EFFECT OF PILE LOAD TESTING SETUP ON THE ACCURACY OF THE RESULTS ABSTRACT

Size: px
Start display at page:

Download "EFFECT OF PILE LOAD TESTING SETUP ON THE ACCURACY OF THE RESULTS ABSTRACT"

Transcription

1 EFFECT OF PILE LOAD TESTING SETUP ON THE ACCURACY OF THE RESULTS HOSSAM E.A. ALI 1 AND AHMED H. ABDEL-RAHMAN 2 ABSTRACT It is a common practice to axially load piles in order to test their load-settlement or timesettlement performance. Cycles of axial loads are applied on top of the tested pile by means of hydraulic jacks against reactions. Three types of testing setups are commonly known in the industry depending on the technique used to set up the reactions. A highly rigid steel plate tied with grouted anchors, steel girders restrained against tension piles, and a platform loaded by concrete blocks or sand bags are the common means to provide proper reactions against the hydraulic jacks. Naturally, these alternative loading setup techniques have unavoidable varying impact on the results. More importantly, for the same loading setup technique, the pile loading results are seriously influenced by the setup arrangement. This paper discusses the effect of each test setup on the accuracy of the results. A back analysis using the finite element method was performed to model the results of an actual pile load test including its testing setup. The same model was utilized to investigate the effect of other testing setups on the measured results. Based on this research study, recommendations for the ideal arrangement of different testing setups were provided. Recommended corrections for the measured settlement when using each loading setup configuration are also presented. Keywords: Pile foundation, pile load test, test setup, axial loading, settlement. 1 Assistant Professor, Structural Engineering Dept., Ain Shams University, Cairo, Egypt. 2 Assistant Professor, Civil Eng. Dept., Engineering Research Division, National Research Center of Egypt.

2 INTRODUCTION All foundation codes request performing axial loading tests on piles to ensure the designed working and ultimate load capacity as well as pile load-settlement curve. Static load tests are the most common and even the default technique of pile testing. Normally, the vertical load tests are carried out by subjecting the pile head to cycles of vertical static loads by means of a hydraulic jack against a reaction system. During loading/unloading the pile, the vertical movement of the pile top is monitored by means of dial gauges. There are three acceptable setups in the foundation codes (e.g. ASTM D1143, 1986; Egyptian Code of Foundation-Part 4, 2001; ACI 543R-74, 1986) to provide reaction against the loading jack as shown in Fig. 1. Fig. 1.a depicts a setup of loading against a rigid plate tied to wire tension anchors grouted at a depth deeper than the pile tip. In Fig. 1.b, tension piles are used as a reaction system, while in Fig. 1.c, a mass of heavy materials, such as concrete blocks, sand bags,..etc, is used to provide adequate source of loading. It has been addressed in the literature (Poulos and Davis, 1980 and NAVFAC DM-72) that the loading process of the reaction system can have a negative influence on the accuracy of the measured movement at the pile top. This is due to stress interference between the reaction system and the tested pile. Because of that fact, some foundation codes specified minimum distances between the tested piles and the reaction systems based on empirical or site observations. Alternatively, Poulos and Davis (1980) proposed a correction factor (F c ) based on theoretical elastic solutions that calibrate the field measured settlement (ä R ) to the true values (ä M ), where F c = δ δ R M In this study, the correction factors will be re-evaluated by a nonlinear finite element analysis performed on the results of a case history. INTERACTION BETWEEN THE TESTED PILE AND THE REACTION SYSTEM The mechanism in which the reaction system affects the settlement of the tested pile differs based on its configuration. The counter-weight system increases the confining pressure around the top part of the pile during the initial stage of loading, which reflects a stiffer pile response during the early stages of loading. That effect decreases with the increase of loading on the tested pile, which in turn reduces the net weight of the reaction system on the ground surrounding the tested pile. On the other hand, the tension piles reaction system tends to move upward during the downward movement of the tested pile, which in turn increases the friction force around the pile and hence causes relatively lesser measured settlement values for the pile than the true values for all load increments. Finally, the grouted anchor system develops, during loading of the tested pile, upward axial forces along the grouted part of the anchors that are normally located below the tested pile tip and arranged in a circle surrounding it. That response might be thought of inducing an upward movement to the soil below the pile tip, which in turn reduces the settlement of the tested pile. (1) 2

