Solving Force Problems in Physics using vectors


 Jeffry Scott
 2 years ago
 Views:
Transcription
1 Solving Force Problems in Physics using vectors The following are examples of how to solve a variety of problems using forces in the most straightforward manner possible. Each step in the problem solving process is clearly defined. The goal of this guide is to teach through practice the problem solving steps involved in these problems. Try to solve each problem on your own, reading only what to do on each step and not the solution. Example 1 : Consider the problem below in which a block of mass m is sitting on a frictionless surface inclined at an angle of θ degrees. Determine the acceleration of the block. As always, the first thing to do is to draw the correct picture and DEFINE your coordinate system. It is quite common in the types of problems with inclined planes and pulleys to tilt the coordinate system. It makes no difference in the final answer which orientation you choose as long as you are self consistent. The reason to tilt it is that it makes forces perpendicular or parallel to the plane (like normal force, tension, friction, etc) easy to split into x and y components. After your problem is well understood, the next step is two locate ALL of the forces acting on our block. In this case there are only 2 the normal force and the force due to gravity (here denoted W indicating weight). You should then write out each of these forces in the most generic way possible (in terms of the magnitude of the force), like so : N = 0, N (Because the way our coordinate system is defined the y direction is normal to the surface). W = W sin, W cos (Take note of the geometry of the similar triangles tells us that the two angles marked θ are the same and that both of the x and y components are negative). The signs of the components are essential to getting the proper result. We know that the net force on an object is simply the sum of all the forces on it, so we simply need to add the two vectors we have just discussed : = N W = W sin,n W cos Problem Solving Guide for Forces in Physics Page 1 / 5
2 Newton's Second Law tells us that =m a NET. One can see that IF the block is to accelerate, it will only do so in the x direction (in this specific case the negative x direction). We can use this to write an equality : = W sin, N W cos =m a NET =m a NET W sin, N W cos = m a NET Finally, in order to make this equality work, the x components must be equal to one another, and the y components must be equal to one another. This gives us two equations : W sin =m a NET and N W cos =0 We know that the force due to gravity (near the surface of the earth) is given by W =mg. At this stage we can plug in this value to our formula : W sin = mg sin =m a NET a NET = g sin. Note that we can see that this is a negative quantity (pointing down the slope). We can then rewrite the acceleration in vector form : a NET = g sin. Also from this problem we can see that the normal force does not affect the acceleration, but we can solve for N using the second equation that we made : N W cos =0 N =W cos =mg cos Example 2: For the second example problem we will consider the exact same situation as we did in example 1, but we will include the force due to friction. The coefficient of kinetic friction will be μ k and the coefficient of static friction will be μ s. The first thing to do is to draw the correct picture. As before, the normal force is always drawn orthogonal to the surface of the plane, and the weight vector points straight down (toward the center of the earth). The friction vector (F) will always be parallel to the surface (again, using the tilted coordinate system as described ensures that it will then only have an x component). You can draw the friction vector in either direction (down the slope or up it), if you get a negative value for the magnitude of F that simply tells you that you picked the direction opposite of the correct one. Remember that friction always OPPOSES motion (it will point in the opposite direction of the direction that the block will be moving). It is for that reason that I have Problem Solving Guide for Forces in Physics Page 2 / 5
3 drawn it pointing up the slope (as it was proven in the previous problem that the block will accelerate in the negative x direction). After your problem is well understood, the next step is two locate ALL of the forces acting on our block. In this case there are three. You should then write out each of these forces in the most generic way possible (in terms of the magnitude of the force), like so : N = 0, N (Because the way our coordinate system is defined the y direction is normal to the surface). W = W sin, W cos (Take note of the geometry of the similar triangles tells us that the two angles marked θ are the same and that both of the x and y components are negative). The signs of the components are essential to getting the proper result. F = F, 0 (Because the friction must be parallel to the plane). We know that the net force on an object is simply the sum of all the forces on it, so we simply need to add the two vectors we have just discussed : = N W F = W sin F, N W cos Newton's Second Law tells us that =m a NET. One can see that IF the block is to accelerate, it will only do so in the x direction (in this specific case the negative x direction). We can use this to write an equality : = W sin F, N W cos =m a NET =m a NET W sin F, N W cos = m a NET, 0 Finally, in order to make this equality work, the x components must be equal to one another, and the y components must be equal to one another. This gives us two equations : W sin F =ma NET and N W cos =0 We know that the weight of an object (near the surface of the earth) is always given by W =mg. Using the second equation above this gives us an expression for the normal force : N W cos =0 N =W cos =mg cos. We also know that the magnitude of the force due to friction is always given by F = N. So solving for N in the previous part gives us something to substitute for F : F = N = m g cos. Now we will revisit the first equation (derived from the x components) : W sin F =ma NET substitute our relationships of W and F : mg sin mg cos =m a NET and It is useful to note that the masses cancel, leaving us with a final expression for the acceleration : a NET = g sin g cos Problem Solving Guide for Forces in Physics Page 3 / 5
