Simple Harmonic Motion. Introduction to


 Felix Park
 1 years ago
 Views:
Transcription
1 Introduction to
2 Contents Part I: Objective Part II: Introduction Interpreting Graphs Part III: Apparatus and Setup Apparatus Force Probe Motion Sensor Part IV: Determining the Period Expectation Collecting Data Analyzing the Motion Part V: Determining the Mass Using LoggerPro Creating Your Graph Analyzing Your Data Part VI: Determining the Spring Constant Creating Your Graph Analyzing Your Data Part VI: Summary
3 Part I: Objective The goal of this experiment is to determine the mass of an aluminium cylinder and the spring constant of the spring. You will be designing your own experiment based on the information given in the following slides.
4 Part II: Introduction In general, any motion that repeats itself at regular intervals is called periodic or harmonic motion. Examples of periodic motion can be found almost anywhere; boats bobbing on the ocean, grandfather clocks, and vibrating violin strings to name just a few. (SHM) satisfies the following properties:! Motion is periodic about an equilibrium position! The restoring force is proportional to and oppositely directed to a displacement from the equilibrium position.
5 Part II The displacement with respect to the equilibrium position x of a system undergoing SHM (as a function of time, t) can be described by x(t) = Acos(ωt + φ) where! A is the maximum displacement or amplitude of the motion,! ω is the angular frequency of the motion, and! φ is the phase constant or phase angle.
6 Part II The angular, or circular, frequency ω is defined in terms of the frequency f: ω = 2π f The frequency is defined to be the number of oscillations that the system completes in one second. The period T is the time taken for one complete oscillation, and can be expressed mathematically as T = 1/f
7 Part II If we consider a mass (m) on a spring as our oscillating system: Hooke s Law states that the there will be a restoring force acting on the mass when it is displaced from its equilibrium position. This restoring force is written as F = k x, where k is the spring constant. The negative sign in the equation indicates that force and displacement are opposite in direction. The motion of any object can be described by Newton s second law. ΣF = ma. k Angular frequency is also given by ω =. m
8 Part III: Apparatus and Setup Apparatus You have been provided with Motion sensor Force probe 200 g mass Aluminium cylinder Metre stick Spring Support rods Stopwatch Clamp
9 Part III: Apparatus and Setup Motion Sensor The motion sensor is a device which measures the distance to the closest object. Connect the motion sensor to DIG/SONIC 1 of the LabPro.
10 Part III: Apparatus and Setup Force Probe The force probe is a device which measures the force acting on it. To obtain accurate results, the force probe must first be calibrated and zeroed: Attach the force probe to a support rod. Set the force probe is to "5 N" or 10 N rather than to "50 N. Plug the force probe into CH1 of the LabPro. Make sure the LabPro is plugged into a power outlet and is connected to the computer.
11 Part III Force Probe To use the force probe and see the measured results, we use a graphing software package: LoggerPro. Click the icon below to launch Logger Pro.
12 Part III Force Probe You will have been provided with a mass of 200 g to use for calibration. Click Experiment then Calibrate then LabPro: 1 CH1: Dual Range Force. Continued
13 Part III Force Probe With nothing attached to the force probe click the Calibrate Now button. The Reading 1 value is 0 N. Click Keep. Now hang the 200 g mass from the force probe and enter the force in the Reading 2 cell. Click Keep. Click OK. Remember that a 1 kg mass weighs 9.81 newtons. Remove the calibration weight, attach the spring to the force probe, and attach the large aluminium weight to the hook at the bottom of the spring.
14 Part III: Apparatus and Setup Motion Sensor Place the motion sensor on the floor directly beneath the aluminium cylinder. Position the motion sensor carefully  the narrow beam of ultrasound it emits can easily miss the hanging mass altogether. Remember, the motion sensor must always be between 15 cm and 100 cm below the mass for it to measure its motion reliably.
15 Part III: Apparatus and Setup Zeroing the Probes Reduce the motion of the aluminium mass as much as possible, and then select Zero from the Experiment pulldown menu. Select both Dual Range Force and Motion Detector and click OK.
16 Lab Report Lab Report 1: Write the objective of your experiment. Lab Report 2: Write the relevant theory of this experiment. Lab Report 3: List your apparatus and sketch your setup.