3 Due to the possible stress transfer mechanisms between the reaction system and the tested pile, ASTM-D1143 (1986) as well as many other codes provided limitations for the distances between the tested pile and the reaction systems. In this paper, the influence of these distances on the correction factor F c will be numerically addressed by performing a parametric study on a control model analyzed by the finite element method. Reaction Beam Jack Jack Anchor cable Tension Piles (a) Grouted Anchor (b) Loads Jack Tested Pile (c) Figure 1: Different loading setups a) Grouted anchors, b) Tension piles and c) Counter weights THE CASE HISTORY A bored cast-insitu pile of 1080 mm diameter and 22.0 m embedded depth was tested within the course of a quality control program of a bridge project in Giza, Egypt. The design capacity for that pile was 360 ton, while the test was performed up to 720 ton. The test setup was performed according to ASTM-D1143 (1986). The implemented reaction system consists of 8 anchors equally spaced and arranged in a circle around the pile. The loading hydraulic jack acted against a rigid steel plate tied to the anchors. Fig. 2 depicts the configurations and dimensions of the testing setup. 3

4 Jack Tested Pile (D = 1080mm) L= 22.0 m (-22.00) 12 (-32.00) 8 Grouted Anchor (-40.00) Figure 2: Setup of the field pile load test. Site Subsurface Condition The general subsurface soil condition at the location of the test pile is shown in Fig. 3. A top fill layer consisting of fine sand, silty clay pockets, limestone fragments, and plant roots is encountered from the ground surface and extended to a depth of 3.0 m. A medium stiff to stiff silty clay layer appeared after the top fill layer and extended to a depth of 11.0 m. A very dense fine to medium sand layer appeared after the clay layer and extended to the end of the boreholes. Test Results Figure 4 presents the measured load-settlement plot for the tested pile. The elastic line, which presents the axial deformation of the pile shaft itself, is also presented on the same plot. It can be seen that shaft friction resistance was the governing most of the pile capacity up to a load of about 600 ton. Afterwards, the pile settlement increased and exceeded the axial deformation of the pile which indicates control of the pile end bearing of the pile on its settlement behavior. 4

5 P 3. 0 m 8. 0 m Fill Medium stiff, silty CLAY q u = kpa γ b = 19.5 kn/m 3 Ground Surface GWT Very Dense, fine to medium, SAND SPT 50 Figure 3: Soil stratification at the pile load test location 0-4 Settlement (mm) Test Measurements Elastic Deformation of Pile Shaft (= PL/EA) Pile Axial Load (ton) Figure 4: Measured load-settlement curve of the pile load test 5

6 FINITE ELEMENT MODELING OF THE TEST RESULTS The configuration of the test setup shown in Fig. 2, was modeled in a finite element analysis. Fig. 5 presents the finite element mesh implemented in the analysis. The soil geometry was modeled by 6-node isoparametric axisymmetric triangular elements, and its behavior was modeled by the elasto-plastic Mohr-Coulomb model. Due to the geometry of the problem, the axisymmetric model is used to simulate the circular pile shaft as well as the loading scheme around the central axis of the pile, where the deformation and stress states are assumed identical in any radial direction. So doing, the problem can be considered as simplified 3D analysis. During modeling the test setup, similar load steps were imposed on the pile and the anchorage system up to the maximum load reached in the field test (i.e. 720 ton). As can be seen in Figure 6, the final settlement value predicted by the FE analysis at the ultimate load is so close to the value monitored in the field. Yet, for loads less than ultimate load, the FE analysis predicted higher values than recorded. This might be due to the fact that the loading steps in the field are applied in a relatively fast sequence that does not allow for the full undrained deformation to occur. This is especially observable in the first stages of loading when the friction resistance between the pile shaft and the clay layer represents the major part of pile capacity. To study the impact of the anchor system on the load-settlement results, the FE analysis was repeated without including the anchorage system. The results which are shown in Fig. 7 revealed not much change in the resulted load-settlement curve. Only a difference of about 4.0% only (i.e. F c = 1.04) was observed between the predicted settlement with and without the anchorage system. The small difference in the results might be due to the fact that the stress zone around the anchorage system is considerably far from the pile system itself. That in turn, confirms the applicability of the ASTM recommendations in that sense. It should be noted that the load-settlement curve of the no-anchorage case will be considered, herein, as the true load-settlement curve when analyzing the effect of other reaction systems. Moreover, the final value in this curve is used as the true measurement of settlement in this analysis. Therefore the correction factor F c is determined using the apparent final settlement exhibited by other reaction systems along compared to the true measured settlement (12.66 mm). PARAMETRIC STUDY ON THE ANCHORAGE REACTION SYSTEM From the above FE simulation of the field pile load test, it became feasible that utilizing anchorage system could have an effect on the accuracy of the results. Therefore, to study that effect, both spacing and depth ratios were utilized to represent the different anchorage configurations (reaction system). Based on this analysis, it became obvious that the anchorage reaction system yields variable values of correction factors when changing its layout. Plot shown in Fig. 8 presents the effect of the anchorage reaction system dimensions on the deviation of the measured values from the true ones. As can be seen from Fig. 8, the effect of embedded depth of the grouted anchors (H) diminishes when it become well below the pile tip (i.e. H/L >1.0). where L denotes for the pile embedded depth. In other words, the value of F c does not incomparably change for H/L = 1.5 to 2.0. On the other hand, the pattern and values of the correction factor completely differ when the grouted anchors placed above the pile tip (i.e. H/L < 1.0). 6

