Simple Harmonic Motion. Introduction to

Size: px
Start display at page:

Download "Simple Harmonic Motion. Introduction to"

Transcription

1 Introduction to

2 Contents Part I: Objective Part II: Introduction Interpreting Graphs Part III: Apparatus and Setup Apparatus Force Probe Motion Sensor Part IV: Determining the Period Expectation Collecting Data Analyzing the Motion Part V: Determining the Mass Using LoggerPro Creating Your Graph Analyzing Your Data Part VI: Determining the Spring Constant Creating Your Graph Analyzing Your Data Part VI: Summary

3 Part I: Objective The goal of this experiment is to determine the mass of an aluminium cylinder and the spring constant of the spring. You will be designing your own experiment based on the information given in the following slides.

4 Part II: Introduction In general, any motion that repeats itself at regular intervals is called periodic or harmonic motion. Examples of periodic motion can be found almost anywhere; boats bobbing on the ocean, grandfather clocks, and vibrating violin strings to name just a few. (SHM) satisfies the following properties:! Motion is periodic about an equilibrium position! The restoring force is proportional to and oppositely directed to a displacement from the equilibrium position.

5 Part II The displacement with respect to the equilibrium position x of a system undergoing SHM (as a function of time, t) can be described by x(t) = Acos(ωt + φ) where! A is the maximum displacement or amplitude of the motion,! ω is the angular frequency of the motion, and! φ is the phase constant or phase angle.

6 Part II The angular, or circular, frequency ω is defined in terms of the frequency f: ω = 2π f The frequency is defined to be the number of oscillations that the system completes in one second. The period T is the time taken for one complete oscillation, and can be expressed mathematically as T = 1/f

7 Part II If we consider a mass (m) on a spring as our oscillating system: Hooke s Law states that the there will be a restoring force acting on the mass when it is displaced from its equilibrium position. This restoring force is written as F = -k x, where k is the spring constant. The negative sign in the equation indicates that force and displacement are opposite in direction. The motion of any object can be described by Newton s second law. ΣF = ma. k Angular frequency is also given by ω =. m

8 Part III: Apparatus and Setup Apparatus You have been provided with Motion sensor Force probe 200 g mass Aluminium cylinder Metre stick Spring Support rods Stopwatch Clamp

9 Part III: Apparatus and Setup Motion Sensor The motion sensor is a device which measures the distance to the closest object. Connect the motion sensor to DIG/SONIC 1 of the LabPro.

10 Part III: Apparatus and Setup Force Probe The force probe is a device which measures the force acting on it. To obtain accurate results, the force probe must first be calibrated and zeroed: Attach the force probe to a support rod. Set the force probe is to "5 N" or 10 N rather than to "50 N. Plug the force probe into CH1 of the LabPro. Make sure the LabPro is plugged into a power outlet and is connected to the computer.

11 Part III Force Probe To use the force probe and see the measured results, we use a graphing software package: LoggerPro. Click the icon below to launch Logger Pro.

12 Part III Force Probe You will have been provided with a mass of 200 g to use for calibration. Click Experiment then Calibrate then LabPro: 1 CH1: Dual Range Force. Continued

13 Part III Force Probe With nothing attached to the force probe click the Calibrate Now button. The Reading 1 value is 0 N. Click Keep. Now hang the 200 g mass from the force probe and enter the force in the Reading 2 cell. Click Keep. Click OK. Remember that a 1 kg mass weighs 9.81 newtons. Remove the calibration weight, attach the spring to the force probe, and attach the large aluminium weight to the hook at the bottom of the spring.

14 Part III: Apparatus and Setup Motion Sensor Place the motion sensor on the floor directly beneath the aluminium cylinder. Position the motion sensor carefully -- the narrow beam of ultrasound it emits can easily miss the hanging mass altogether. Remember, the motion sensor must always be between 15 cm and 100 cm below the mass for it to measure its motion reliably.