4 Example 3 : In this problem we will consider the case of a few blocks (of different masses) which are connected to oneanother by ideal, massless strings being pulled as shown. Consider the floor to be frictionless. Find the tension in the rope connecting m 2 and m 3. As always, first be sure that you can draw the proper picture (it's an excellent measure of how well you understand what is being asked). In this problem we are lucky enough to have to only worry about the x direction (and so vectors will have only 1 number in them). One of the most useful pieces of information in this problem is that the the masses are connected by ideal strings (strings that don't stretch). This means that however quickly the first block gets pulled, the second and third blocks will be pulled along at the same speed. We can use this to say that the acceleration of each of the blocks will be the same and the system can be treated as though it were simply a large block being pulled by a force F (as shown in the figure below). You can see that if that were the case it would be very easy to find the acceleration of the system, simply using Newton's Second Law : =m a NET a NET = F NET m = F x (remember the hat over the x is just to tell us that this acceleration is in the x direction). Now we know the rate at which each block will be accelerating, so we can easily find the net force on each individual block. Because we are looking for the tension in the string connecting m 2 and m 3 I have decided to look at block m 3. It is important to note that you may choose m 2 as well, the choice is completely yours. If we look only at the forces on m 3, we can see that there are two : the tension T and the force with which we are pulling F. We then write out each of these vectors (again, these vectors are just in one direction, so it's pretty easy) : T = T x F =F x We can find the net force on this block by simply adding up each of the forces : = T F = T F x From Newton's Second Law we know that =m a NET. Because we already know the Problem Solving Guide for Forces in Physics Page 4 / 5
5 acceleration of block 3, we get : = T F x=m 3 F x We can now solve for the tension in the string connecting blocks m 2 and m 3 : m T = F 3 F. [If you did the problem by considering block 2 you will have gotten something different than this, but don't worry, T = F 1 m 3 =F You can see these expressions are equivalent.] Problem Solving Guide for Forces in Physics Page 5 / 5
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationLecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.84.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.84.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
More informationForces: Equilibrium Examples
Physics 101: Lecture 02 Forces: Equilibrium Examples oday s lecture will cover extbook Sections 2.12.7 Phys 101 URL: http://courses.physics.illinois.edu/phys101/ Read the course web page! Physics 101:
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationSOLUTIONS TO PROBLEM SET 4
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More informationSection 10.4 Vectors
Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such
More informationNewton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1
Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationKinetic Friction. Experiment #13
Kinetic Friction Experiment #13 Joe Solution E01234567 Partner Jane Answers PHY 221 Lab Instructor Nathaniel Franklin Wednesday, 11 AM1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this
More informationIf you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationFriction and Newton s 3rd law
Lecture 4 Friction and Newton s 3rd law Prereading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationThis week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.
This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical
More informationNewton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of
Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed
More informationUniversity Physics 226N/231N Old Dominion University. Newton s Laws and Forces Examples
University Physics 226N/231N Old Dominion University Newton s Laws and Forces Examples Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012odu Wednesday, September
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationAP Physics Applying Forces
AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and
More informationUniversity Physics 226N/231N Old Dominion University. Getting Loopy and Friction
University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012odu Friday, September 28 2012 Happy
More informationAnnouncements. Dry Friction
Announcements Dry Friction Today s Objectives Understand the characteristics of dry friction Draw a FBD including friction Solve problems involving friction Class Activities Applications Characteristics
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationPhysics 590 Homework, Week 6 Week 6, Homework 1
Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More informationDynamics Pulleys, Ramps, and Friction
Name School Date Purpose To investigate the vector nature of forces. To practice the use freebody diagrams (FBDs). To learn to apply Newton s Second Law to systems of masses connected by pulleys. Equipment
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationA Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
More informationB Answer: neither of these. Mass A is accelerating, so the net force on A must be nonzero Likewise for mass B.