7 Similarly, the predicted settlement was re-evaluated by another FE analysis conducted for a pile installed in an extended dense sandy layer in order to investigate the effect of the soil profile on F c. Graph shown in Fig. 9 depicts the correction factors that represent the effect of the anchorage system on the deviation of the measured values from the true ones in sandy soils. Unlike the plot in Fig. 8, the maximum error reached its peak when the embedded depth of the grouted anchors located close to the pile tip (i.e. H/L 1.0). Similar to the previous analysis, the deeper the position of the grouted anchors, the less influence on the pile deformation (i.e. less value of F c ). Yet, unlike the previous analysis, the decrease in the values of F c continued even for H/L > 1.5. Accordingly, grouted anchors, in this case, shall be installed deeper than the previous case to maintain the same factor of safety In order to simplify the design procedure, Fig. 10 was produced as a design guide for determining the correction factor for piles installed in an extended uniform sandy soils. PARAMETRIC STUDY ON OTHER REACTION SYSTEMS In order to compare between the grouted anchors systems and other reaction setups, two other FE models were conducted to represent a similar pile load test using tension piles as well as the counter weight reaction system. To match practical conditions, similar piles to the tested one were used as tension piles (i.e. similar length and diameter). For the same reason, spacing/diameter (S/D) ratio was considered as 3. The results of the tension piles case revealed that the correction factor reaches to 1.80 comparing to 1.07 in the case of grouted anchors system. However by investigating the influence of other values of S/D ratio, the F c value dropped to 1.32 when S/D = 6 (not shown on a figure). This findings agrees with the charts proposed by Poulos and Davis (1980) using the elastic theory. On the other hand, in the case of counter weight model, it can be clearly noticed in Fig. 11 that the influence of the counter-weight has much less impact on the load settlement curve. Yet, it is still higher than grouted anchors system. Therefore, extreme care shall be taken when dealing with pile load test conducted using tension piles. 7

8 Flow Field Extreme velocity 0.00 m/day Total discharge 0. 0 m 3 /day/rad Figure 5: FE Model of the pile load test. 0 Axial Deformation (mm) Test Measurements FE Analysis Pile Axial Load (ton) Figure 6: FE simulation Results vs. pile load test measurments 8

9 0 Axial Deformation (mm) Test Measurements FE Analysis (with Anchorage System) FE Analysis (without Anchorage System) Pile Axial Load (ton) Figure 7: Results of FE Simulation with and without anchorage system 1.6 Correction Factor (F c ) H/L = 0.5 H/L = 1.0 H/L = 1.5 H S H/L = 2.0 L S/L Figure 8 Effect of the geometrical configuration of the anchor/pile spacing on the test results 9

10 1.4 Correction Factor (F c ) H/L = 1.5 H/L = 0.5 H/L = 1.0 H S L H/L = S/L Figure 9: Effect of the geometrical configuration of the anchor/pile spacing on the test results CONCLUSION REMARKS This paper discusses the effect of different pile load test setups on the accuracy of the results. A back analysis using the finite element method was performed in this study to model the results of an actual pile load test including its testing setup. The same model was utilized to investigate the effect of the most common two other testing setups on the measurements of settlement. Based on this research study, the settlement correction factor was determined for the different testing setups. As concluding remarks, the following finding were found: 1. The reaction system setup could remarkably affect the results of the load-settlement behavior of piles during testing. 2. Settlement correction factor ranges from 1.0 and could go up to 1.80 when using reaction systems of different configuration around the tested pile. This findings agrees with the charts proposed by Poulos and Davis (1980) using the elastic theory. 3. Errors in the pile load test results may be acceptable in grouted anchors system specially when using H/L over 1.5, while considerable higher errors are usually encountered when using tension piles even with large spacing/diameter ratio. The counter weight reaction system is relatively a primitive and simpler technique and induces more error than grouted anchorage system, yet it provides a substantial reduction in error comparing to the tension-pile system. 4. For the case of reaction system using anchors, detailed plots showing the effect of the configuration of the anchors around the tested pile were given. 10