17 Part IV: Determining the Period Expectation Without collecting any data, Lab Report 4: Sketch the expected form for the graphs of position vs time and force vs time. Explain your reasoning. HINT: Consider the equations for position and force as given in Part II of these instructions.
18 Part IV: Determining the Period Collecting Data Use Logger Pro to plot graphs of the oscillating system: force vs time position vs time and acceleration vs time. Lab Report 5: Do your graphs match the expected form? If they do not match, discuss why. Have an instructor check your graphs and initial your lab report. Turn off the connecting lines on your graph by double clicking in the white space of your graph then deselecting Connect Points.
19 Part IV: Determining the Period Analyzing the motion Logger Pro will display the coordinates of the plots if you click the button. The coordinates will be displayed in a popup box. Use your graph to determine the period of motion. Lab Report 6: Record the period. Include an estimate of the uncertainty. Lab Report 7: Describe how you determined the period using your graph.
20 Part IV: Determining the Period Analyzing the motion Next, use a stopwatch to determine the period of the motion. Hint: Try to be as accurate as possible! Should you measure one oscillation or multiple oscillations? Lab Report 8: Record the period. Include an estimate of the uncertainty. The uncertainty of the stopwatch is reaction time. If you do not know reaction time, you can find it in two ways: (i) do the measurement twice and find the difference or (ii) go online to do a reaction time test. Lab Report 9: Describe how you determined the period using a stopwatch. Lab Report 10: Compare the two values of period: Do they agree? Comment on any differences.
21 Part V: Determining the Mass Using LoggerPro You may change the quantity plotted on the horizontal axis by clicking on the axis label as shown below, and selecting the new quantity from the popup menu that appears. For example, if your plot shows position vs time and you want to plot position vs acceleration, you click on the word time on the x axis and choose acceleration instead. Working with your middle graph: Choose a suitable set of axes that will allow you to determine the mass of the oscillator. Having trouble deciding what to plot? Click here to open the notes from your graphing workshop.
22 Part V: Determining the Mass Analyzing Your Graph To obtain a linear fit to your data, click Analyze then Linear Fit. To find the uncertainties in the slope and intercept, double click on the box that appears and check Show Uncertainty. Use your results to obtain the mass of the cylinder. Lab Report 11: Record the mass of the cylinder. Include uncertainty. Lab Report 12: Describe your method to determine the mass of the cylinder. You may wish to include any equations and discuss the use of a graph. Weigh the cylinder on a triple beam balance. Lab Report 13: Record the mass of the cylinder. Include uncertainty. Lab Report 14: Compare the mass found using the two methods and comment on the agreement.
23 Part V: Determining the Mass Finding the Spring Constant Lab Report 15: Use the mass obtained from the balance and the period you found earlier to determine the spring constant of the spring and its uncertainty.
24 Part VI:Determining the Spring Constant Creating your Graph Working with your lowest graph: Choose suitable axes which will allow you to determine the spring constant k of the spring.
25 Part VI:Determining the Spring Constant Analyzing Your Graph To obtain a linear fit to your data, click Analyze then Linear Fit. To find the uncertainties in the slope and intercept, double click on the box that appears and check Show Uncertainty. For the best printed graph: " Click File then Page Setup and choose the landscape orientation
26 Part VI:Determining the Spring Constant Analyzing Your Graph Click File then Print. To select the only necessary page: Click Pages and choose Single. Format: Include titles and axes labels. Turn off connecting lines. Click Print to print your graph.
27 Part VI:Determining the Spring Constant Analyzing Your Graph Use your results to obtain the spring constant of the spring. Lab Report 16: Lab Report 17: Describe your method to determine the spring constant of the spring. Report the value of the spring constant and it s uncertainty. Does this value agree with the value found previously? Comment.
28 Part VII: Summary Lab Report 18: Outline briefly the steps of your experiment. Lab Report 19: List your experimental results and comment on how they agreed with the expected results. Lab Report 20: List at least three sources of experimental uncertainty and classify them as random or systematic.
29 Wrap it up! Check that you have completed your Lab Report. Your report should include copies of the graphs used to determine mass and spring constant.
