"(t). (29) It is easy to see that the uniform continuity of f on I X B R X FR X B R X B R implies the boundednessof f on IxBRxFRXBRXBR, so, (20) and (27) imply that A is abounded and continuous operator from P(I) into P(.[). Now, let Q C P(I) be bounded. By virtue of(29), {[[(Ax(t))"[] x e Q, t e I} is a bounded set of E, so (A(Q)) is equicontinuous, and hence Lemma 2 implies (see (10)) a(a(q)) = max{sup a(aq(t)), sup a((aq) (t)) }. tei tel (30) On the other hand, it is easy to know from (21), (26) and (28) that O <_G(t,s) <_ S-(as+ b)(c(1-s) + d) <_ q, t, s e I (31) and [Gt(t,s)l_<l, t, s e I, t7 s. (32)

9 Nonnegative Solutions of Two.Point Boundary Value Problems 55 Consequently, for t e I, we have by (20), (17) and (31), ((t)) _< ({fo C(t, s)f(s, =(s), = (s), Tx(s), Sx(s))ds x c= Q}) <_ a(-c6{g(t,s)f(s,z(s),= (s),tz(s),s=(s)) x. = a({g(t,s)f(s,x(s),x (s),tx(s),sx(s)), x.. <_ qcz({f(s,x(s),x (s), Tx(s),Sx(s)). Q, Q, x e Q, s e/}). I}) s c= I}) < qa(f(i, Q(I), Q (I), TQ(I), SQ(I)). (33) Since f is uniformly continuous on IBRFRBRBR for any R>0, we have (see [2], Lemma 1.4.1) a(f(i, Q(I), Q (I), TQ(I), SQ(I))) = sup a(f (t, Q(I), Q (I), TQ(I), SQ(I))). (34) It follows from (33), (34) and (24) that a(aq(t)) <_ q{la(q(i)) + L:a(Q (I)) + Laa(TQ(I)) + L,a(SQ(I))}, t I. (35) By (16) and (17), we have.(q (Z)) < :.(Q)..(Q(Z)) <.(Q) (36) and a(tq(i)) a,({fo = k(t,s)x(s)ds x e Q, t e <_ a( C6{tk(t, s)x(s) x e Q,s e [0, t], t e I}) = a({tk(t,s)x(s)" x Q, s e [O,t], t e <_ o.(q(z)) <_ o.(q). (37)

10 56 DAJUN GUO Similarly, Hence, (35)-(38)imply -(SQ(O) _< (38) a(aq(t)) <_ q(l + 2L: + kola + hol)a(q), t e I. (39) In the same way by using (27) and (32)instead of (20) and (31), we get -- r max{q(l lemma is proved. a((aq) (t)) <_ (L + 2L + kola + hol4)a(q), t e I. (40) It follows from (39), (40), (23) and (30) that a(a(q)) <_ ra(q), where + 2L2 + kola + hol), L1 + 2L2 + kola / hol} < 1, and our 3. Main Theorems Let us list some conditions for convenience (H1) XO O, Xl O; f is uniformly continuous on I x BR x FR x BR X,BR (H:) for any R > 0 and there exist Li >_ 0 (i = 1,2, 3, 4) such that (23) and (24) hold. M(R) lim -R < 2.. where R---,+c m I X BR X FR x BR X BR}, and (26). M(R) = sup{ill(t, x, y, z, w)[[ (t, x, y, z, w) e rn=max{1, k0,h0} and p is defined by(25) (H3) there exist uo > 0 and 0 < to < t < 1 such that f (t, x, y, z, w) >_ rouo for t[t0,t], xku0, ye, zk0, w>_0, where ro = J{(ato + b) (c(l 1 1)-" d)( 1 to)} -1 (41)