11 REFERENCES 1. ASTM D (1986). "Method of Testing Piles Under Static Axial Compressive Load,", Annual Book of ASTM Standards, American Society For Testing and Materials, Vol , Philadelphia, PA. 2. Egyptian Code for Soil Mechanics and Foundation (2001). Deep foundation, Part 4, Egypt. 3. ACI 543R-74 (1986). "Recommendations For Design, Manufacture and Installation of Concrete Piles," American Concrete Institute, Detroit, MI. 4. Poulos, H.G. and Davis E. H., (1980). Pile Foundation Analysis and Design, John Wiley and Sons, New York. 5. NAVFAC DM-7.2 (1982). "Foundations and Earth Structures," Department of the Navy., Alexandria, VA, USA. 0 Axial Deformation (mm) FE Analysis Using Anchorage System FE Analysis Using Tension Piles FE Analysis Using Counter Weights Pile Axial Load (ton) Figure 11: Comparison between the FE Simulation Results for the grouted system, tension piles and counter weights as reaction systems 11

12 S/L H/L Figure 10: Reduction Factor for end bearing pile with grouted anchors in uniform sand layer 12

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Nature of Services The company has a long history of performance of tests of piles and pile groups under a variety

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Method Statement. Static Pile Load Test

Method Statement. Static Pile Load Test Method Statement FOR Static Pile Load Test (Compression Test,Tension Test and Lateral Test) PREPARED BY 1 METHOD STATEMENT FOR COMPRESSION, TENSILE AND LATERAL PILE LOAD TEST PROJECT INFORMATION Owner

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

ALLOWABLE LOADS ON A SINGLE PILE

ALLOWABLE LOADS ON A SINGLE PILE C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2 Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2 W.F. Bawden, Chair Lassonde Mineral Engineering Program, U. of Toronto, Canada J.D. Tod, Senior Engineer, Mine Design

More information

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS

SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS Page 1 of 9 SAMPLE GUIDE SPECIFICATIONS FOR OSTERBERG CELL LOAD TESTING OF DEEP FOUNDATIONS 1. GENERAL REQUIREMENTS 1. Description of Work: This work consists of furnishing all materials, equipment and

More information

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate Addendum HELICAL PULLDOWN Micropile (HPM) Introduction The HPM is a system for constructing a grout column around the shaft of a standard Helical Screw Foundation (see Figure A1). To begin the process,

More information

FINITE ELEMENT STUDY ON STATIC PILE LOAD TESTING

FINITE ELEMENT STUDY ON STATIC PILE LOAD TESTING FINITE ELEMENT STUDY ON STATIC PILE LOAD TESTING LI YI (B.Eng) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2004 Dedicated

More information

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Method Statement for Static Load Testing (Compression) for Micropiles

Method Statement for Static Load Testing (Compression) for Micropiles Method Statement for Static Load Testing (Compression) for Micropiles 1. INTRODUCTION This vertical compression pile maintained load test is usually carried out to ensure the structural and geotechnical

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1 INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

More information

Drained and Undrained Conditions. Undrained and Drained Shear Strength

Drained and Undrained Conditions. Undrained and Drained Shear Strength Drained and Undrained Conditions Undrained and Drained Shear Strength Lecture No. October, 00 Drained condition occurs when there is no change in pore water pressure due to external loading. In a drained

More information

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 25-35 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell)

Dead load (kentledge) A structure over the test pile. Ground anchorage either by tension piles or ground anchors. Bi-directional (Osterberg-cell) Introduction Fugro LOADTEST Overview STATIC LOAD TESTING O-cell Bi-directional testing State of the art Dr Melvin England Fugro LOADTEST Static load tests Previous/existing technology Developments O-cell

More information

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Vol.3, Issue.1, Jan-Feb. 2013 pp-284-290 ISSN: 2249-6645 Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Mahmoud M. Abu zeid, 1 Amr M. Radwan, 2 Emad A. Osman, 3 Ahmed M.Abu-bakr,