15 Part III: Apparatus and Setup Zeroing the Probes Reduce the motion of the aluminium mass as much as possible, and then select Zero from the Experiment pulldown menu. Select both Dual Range Force and Motion Detector and click OK.

16 Lab Report Lab Report 1: Write the objective of your experiment. Lab Report 2: Write the relevant theory of this experiment. Lab Report 3: List your apparatus and sketch your setup.

17 Part IV: Determining the Period Expectation Without collecting any data, Lab Report 4: Sketch the expected form for the graphs of position vs time and force vs time. Explain your reasoning. HINT: Consider the equations for position and force as given in Part II of these instructions.

18 Part IV: Determining the Period Collecting Data Use Logger Pro to plot graphs of the oscillating system: force vs time position vs time and acceleration vs time. Lab Report 5: Do your graphs match the expected form? If they do not match, discuss why. Have an instructor check your graphs and initial your lab report. Turn off the connecting lines on your graph by double clicking in the white space of your graph then deselecting Connect Points.

19 Part IV: Determining the Period Analyzing the motion Logger Pro will display the coordinates of the plots if you click the button. The coordinates will be displayed in a pop-up box. Use your graph to determine the period of motion. Lab Report 6: Record the period. Include an estimate of the uncertainty. Lab Report 7: Describe how you determined the period using your graph.

20 Part IV: Determining the Period Analyzing the motion Next, use a stopwatch to determine the period of the motion. Hint: Try to be as accurate as possible! Should you measure one oscillation or multiple oscillations? Lab Report 8: Record the period. Include an estimate of the uncertainty. The uncertainty of the stopwatch is reaction time. If you do not know reaction time, you can find it in two ways: (i) do the measurement twice and find the difference or (ii) go online to do a reaction time test. Lab Report 9: Describe how you determined the period using a stopwatch. Lab Report 10: Compare the two values of period: Do they agree? Comment on any differences.

21 Part V: Determining the Mass Using LoggerPro You may change the quantity plotted on the horizontal axis by clicking on the axis label as shown below, and selecting the new quantity from the popup menu that appears. For example, if your plot shows position vs time and you want to plot position vs acceleration, you click on the word time on the x axis and choose acceleration instead. Working with your middle graph: Choose a suitable set of axes that will allow you to determine the mass of the oscillator. Having trouble deciding what to plot? Click here to open the notes from your graphing workshop.

22 Part V: Determining the Mass Analyzing Your Graph To obtain a linear fit to your data, click Analyze then Linear Fit. To find the uncertainties in the slope and intercept, double click on the box that appears and check Show Uncertainty. Use your results to obtain the mass of the cylinder. Lab Report 11: Record the mass of the cylinder. Include uncertainty. Lab Report 12: Describe your method to determine the mass of the cylinder. You may wish to include any equations and discuss the use of a graph. Weigh the cylinder on a triple beam balance. Lab Report 13: Record the mass of the cylinder. Include uncertainty. Lab Report 14: Compare the mass found using the two methods and comment on the agreement.

23 Part V: Determining the Mass Finding the Spring Constant Lab Report 15: Use the mass obtained from the balance and the period you found earlier to determine the spring constant of the spring and its uncertainty.

24 Part VI:Determining the Spring Constant Creating your Graph Working with your lowest graph: Choose suitable axes which will allow you to determine the spring constant k of the spring.

25 Part VI:Determining the Spring Constant Analyzing Your Graph To obtain a linear fit to your data, click Analyze then Linear Fit. To find the uncertainties in the slope and intercept, double click on the box that appears and check Show Uncertainty. For the best printed graph: " Click File then Page Setup and choose the landscape orientation

26 Part VI:Determining the Spring Constant Analyzing Your Graph Click File then Print. To select the only necessary page: Click Pages and choose Single. Format: Include titles and axes labels. Turn off connecting lines. Click Print to print your graph.

27 Part VI:Determining the Spring Constant Analyzing Your Graph Use your results to obtain the spring constant of the spring. Lab Report 16: Lab Report 17: Describe your method to determine the spring constant of the spring. Report the value of the spring constant and it s uncertainty. Does this value agree with the value found previously? Comment.