11 Nonnegative Solutions of Two-Point Boundary Value Problems 57 cone P is solid and there exist uo >>O and 0 < to < t < 1 such that f(t, x, y, z, w) > ruo for t e [to,t], x > uo, y E, z > 0, w >_ 0, where r > r0 and r0 is defined by (41). there exists Ro > m such that M( 0) p Ro < ), m Ro (42) where fl = J-(a + b + c + d)mx{llxoll, IIxll}. (43) THEOREM 1. Le (Hx) and (H) be satisfied. Then BVP (2) has a leas one nonnegaive solution in Ce[I,E], i.e. solution in C[I,E] P(I). PaOOF" It is well known, the C 2 [I, E] solution of (2) is equivalent to the C 1 [I, E] solution of the following integral equation 1 x(t) = G(t, s)f (, z(s), x (), Tx(s), Sx(s))ds + y(t), (44) where G(t,s) is the Green function given by (21) and y(t) denotes the unique solution of BVP xl (o) b (O) = o, 0 _< t _< 1; CX(1) + dxt(i) = Xl, (45) which is given by v(t) :- {(c(1 t) + d)0 + (t + 6)x }. (46) Evidently, y C2[I,E] f3 P(I). Let operator A be defined by (20). Then condition (H1) and Lemma 3 imply that A is a strict set contraction from

12 58 DAJUN GUO P(I) into P(I). By (H2), there exist r/>0 and Ro >0 such that M(R) R p < for R>_mRo. m+/ (47) Choose R such that m+r + <I R (48) and let U= {x ep(i)" Ilxli <R}. For xeu, we have [Ix [[0 <_ R, ][Tz[10 _< kor, ll&,llo < hor, so, it follows from (20), (27), (31), (32), (47) and (48) that ila:llo < qm(,.) + i111o <,Zp m -!- r m.r + I1ill <- (m+, + )R <, (49) and hence - II(A,) llo < M(mR) + ily llo < m.r m+r + I111 + I111.)R < R, (50) Thus, <- (m+. IIAII < we have shown A(G) C U. (51) Since {z E P(1)" Ilzlll _< R} is a nonempty bounded closed convex set of CI[I,E], Darbo theorem (see [4])implies that A has a fixed point in U, which is a solution of (44), and our theorem is proved. P

13 Nonnegative Solutions of Two-Point Boundary Value Problems 59 TtIEOItEM 2. Le (H), (H) and (H) be satisfied. Then BVP (2) has a leas one nonrivil nonnegaive solution x C2[I, E] which satisfies () > 0, e [0,]. () PItOOF" As in the proof of Theorem 1, we can choose R > [lu011 such that (51) holds. Now, let F = {z e P(I)" IIii n and x(t) >_ uo for t e [t0,tl]}. Obviously, F is bounded closed convex set of C [I, E], and F is nonempty since u F, where u(t) Uo. For xf, we have by (H3)" Consequently, Ax F, and hence implies that A has a fixed point in A(F) C F. Finally, again Darbo theorem F, and the proof is complete. TttEOREM 3. Let cone P and (Hs) are satisfied and be normal and solid. Suppose that (n ), (n), (n, ) lifo I! R0g m (54) where N is the normal constant of P. Then B VP (2) has at least three nonnegative solutions 5i 6 C2[I,E] (i = 1,2,3) such that R0 m fo t e [to,t]. ()

14 60 DAJUN GUO PROOF" By Lemma 3, A is a strict set contraction from isyto om ().d (3) that P(I) into P(I). It (56) Let V = {x P(I)" (42) and (56) imply ]] I]1 < R- 0" }" For x { 1, we have ])x ]I < R_ rn m IlAxl[o <_ qm(no) + IlYllo < q--p (no m) / <_ 1 (Ro m) + R.._o m rn m II(A) ll0 _< M(0) / lly ll0 < p-- (0 m#) / Z < (0 rob) / # -- R 0. m m m Consequently, [[AxII1 < R_ and hence A(U1) C U. (57) As in the proof of Theorem 1, we can choose R > 2[[u0[[ such that (51) holds, where U = {x e P(I)" IIll < }. Let U: = {x e P(I)" Ilx[[1 < R, x(t) > uo for t [t0,tl]}. By Corollary 1, U2 is a bounded open convex set of P(I). U2 is nonempty since v U2, where v(t) = 2u0. Moreover, we have (58) Yl C U U2 C U Vl [* U2 =. In fact, (54) and N k 1 imply R > 11oll >_ 2RoN m >_ 2R0 m so U c U. If x U2, then x(t) >> uo for t [to,t], and therefore Nllxll >_ iluol] >_ Ro vhich implies x-u2. So, U and U2 have no common elements, and (158)is proved. For z U, we have I!11 <- and