More information

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE

CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE CHAPTER 9 LONG TERM MONITORING AT THE ROUTE 351 BRIDGE 9.1 INTRODUCTION An important reason that composite piles have not gained wide acceptance in the civil engineering practice is the lack of a long

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

DYNAMIC TESTING OF MICROPILES. COMPARISON OF STATIC AND DYNAMIC TEST RESULTS

DYNAMIC TESTING OF MICROPILES. COMPARISON OF STATIC AND DYNAMIC TEST RESULTS DYNAMIC TESTING OF MICROPILES. COMPARISON OF STATIC AND DYNAMIC TEST RESULTS D. Carlos Oteo 1, D. José Luis Arcos 2, D. Rafael Gil 3, D. Carlos Fdez. Tadeo 4 ABSTRACT Micropiles are used for many applications,

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

USE OF CONE PENETRATION TEST IN PILE DESIGN

USE OF CONE PENETRATION TEST IN PILE DESIGN PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 47, NO. 2, PP. 189 197 (23) USE OF CONE PENETRATION TEST IN PILE DESIGN András MAHLER Department of Geotechnics Budapest University of Technology and Economics

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

How To Model A Shallow Foundation

How To Model A Shallow Foundation Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

More information

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch USE OF MICROPILES IN TEXAS BRIDGES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch DEFINITION OF A MICROPILE A micropile is a small diameter (typically less than 12 in.), drilled and

More information

PDCA Driven-Pile Terms and Definitions

PDCA Driven-Pile Terms and Definitions PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

How To Design A Foundation

How To Design A Foundation The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

More information

When to Use Immediate Settlement in Settle 3D

When to Use Immediate Settlement in Settle 3D When to Use Immediate Settlement in Settle 3D Most engineers agree that settlement is made up of three components: immediate, primary consolidation and secondary consolidation (or creep). Most engineers

More information

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives In this section you will learn the following Penetrometer Tests Standard penetration test Static cone penetration test Dynamic cone

More information

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil ISSN: 319-53 (An ISO 39: 00 Certified Organization) A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil Utpal Kumar Das Associate Professor, Department

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Pro-Lift Steel Pile Foundation Repair

Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair Pro-Lift Steel Pile Foundation Repair System Pro-lift steel piles are designed for the stresses of Texas soils. They can have multiple steel walls, depending on the

More information

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

More information

Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 LOAD TESTS

Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 LOAD TESTS Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 Appendix B CONTENTS STATIC (TIEBACKS)... B-3 STATIC AXIAL (COMPRESSION/TENSION)... B-6 STATIC (LATERAL)... B-9 CAPACITY VERIFICATION

More information

An Automatic Kunzelstab Penetration Test

An Automatic Kunzelstab Penetration Test An Automatic Kunzelstab Penetration Test Yongyuth Sirisriphet 1, Kitidech Santichaianant 2 1 Graduated student: Faculty of Industrial Education in and Technology. King Mongkut's University of Technology

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

More information

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT

ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT ITEM #0702770 OSTERBERG CELL LOAD TESTING OF DRILLED SHAFT Description: This work shall consist of furnishing all materials, equipment and labor necessary for conducting an Osterberg Cell (O-Cell) Load

More information

Standard Test Method for Mechanical Cone Penetration Tests of Soil 1

Standard Test Method for Mechanical Cone Penetration Tests of Soil 1 Designation: D 3441 98 AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM Standard Test Method

More information

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

More information

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

More information

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:! In-situ Testing! Insitu Testing! Insitu testing is used for two reasons:! To allow the determination of shear strength or penetration resistance or permeability of soils that would be difficult or impossible

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc. Design Manual Chapter 6 - Geotechnical 6B - Subsurface Exploration Program 6B-2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,

More information

Numerical Analysis of Texas Cone Penetration Test

Numerical Analysis of Texas Cone Penetration Test International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Numerical Analysis of Texas Cone Penetration Test Nutan Palla Project Engineer, Tolunay-Wong Engineers, Inc. 10710 S Sam

More information

Design of pile foundations following Eurocode 7-Section 7

Design of pile foundations following Eurocode 7-Section 7 Brussels, 18-20 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 18-20 Februray 2008 Design of pile foundations following Eurocode 7-Section

More information

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 391 CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOIL-STRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soil-structure interaction