Physics 1050 Experiment 2. Acceleration Due to Gravity
Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape
More informationPhysics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body
Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of
More informationHooke s Law and Simple Harmonic Motion
Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and
More informationExperiment P19: Simple Harmonic Motion  Mass on a Spring (Force Sensor, Motion Sensor)
PASCO scientific Physics Lab Manual: P191 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion  Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationLab M1: The Simple Pendulum
Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of
More informationBuoyancy. Please Circle Your Lab day: M T W T F
Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the
More informationSimple Harmonic Motion Experiment. 1 f
Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More informationUpdated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
More informationTHE CONSERVATION OF ENERGY  PENDULUM 
THE CONSERVATION OF ENERGY  PENDULUM  Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two
More informationPrelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
More informationSTATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationExperiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
More information1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationLAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.
LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum
More informationThe moment of inertia of a rod rotating about its centre is given by:
Pendulum Physics 161 Introduction This experiment is designed to study the motion of a pendulum consisting of a rod and a mass attached to it. The period of the pendulum will be measured using three different
More informationPHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple
More informationTHE NOT SO SIMPLE PENDULUM
INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,
More informationGraph Matching. walk back and forth in front of Motion Detector
Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine
More informationExperiment P007: Acceleration due to Gravity (Free Fall Adapter)
Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick
More informationCOEFFICIENT OF KINETIC FRICTION
COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
More informationHOOKE S LAW AND OSCILLATIONS
9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a springmass oscillator. INTRODUCTION The force which restores a spring to its equilibrium
More informationGENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.
More informationPendulum Force and Centripetal Acceleration
Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationDynamics Track. Mechanical Force, Impulse and Momentum
Dynamics Track Mechanical Force, Impulse and Momentum An object subjected to unbalanced forces undergoes acceleration, which changes the velocity of the object in question. This change in motion can be
More informationA Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
More informationPENDULUM PERIODS. First Last. Partners: student1, student2, and student3
PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,
More informationNewton s Laws of Motion
Newton s Laws of Motion OBJECTIVES to validate Newton s Laws of Motion EQUIPMENT horizontal dynamic track and safety stopper on one end PASCO carts with a small reflector motion detector connected to the
More informationCME Conservation of Mechanical Energy revised May 5, 2015
CME Conservation of Mechanical Energy revised May 5, 2015 Learning Objectives: During this lab, you will 1. learn how to communicate scientific results in writing. 2. estimate the uncertainty in a quantity
More informationTHE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer
THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,
More informationStatic and Kinetic Friction
Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the
More informationActivity P13: Buoyant Force (Force Sensor)
July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS
More informationActivity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI6746) 1 Mass and Hanger Set (ME9348) 1 Base and Support Rod (ME9355) 1 Ruler, metric 1 Beaker,
More informationExperiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
More informationGRAPH MATCHING EQUIPMENT/MATERIALS
GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion
More information: Lab 1: Measurement and Uncertainty Pendulum Period
Introduction : Lab 1: Measurement and Uncertainty Pendulum Period Physics is primarily an experimental science. Physics theories are tested and refined and are only retained when they are proven to be
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationActivity P13: Buoyant Force (Force Sensor)
Name Class Date Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Equipment
More informationFREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
More informationPhysics 2305 Lab 11: Torsion Pendulum
Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation
More informationOscillations: Mass on a Spring and Pendulums
Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that
More informationDetermination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationResonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.
Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is a wave effect that occurs when an object has a natural frequency that
More informationDetermining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
More informationPulleys, Work, and Energy
Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triplepulley assemblies apparatus from
More informationArchimedes' Principle
Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the
More informationDetermination of g using a spring
INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More informationACCELERATION DUE TO GRAVITY
ACCELERATION DUE TO GRAVITY Objective: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: Computer with Logger Pro, green Vernier interface box, picket fence
More informationHOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
More informationTorque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straightforward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
More informationEXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY
EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY Objective: To learn how to use the Excel spreadsheet to record your data, calculate values and make graphs. To analyze the data from the Acceleration Due
More informationPhysics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 01207001A
Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum
More informationLIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.
LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction
More informationThe Pendulum. Experiment #1 NOTE:
The Pendulum Experiment #1 NOTE: For submitting the report on this laboratory session you will need a report booklet of the type that can be purchased at the McGill Bookstore. The material of the course
More informationEXPERIMENT: MOMENT OF INERTIA
OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in
More informationExperiment 8. The Pendulum
Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum
More informationELASTIC FORCES and HOOKE S LAW
PHYS101 LAB03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described
More informationA ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.
MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationPhysics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance
Physics 182  Spring 2012  Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify
More informationboth double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
More informationChapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 1330 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
More informationINTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
More informationGraphical Presentation of Data
Graphical Presentation of Data Guidelines for Making Graphs Titles should tell the reader exactly what is graphed Remove stray lines, legends, points, and any other unintended additions by the computer
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationINTERFERENCE OF SOUND WAVES
2011 Interference  1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationPhysics 100 Friction Lab
Åsa Bradley SFCC Physics Name: AsaB@spokanefalls.edu 509 533 3837 Lab Partners: Physics 100 Friction Lab Two major types of friction are static friction and kinetic (also called sliding) friction. Static
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationENERGYand WORK (PART I and II) 9MAC
ENERGYand WORK (PART I and II) 9MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:
More informationConservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension
14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a
More informationAcceleration Due to Gravity
Activity 5 PS2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS2002
More informationLab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)
of a Permanent Magnet (Magnetic Field Sensor) Equipment Needed Qty Equipment Needed Qty Magnetic Field Sensor (CI6520A) 1 Meter stick, nonmetal 1 Magnet*, disk, Neodymium, 1/2 or 3/4 (EM8648) 1 Small
More informationGalileo s Pendulum: An exercise in gravitation and simple harmonic motion
Galileo s Pendulum: An exercise in gravitation and simple harmonic motion Zosia A. C. Krusberg Yerkes Winter Institute December 2007 Abstract In this lab, you will investigate the mathematical relationships
More informationDENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS
Experiment 3 DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride
More informationGeneral Physics Lab: Atwood s Machine
General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference
More informationENDOTHERMIC AND EXOTHERMIC REACTIONS
ENDOTHERMIC AND EXOTHERMIC REACTIONS LAB THC 2.PALM INTRODUCTION Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions
More informationRotational Motion: Moment of Inertia
Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationMagnetism. ***WARNING: Keep magnets away from computers and any computer disks!***
Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the
More information1.2 ERRORS AND UNCERTAINTIES Notes
1.2 ERRORS AND UNCERTAINTIES Notes I. UNCERTAINTY AND ERROR IN MEASUREMENT A. PRECISION AND ACCURACY B. RANDOM AND SYSTEMATIC ERRORS C. REPORTING A SINGLE MEASUREMENT D. REPORTING YOUR BEST ESTIMATE OF
More informationWork and Energy. W =!KE = KE f
Activity 19 PS2826 Work and Energy Mechanics: workenergy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS2002 1 PASPORT Motion
More informationChapter 4. Kinematics  Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction
Chapter 4 Kinematics  Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.
More informationNewton s Third Law, Momentum, Center of Mass
Team: Newton s Third Law, Momentum, Center of Mass Part I. Newton s Third Law Atomic Springs When you push against a wall, you feel a force in the opposite direction. The harder you push, the harder the
More informationExperiment: Series and Parallel Circuits
Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent
More informationPhysics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009
Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will
More informationPHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems
SHM Lab 1 Introduction PHYS 202 Laboratory #4 Oscillations and Simple Harmonic Motion In this laboratory, we examine three simple oscillatory systems: a mass on a spring, a pendulum, and a mass on a rubber
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationStanding Waves Physics Lab I
Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF9324 Variable Frequency
More informationLab 8 Impulse and Momentum
b Lab 8 Impulse and Momentum What You Need To Know: The Physics There are many concepts in physics that are defined purely by an equation and not by a description. In some cases, this is a source of much
More informationTHE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion.
THE SIMPLE PENDULUM Objective: To investiate the relationship between the lenth of a simple pendulum and the period of its motion. Apparatus: Strin, pendulum bob, meter stick, computer with ULI interface,
More information