15 Nonnegative Solutions of Two-Point Boundary Vahte Problems 61 x(t) >_ uo for t 6 [t0,t]. (51)implies IIAxlI < R, and, simnar to (53), (Ha) implies: t e [to, t] == (/tl r Ax(t) >_ J-(ato + b)(c(1 t) + d)da)ruo = Uo > Uo. Hence Az 6 U2, and so A(V) C U. (59) It follows from (51), (57)-(59) that the fixed point indices of strict set contraction (see [4]) and, (A,U,P(+/-)) = i(a,v,p(z)) = ( =,) i(a, U\( I LI 2), P(/)) -i(a, U,P(I)) -i(a,u,p(i)) -i(a, U2,P(I)) Consequently, A has three fixed points and (55) is obviously satisfied. The proof is complete. temark 3" In case x0 x i = 0, we have fl = 0. So, (H) and (54) are satisfied if li-- M(R)< p (60) R--+0 R m As an application, we consider the following B\, P for third order integrodifferential equation" -x " = f(t,x,x,x",sx), 0 <_ t <_ 1; x(o) = O, ax (O) bx"(o) = Xo, cx (1) + dx"(1) = x. (61)

16 62 DAJUN GUO Let then (t) = (o)+ so, (61) is reduced to the following BVP: -u" = f(t, T u,,, S ), (0)- (0) = 0, cu(1) + du (1) xi, (62) where Tl?2(t) = t%(8)d,, Sl12() h l(t, s)u(s)ds, h (t, s) = h(t, r)dr. Since (62) is a BVP of type (2), we can apply above results to (61). For example, by Theorem 1, we get the following TIIEOREM 4. Let (H1) and (H) be satisfied with the change of ko = 1, f e C[I x P x P x E x P,P] and M(R) -sup{llf(t, x, y, z, w)ll" (,, u, z, w) e I x BR x BR x FR x BR}. Then BVP (61) has at least one nonnegative soiution 4. Examples This section gives several examples for both infinite and finite systems of ordinary nonlinear integrodifferential equations based on the above theorems. EXAMPLE 1" Consider the BVP of infinite system for second order nonlinear integrodifferential equations z.(o)-x. (o) = o, z,,(1) + z,,(1) = 0 (0 < t _< I; n = 1,2,3,...). (63)

17 Nonnegative Solutions of Two.Point Boundary Value Problems 63 CONCLUSION" BVP (63) has at least two nonnegative C solutions (t) = (.il(t),...,.in(t),...) (i = 1, 2) such that 5x,(t) -: 0 (n = 1, 2, 3,... ) (64) and ,(t) > 1 for n 5 <t< (n=l 2,3,...) and e,,(t)0 for e [o, as r --+co PROOF" We need only to prove that BVP (63) has a normegative solution 2(t) which satisfies (65) since (t) = (0,..., 0,... ) is evidently the trivial solution of (63). Let E = co = {x = (zx,...,x,,...)" Xn 0} with norm llzll = up I,1 and P= {Z (Z 1,...,Xn,... ) CO" Z n _> 0, n = 1,2,3,... }. Then, P is a norreal cone of E and (63) can be regarded as a BVP of the form (2), where a=b=c=d= 1, 0 -- Xl : 0, ](:,8) -- 1 q- et--s, h(t,\$) : sin2(t-- 3.), 27 = (Xl,...,Xn,...), Y = (Yl,..., Yn,... ), Z = (Zl,..., Zn,... ), W = (Wl,..., Wn,... ) and f = (f,...,f,...), in which (0 < t < 1; n = 1,2,3,...). (66)