28 Part VII: Summary Lab Report 18: Outline briefly the steps of your experiment. Lab Report 19: List your experimental results and comment on how they agreed with the expected results. Lab Report 20: List at least three sources of experimental uncertainty and classify them as random or systematic.

29 Wrap it up! Check that you have completed your Lab Report. Your report should include copies of the graphs used to determine mass and spring constant.

Physics 1050 Experiment 2. Acceleration Due to Gravity

Physics 1050 Experiment 2. Acceleration Due to Gravity Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape

More information

Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

More information

Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

More information

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

More information

Buoyancy. Please Circle Your Lab day: M T W T F

Buoyancy. Please Circle Your Lab day: M T W T F Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum

More information

The moment of inertia of a rod rotating about its centre is given by:

The moment of inertia of a rod rotating about its centre is given by: Pendulum Physics 161 Introduction This experiment is designed to study the motion of a pendulum consisting of a rod and a mass attached to it. The period of the pendulum will be measured using three different

More information

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

More information

THE NOT SO SIMPLE PENDULUM

THE NOT SO SIMPLE PENDULUM INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,

More information

Graph Matching. walk back and forth in front of Motion Detector

Graph Matching. walk back and forth in front of Motion Detector Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine

More information

Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

More information

COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

HOOKE S LAW AND OSCILLATIONS

HOOKE S LAW AND OSCILLATIONS 9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a spring-mass oscillator. INTRODUCTION The force which restores a spring to its equilibrium

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Dynamics Track. Mechanical Force, Impulse and Momentum

Dynamics Track. Mechanical Force, Impulse and Momentum Dynamics Track Mechanical Force, Impulse and Momentum An object subjected to unbalanced forces undergoes acceleration, which changes the velocity of the object in question. This change in motion can be

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3 PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion OBJECTIVES to validate Newton s Laws of Motion EQUIPMENT horizontal dynamic track and safety stopper on one end PASCO carts with a small reflector motion detector connected to the

More information

CME Conservation of Mechanical Energy revised May 5, 2015

CME Conservation of Mechanical Energy revised May 5, 2015 CME Conservation of Mechanical Energy revised May 5, 2015 Learning Objectives: During this lab, you will 1. learn how to communicate scientific results in writing. 2. estimate the uncertainty in a quantity

More information

THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer

THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,

More information

Static and Kinetic Friction

Static and Kinetic Friction Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

: Lab 1: Measurement and Uncertainty Pendulum Period

: Lab 1: Measurement and Uncertainty Pendulum Period Introduction : Lab 1: Measurement and Uncertainty Pendulum Period Physics is primarily an experimental science. Physics theories are tested and refined and are only retained when they are proven to be

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Name Class Date Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Equipment

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Physics 2305 Lab 11: Torsion Pendulum

Physics 2305 Lab 11: Torsion Pendulum Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation

More information

Oscillations: Mass on a Spring and Pendulums

Oscillations: Mass on a Spring and Pendulums Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is a wave effect that occurs when an object has a natural frequency that

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

Pulleys, Work, and Energy

Pulleys, Work, and Energy Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triple-pulley assemblies apparatus from

More information

Archimedes' Principle

Archimedes' Principle Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the

More information

Determination of g using a spring

Determination of g using a spring INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY ACCELERATION DUE TO GRAVITY Objective: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: Computer with Logger Pro, green Vernier interface box, picket fence

More information

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY

EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY EXCEL EXERCISE AND ACCELERATION DUE TO GRAVITY Objective: To learn how to use the Excel spreadsheet to record your data, calculate values and make graphs. To analyze the data from the Acceleration Due

More information

Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A

Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum

More information

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction

More information

The Pendulum. Experiment #1 NOTE:

The Pendulum. Experiment #1 NOTE: The Pendulum Experiment #1 NOTE: For submitting the report on this laboratory session you will need a report booklet of the type that can be purchased at the McGill Bookstore. The material of the course

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

Experiment 8. The Pendulum

Experiment 8. The Pendulum Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

More information

ELASTIC FORCES and HOOKE S LAW

ELASTIC FORCES and HOOKE S LAW PHYS-101 LAB-03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described

More information

A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.