CTA1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationF13HPhysQ5 Practice
Name: Class: Date: ID: A F13HPhysQ5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.
More information5.1 The First Law: The Law of Inertia
The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing
More informationA) N > W B) N = W C) N < W. speed v. Answer: N = W
CTN12. Consider a person standing in an elevator that is moving upward at constant speed. The magnitude of the upward normal force, N, exerted by the elevator floor on the person's feet is (larger than/same
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationNormal Force Example: Incline
Normal Force Example: Incline α The angle of the frictionless incline is α = 30. Mass slides down the incline, starting from rest. What is the speed of the mass after it slid 10 meters downhill? [use g
More informationThe Force Table Introduction: Theory:
1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is
More informationObjective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (111) Read (4.14.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
More information6: Applications of Newton's Laws
6: Applications of Newton's Laws Friction opposes motion due to surfaces sticking together Kinetic Friction: surfaces are moving relative to each other a.k.a. Sliding Friction Static Friction: surfaces
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationFRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationChapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationUNIT 2D. Laws of Motion
Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics the study of forces that act on bodies in motion. First Law of Motion
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a nonzero speed carries energy
More informationKinetic Friction. Experiment #13
Kinetic Friction Experiment #13 Joe Solution E00123456 Partner  Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test
More informationIdeal Cable. Linear Spring  1. Cables, Springs and Pulleys
Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a
More informationPhysics, Chapter 3: The Equilibrium of a Particle
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 111958 Physics, Chapter 3: The Equilibrium of a Particle
More informationDISPLACEMENT AND FORCE IN TWO DIMENSIONS
DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient
More informationPhysics 100 Friction Lab
Åsa Bradley SFCC Physics Name: AsaB@spokanefalls.edu 509 533 3837 Lab Partners: Physics 100 Friction Lab Two major types of friction are static friction and kinetic (also called sliding) friction. Static
More informationExperiment 4. Vector Addition: The Force Table
ETSU Physics and Astronomy Technical Physics Lab Exp 4 Page 29 Experiment 4. Vector Addition: The Force Table As we have learned in lecture, to the extent that pulleys are massless and frictionless, they
More informationIntroduction to Newton's Laws of Motion 16421726
Introduction to Newton's Laws of Motion 16421726 Outlook 1.The First Law on inertia states that every object will remain in a state of rest or uniform motion in a straight line unless acted upon by an
More information6. Vectors. 1 20092016 Scott Surgent (surgent@asu.edu)
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More informationWork Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
More informationAnswer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This printout should have 4 questions. Multiplechoice questions ay continue on the next colun or page find all choices before aking your selection.
More informationForce. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline
Force Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law Outline Force as a Vector Forces are vectors (magnitude and direction) Drawn so the vector s tail originates at
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationAP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.
1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the actionreaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies
More informationWork, Kinetic Energy and Potential Energy
Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationVideo Killed the Radio Star! Watch a video of me explaining the difference between static and kinetic friction by clicking here.
Lesson 26: Friction Friction is a force that always exists between any two surfaces in contact with each other. There is no such thing as a perfectly frictionless environment. Even in deep space, bits
More informationHW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 450 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationThe Big Idea. Key Concepts
The Big Idea Acceleration is caused by force. All forces come in pairs because they arise in the interaction of two objects you can t hit without being hit back! The more force applied, the greater the
More informationForce. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.
Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationStatic and Kinetic Friction
Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
More informationwhile the force of kinetic friction is fk = µ
19. REASONING AND SOLUION We know that µ s =2.0µ k for a crate in contact with a MAX cement floor. he maximum force of static friction is fs = µ sfn while the force of kinetic friction is fk = µ kfn. As
More informationSUMMING VECTOR QUANTITIES USING PARALELLOGRAM METHOD
EXPERIMENT 2 SUMMING VECTOR QUANTITIES USING PARALELLOGRAM METHOD Purpose : Summing the vector quantities using the parallelogram method Apparatus: Different masses between 11000 grams A flat wood, Two
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More information