18 64 DAJUN GUO By (66), we have and so (0 _< t _< I; n = 1,2,3,...), (67) I /2 2 Ill(t,,,, z,,)il < 16(11! ) / + (1+11!1)/i1,il e,,(l+llll ), which implies 1 13 R]/2gn (1 + ), M(R) < 16(R 2 + R 2 + 3R2) ]/ + (1 + R) ] R 2 (68) and consequently lira M(R) O. (69) This shows that condition (H2) is satisfied. - f (t, X, Y, Z, W) is relatively compact in P Y C /3 and t E I. In fact, let Z, {w(m)} C W and v, (r) = f,(t,z (,) y(),z (m) W(,)). 16t I,(,,") < (il,(m)ll Obviously, f E C[I x P x E x P x P, P] and f is uniformly continuous on I x B R x FR x B R x B R for any R > 0. We now verify that the set E= co for any bounded X,Z,W C {( )} c x, {(m)} c Y, {z(")} c By (67), we have + I!( ) :(")!1 IIz( )ll)/ + (t + II(m)il)/llw( )il/e,,(1 + lly( )!1) n+l (n, m = 1,2, 3,... ). (7o) () Hence {v } is bounded, so, by the diagonal method, we can select a subsequence

19 {m} of {m} such that Nonnegative Sohttions of Two.Point Boundary Vahte Problems 65 lim v (m) = v, (n = 1, 2, 3,... ). it is easy to see from (70) that v = (v,...,v,,,...) e co and (k --, c). Thus, f(t, X, Y, Z, W) is relatively compact, and therefore (H) L = L = Lz = L4 = 0. is satisfied for Now, let u0 = (1,7,...,,...) and to = g co, u0 > 0. When to _< t _< tl, x _> u0, y co, z >_ 0, w >_ 0 1 -if, zn >_ O, wn >_ 0 for n = 1, 2, 3,...), we have, by virtue of (66), 2 Then (i.e. u0 x, >_ 16t /s f(t,x,y,z,w) > _-;-- x > > qn n 3n 16n (n= 1,2,3,...). This shows that of solution 2(t) 81 (H3) is satisfied since, by (41), ro = 1--g. satisfying (65) follows from Theorem 2. Hence, the existence EXAMPLE 2" Consider the BVP of the finite system for nonlinear integrodifferential equations II = 30t V/ n gn[1 + Xn-1 + f:(e ts + 3t2a3)Xn+l(s)ds] - l-\$in2(xt n tn_ 1 + Xn+l) Jr" (Xtn)2/3(f: COS(t- -.q)xn+l ( s)d\$) 1/3 xn(0) 2x(0) o, 3z.()+.() = o where xo Xm and Xm+l = Xl. (0 _< t _< 1; n = 1, 2,..., m), (71) CONCLUSION" BVP (71) has at least three nonnegative C solutions i(t)

20 66 DAJUN GUO (il(t),...,im(t)) (i =,z, z) such hat ln(t) --: O, n = 1,2,...,m (72) 1 3,,(t)>_l for _< t_< -4 n=l,2,...,m. (73) PROOF" Le /3 = m-dimensional space Em = {z = (ZX,...,Zm)} wih norm Then, P I,! and P = {z = (Xl,...,Zm) x n O, rt 1,2,...,172}. is a normal and solid cone in E and BVP (71) can be regarded as a BVP of the form (2), where a = 1, b = 2, c = 3, d = 1, x0 = xx = O, ]g(t,\$) = Igta +-3t283, h(;,\$) = cos(;--..q), x (al,...,xm), Y = (Yl,.-.,Ym), z = (zl,...,zm), w=(w,...,wm) and f=(fx,...,fm), in which fn(t, x, y, z, w) = 30t x/--nen(1 + x,-a + zn+a) + sin2(yn Yn-I + 1 /3 + g(.)/(w.+) n = 1,2,...,m. (74) Evidently, f C[I x P x E x P x P, P] and (H1) is satisfied since fn are continuous and E is finite dimensional. We have sin(y, y,-a + Z.+l)l _< min{1, lvn Yn--1 "}" Zn+ll} so, (74) implies IIf(t, z, v,, w)ll _< 30t gn(1 + Ilzll + I1=11)+ rain{l, (llvil + Ilzll) = } 1 2/3 1/3 / Ilvll Ilwll V t fi I, z P, V E, z P, w P,