A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum. MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Physics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance

Physics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance Physics 182 - Spring 2012 - Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify

More information

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

More information

Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: x (cm) 10.0 Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Graphical Presentation of Data

Graphical Presentation of Data Graphical Presentation of Data Guidelines for Making Graphs Titles should tell the reader exactly what is graphed Remove stray lines, legends, points, and any other unintended additions by the computer

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Physics 100 Friction Lab

Physics 100 Friction Lab Åsa Bradley SFCC Physics Name: AsaB@spokanefalls.edu 509 533 3837 Lab Partners: Physics 100 Friction Lab Two major types of friction are static friction and kinetic (also called sliding) friction. Static

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension 14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a

More information

Acceleration Due to Gravity

Acceleration Due to Gravity Activity 5 PS-2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

More information

Lab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

Lab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor) of a Permanent Magnet (Magnetic Field Sensor) Equipment Needed Qty Equipment Needed Qty Magnetic Field Sensor (CI-6520A) 1 Meter stick, non-metal 1 Magnet*, disk, Neodymium, 1/2 or 3/4 (EM-8648) 1 Small

More information

Galileo s Pendulum: An exercise in gravitation and simple harmonic motion

Galileo s Pendulum: An exercise in gravitation and simple harmonic motion Galileo s Pendulum: An exercise in gravitation and simple harmonic motion Zosia A. C. Krusberg Yerkes Winter Institute December 2007 Abstract In this lab, you will investigate the mathematical relationships

More information

DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS

DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS Experiment 3 DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

More information

ENDOTHERMIC AND EXOTHERMIC REACTIONS

ENDOTHERMIC AND EXOTHERMIC REACTIONS ENDOTHERMIC AND EXOTHERMIC REACTIONS LAB THC 2.PALM INTRODUCTION Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!*** Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

More information

1.2 ERRORS AND UNCERTAINTIES Notes

1.2 ERRORS AND UNCERTAINTIES Notes 1.2 ERRORS AND UNCERTAINTIES Notes I. UNCERTAINTY AND ERROR IN MEASUREMENT A. PRECISION AND ACCURACY B. RANDOM AND SYSTEMATIC ERRORS C. REPORTING A SINGLE MEASUREMENT D. REPORTING YOUR BEST ESTIMATE OF

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction

Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction Chapter 4 Kinematics - Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.

More information

Newton s Third Law, Momentum, Center of Mass

Newton s Third Law, Momentum, Center of Mass Team: Newton s Third Law, Momentum, Center of Mass Part I. Newton s Third Law Atomic Springs When you push against a wall, you feel a force in the opposite direction. The harder you push, the harder the

More information

Experiment: Series and Parallel Circuits

Experiment: Series and Parallel Circuits Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

More information

Physics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009

Physics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009 Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will

More information

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems SHM Lab 1 Introduction PHYS 202 Laboratory #4 Oscillations and Simple Harmonic Motion In this laboratory, we examine three simple oscillatory systems: a mass on a spring, a pendulum, and a mass on a rubber

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Standing Waves Physics Lab I

Standing Waves Physics Lab I Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF-9324 Variable Frequency

More information

Lab 8 Impulse and Momentum

Lab 8 Impulse and Momentum b Lab 8 Impulse and Momentum What You Need To Know: The Physics There are many concepts in physics that are defined purely by an equation and not by a description. In some cases, this is a source of much

More information

THE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion.

THE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion. THE SIMPLE PENDULUM Objective: To investiate the relationship between the lenth of a simple pendulum and the period of its motion. Apparatus: Strin, pendulum bob, meter stick, computer with ULI interface,

More information