21 Nonnegative Solutions of Two-Point Boundary Vahte Problems 67 and herefore 1 M(R) <_ 30 v/ gn(1 + 2R) + min{1, 9R 2 } + g R. Hence n--.+oo R 6 n--.+0 R 6 (75) On the other hand, it is easy to see that, in this case, 5 q--, p=l, re=e+3. (76) Thus, (75) and (76)imply that (H) and (60) are satisfied. 1 (H4). Let u0 = (1,1,...,1) and t 1. Now, ve check t=i = i" Z Obviously, u0 >> 0 and, for t e [to,t 1], z k u0, y E, z k a, w k 0 (i.e. i<t<_i,z._ > 1, zn > O, Wn > O, n = 1,2,...,m), (74) implies f,(t, x, y, z, w) > 30t n gn(1 + x._) > en 2 (n = 1,2,...,m). (77) On the other hand, we have by (41) r0= 63 < --en2" (78) Hence, (77) and (78)imply that (H4) is satisfied with our conclusion follows from Theorem 3 and Remark 3. r= gn 2. Finally, EXAMPLE 3 Consider the BVP of infinite system for third order nonlinear inte-

22 68 DAJUN GUO grodifferentim equation --ts COS(\$- 8)xn(8)ds] 1/4, (0) = 0, 2 (0) :(0) =,.() + ) = p (0_<t_<l; n=1,2,3,...). (79/ CONCLUSION" BVP (79) has at least one nonnegative C such that X n(t) >_ 0 (n = 1, 2, 3,... ) and n(t) t e [0, 1]. solution (t) = ((t),...,(t), as n + c for any PROOF" Let 1,2,3,... } (61 ), where a=d=2, E = 0 a, nd P = {X (Xl,...,Xn,...) 6. CO Xn O, r\$ = as in Example 1. Then, (79) can be regarded as a BVP of the form b=c= 1 1 1, xo = (1,-,...,-,...) e co, Xl = (1,,...,-,...)6 Co COS(;--8),.T = (Xl,...,Xn,...), y = (Yl,-.-,Yn,.-.), Z (Zl,...,zn,...), W (Wl,... Wn,... ), f = (f,.., f, ), in which A(t,,v,z,) = Now, (80) implies 2 /3 )/3 Xn+l(1 2t y, (+ ) I )3 2;2 1/4 "" (t -[- 1)r [(X2n -[- sin t + n+lwn] (n= 1,2,3,...). (8o) I /3 2/3 2!1/(*, =,u,z,w)ll _< ll=ll (1 + llyll) / [(ll=ll / 1 )3 + Ilzll SO 1 M(R) <_ R/(1 + R) 2/ + [(R + 1) + R3] I/4

23 Nonnegative Solutions of Two-Point Boundary Value Problems 69 and herefore M(R) 1 lim <- (81) R--+oo R 2 This shows that (H) is satisfied since it is easy to calculate that p = m = 1. On the other hand, similar to Example 1, we can check that f(t, X, Y, Z, W) is relatively compact in E = co for any bounded X,Y,W C P, Z C E and t I, so (H) is also satisfied. Finally, our conclusion follows from Theorem 4. PEFERENCES 1. J. Chandra, V. Lakshmikantham and A.R. Mitchell, Exisgence of solugions of boundary value problems for nonlinear second order sysgems in a Banach space, Nonlinear Anal. 2 (1978), V. Lakshmikantham and S. Leela, "Nonlinear Differential Equations in Abstract Spaces," Pergamon Press, Oxford, D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones," Academic Press Boston, New York, D. Guo, "Nonlinear Functional Analysis," Shandong Sci. and Tech. Press, Jinan, 1985 (in Chinese).

### B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

### OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith

### BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS. Muhammad N. Islam

Opuscula Math. 35, no. 2 (215), 181 19 http://dx.doi.org/1.7494/opmath.215.35.2.181 Opuscula Mathematica BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS Muhammad

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### TRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION. Communicated by Mohammad Asadzadeh

Bulletin of the Iranian Mathematical Society Vol. 33 No. 2 (27), pp -. TRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION R. DEHGHANI AND K. GHANBARI*

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Multiple Solutions to a Boundary Value Problem for an n-th Order Nonlinear Difference Equation

Differential Equations and Computational Simulations III J. Graef, R. Shivaji, B. Soni, & J. Zhu (Editors) Electronic Journal of Differential Equations, Conference 01, 1997, pp 129 136. ISSN: 1072-6691.

### Fuzzy Differential Systems and the New Concept of Stability

Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

### (12) lim Xn+2-Xn?i n-a Xn+l Xn. We denote by L the set of all logarithmically convergent sequences.

SIAM J. NUMER. ANAL.? 1982 Society for Industrial and Applied Mathematics Vol. 19, No. 4, August 1982 0036-1429/82/1904-0013 \$01.00/0 THE SET OF LOGARITHMICALLY CONVERGENT SEQUENCES CANNOT BE ACCELERATED*

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### 1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

### EQUATIONS WITH A PARAMETER

Journal of Applied Mathematics Stochastic Analysis, 10:3 (1997), 273-278. MONOTONE ITERATIONS FOR DIFFERENTIAL EQUATIONS WITH A PARAMETER TADEUSZ JANKOWSKI Technical University of Gdansk, Department of

### Riesz-Fredhölm Theory

Riesz-Fredhölm Theory T. Muthukumar tmk@iitk.ac.in Contents 1 Introduction 1 2 Integral Operators 1 3 Compact Operators 7 4 Fredhölm Alternative 14 Appendices 18 A Ascoli-Arzelá Result 18 B Normed Spaces

### PART I. THE REAL NUMBERS

PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS

### Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

### The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

### 5. Convergence of sequences of random variables

5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

### NON SINGULAR MATRICES. DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that

NON SINGULAR MATRICES DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that AB = I n = BA. Any matrix B with the above property is called

### FIND ALL LONGER AND SHORTER BOUNDARY DURATION VECTORS UNDER PROJECT TIME AND BUDGET CONSTRAINTS

Journal of the Operations Research Society of Japan Vol. 45, No. 3, September 2002 2002 The Operations Research Society of Japan FIND ALL LONGER AND SHORTER BOUNDARY DURATION VECTORS UNDER PROJECT TIME

### SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

### CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

### Duality of linear conic problems

Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

### Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

### Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

### Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Chapter 1: Initial value problems in ODEs Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical

### Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

### Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

### A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY

Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,

### 4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

### OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

### ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

### STEEL PIPE NIPPLE BLACK AND GALVANIZED

Price Sheet CWN-616 Effective June 06, 2016 Supersedes CWN-414 A Member of The Phoenix Forge Group CapProducts LTD. Phone: 519-482-5000 Fax: 519-482-7728 Toll Free: 800-265-5586 www.capproducts.com www.capitolcamco.com

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### ON A GLOBALIZATION PROPERTY

APPLICATIONES MATHEMATICAE 22,1 (1993), pp. 69 73 S. ROLEWICZ (Warszawa) ON A GLOBALIZATION PROPERTY Abstract. Let (X, τ) be a topological space. Let Φ be a class of realvalued functions defined on X.

### College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Pacific Journal of Mathematics

Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x

Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

### Lecture 7: Finding Lyapunov Functions 1

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Interface optimization problems for parabolic equations

Control and Cybernetics vol. 23 (1994) No. 3 Interface optimization problems for parabolic equations by Karl-Heinz Hoffmann Lehrstuhl fiir Angewandte Mathematik Institut fiir Angewandte Mathematik und

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

### An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

### Ri and. i=1. S i N. and. R R i

The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

### Sequences of Functions

Sequences of Functions Uniform convergence 9. Assume that f n f uniformly on S and that each f n is bounded on S. Prove that {f n } is uniformly bounded on S. Proof: Since f n f uniformly on S, then given

### i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ\$Æo

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

### EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

### Multiple positive solutions of a nonlinear fourth order periodic boundary value problem

ANNALES POLONICI MATHEMATICI LXIX.3(1998) Multiple positive solutions of a nonlinear fourth order periodic boundary value problem by Lingbin Kong (Anda) and Daqing Jiang (Changchun) Abstract.Thefourthorderperiodicboundaryvalueproblemu

### t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

### Probability Generating Functions

page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

### Metric Spaces. Chapter 1

Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

### MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

### Functional analysis and its applications

Department of Mathematics, London School of Economics Functional analysis and its applications Amol Sasane ii Introduction Functional analysis plays an important role in the applied sciences as well as

### fun www.sausalitos.de

O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt

### LS.6 Solution Matrices

LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

### H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

### DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

### A note on infinite systems of linear inequalities in Rn

Carnegie Mellon University Research Showcase @ CMU Department of Mathematical Sciences Mellon College of Science 1973 A note on infinite systems of linear inequalities in Rn Charles E. Blair Carnegie Mellon

### Math 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve. cosh y = x + sin y + cos y

Math 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve at the point (0, 0) is cosh y = x + sin y + cos y Answer : y = x Justification: The equation of the

### Adjustable-Rate Mortgages; Single-Family; indexed to the one-year Treasury Constant Maturity; 2 percent

Pool Prefix Glossary Last Revised: July 6, 2015 *Shaded items are adjustable-rate products. 2I Conventional Intermediate-Term, Level-Payment Subordinate Mortgages; Single-Family; maturing or due in 15

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### THE PROVISION OF SPARE CABLE

1962 The Operations Research Society of Japan THE PROVISION OF SPARE CABLE YOSHITSUGU OHMAE Nippon Telegraph and Telephone Public Corporation Tokyo, Japan (Received Sept., I, 1963) 1. INTRODUCTION The

### 1 Norms and Vector Spaces

008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

### Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written

### POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

### Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

### Matrix Methods for Linear Systems of Differential Equations

Matrix Methods for Linear Systems of Differential Equations We now present an application of matrix methods to linear systems of differential equations. We shall follow the development given in Chapter

### «С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

### 6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### Differential Inequalities with Initial Time Difference and Applications

J. oflnequal. & Appl., 1999, Vol. 3, pp. 233-244 Reprints available directly from the publisher Photocopying permitted by license only (C) 1999 OPA (Overseas Publishers Association) N.V. Published by license

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

### SKEW-PRODUCTS WITH SIMPLE APPROXIMATIONS

proceedings of the american mathematical society Volume 72, Number 3, December 1978 SKEW-PRODUCTS WITH SIMPLE APPROXIMATIONS P. N. WHITMAN Abstract. Conditions are given in order that the cartesian product

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d!

Math 0, Final Exam, Term 3 IANSWER KEY I I Q II MM I VI I V I V3 I V 4 I : a e b c e a b a c d! 3 a d e d c i 4 a a a e a 5 a e d e c! 6 a a d e c 7 a e c d c 8 a d d b b! 9 a c d b e 0 a c a c a : a a

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

### DEGREE THEORY E.N. DANCER

DEGREE THEORY E.N. DANCER References: N. Lloyd, Degree theory, Cambridge University Press. K. Deimling, Nonlinear functional analysis, Springer Verlag. L. Nirenberg, Topics in nonlinear functional analysis,

### A deeper analysis indicates, at least in qualitative

38. 4. Further formal analysis We have already Indicated that the logistic model allows for the introduction of new parameters, which may represent, for example, interactions between pairs of existing

### Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### PYTHAGOREAN NUMBERS. Bowling Green State University, Bowling Green, OH (Submitted February 1988)

S u p r i y a Mohanty a n d S. P. Mohanty Bowling Green State University, Bowling Green, OH 43403-0221 (Submitted February 1988) Let M be a right angled triangle with legs x and y and hypotenuse z. Then

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

### On linear isometries on non-archimedean power series spaces

On linear isometries on non-archimedean power series spaces Wies law Śliwa and Agnieszka Ziemkowska Abstract. The non-archimedean power series spaces A p (a, t) are the most known and important examples

### Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

### k=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =

Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem

### Course 421: Algebraic Topology Section 1: Topological Spaces

Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............

Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

### Are We There Yet? IPv6 as Related to GDP per Capita Alain Durand, October 26 th 2016

Are We There Yet? as Related to Alain Durand, October 26 th 2016 Quesons for this Study: I. Where are we across the globe with adoption? a. Is deployed uniformly? b. Is there a rich country/poor country

### TECHNICAL NOTE. Proof of a Conjecture by Deutsch, Li, and Swetits on Duality of Optimization Problems1

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 102, No. 3, pp. 697-703, SEPTEMBER 1999 TECHNICAL NOTE Proof of a Conjecture by Deutsch, Li, and Swetits on Duality of Optimization Problems1 H. H.

### 2 First-Order Equations: Method of Characteristics

2 First-Order Equations: Method of Characteristics In this section, we describe a general technique for solving first-order equations. We begin with linear equations and work our way through the semilinear,