More information

Jack-in Piling Environmental Friendly Piling System

Jack-in Piling Environmental Friendly Piling System Jack-in Piling Environmental Friendly Piling System Part 1 - Chris Loh 7 Nov 12 CSC HOLDINGS LIMITED Gracious Piling Environmental Friendly Low Noise No Vibration Jack-in Piling How Many Decibels? Permissible

More information

DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST

DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST III Międzynarodowa Konferencja Naukowo-Techniczna Nowoczesne technologie w budownictwie drogowym Poznań, 8 9 września 005 3rd International Conference Modern Technologies in Highway Engineering Poznań,

More information

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore

More information

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

More information

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim. CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

More information

DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION

DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION DESIGN OF PILES AND PILE GROUPS CONSIDERING CAPACITY, SETTLEMENT, AND NEGATIVE SKIN FRICTION Introduction Bengt H. Fellenius, Dr.Tech., P.Eng. Background Notes for Demo Example for UniPile at www.unisoftltd.com

More information

Validation of methods for assessing tunnelling-induced settlements on piles

Validation of methods for assessing tunnelling-induced settlements on piles Validation of methods for assessing tunnelling-induced settlements on piles Mike Devriendt, Arup Michael Williamson, University of Cambridge & Arup technical note Abstract For tunnelling projects, settlements

More information

METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE. Prepared by

METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE. Prepared by METHOD STATEMENT HIGH STRIAN DYNAMIC TESTING OF PILE Prepared by Infratech ASTM CO., LTD. Contents Chapter Description Page Contents...... 1 List of Appendix. 1 1. Introduction.. 2 2. Test Method..2 3.

More information

Embankment Consolidation

Embankment Consolidation Embankment Consolidation 36-1 Embankment Consolidation In this tutorial, RS2 is used for a coupled analysis of a road embankment subject to loading from typical daily traffic. Model Start the RS2 9.0 Model

More information

Comparison Between Dynamic and Static Pile Load Testing

Comparison Between Dynamic and Static Pile Load Testing Comparison Between Dynamic and Static Pile Load Testing Dr. Mohamed A. Osman Partner Engineering Services & Design (ESD)-Khartoum, Sudan e-mail: drmao@hotmail.com Dr. Elfatih Mohamed Ali Ahmed Partner

More information

Federation of Piling Specialists Testing Datasheet No 1

Federation of Piling Specialists Testing Datasheet No 1 Testing Datasheet No 1 Guidance for the Principal Contractor It is an essential requirement that the specialist testing contractor is allowed to work in a safe way and fully in accordance with their own

More information

The advantages and disadvantages of dynamic load testing and statnamic load testing

The advantages and disadvantages of dynamic load testing and statnamic load testing The advantages and disadvantages of dynamic load testing and statnamic load testing P.Middendorp & G.J.J. van Ginneken TNO Profound R.J. van Foeken TNO Building and Construction Research ABSTRACT: Pile

More information

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

More information

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING AP... Page 1 of 19 ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL Yasumasa Shoji, Satoshi Nagata, Toyo Engineering Corporation,

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA. Pile Dynamic Load test as alternative to Static Load test

PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA. Pile Dynamic Load test as alternative to Static Load test PROVA DINAMICA SU PALI IN ALTERNATIVA ALLA PROVA STATICA Pile Dynamic Load test as alternative to Static Load test Gorazd Strnisa, B.Sc.Civ.Eng. SLP d.o.o. Ljubljana ABSTRACT Pile Dynamic test is test

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

Instrumentations, Pile Group Load Testing, and Data Analysis Part II: Design & Analysis of Lateral Load Test. Murad Abu-Farsakh, Ph.D., P.E.

Instrumentations, Pile Group Load Testing, and Data Analysis Part II: Design & Analysis of Lateral Load Test. Murad Abu-Farsakh, Ph.D., P.E. Instrumentations, Pile Group Load Testing, and Data Analysis Part II: Design & Analysis of Lateral Load Test Murad Abu-Farsakh, Ph.D., P.E. Louisiana Transportation Research Center Louisiana State University

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

An Overview of the Finite Element Analysis

An Overview of the Finite Element Analysis CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

More information

System. Stability. Security. Integrity. 150 Helical Anchor

System. Stability. Security. Integrity. 150 Helical Anchor Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair

More information

Step 6 Buckling/Slenderness Considerations

Step 6 Buckling/Slenderness Considerations Step 6 Buckling/Slenderness Considerations Introduction Buckling of slender foundation elements is a common concern among designers and structural engineers. The literature shows that several researchers

More information

How to Design Helical Piles per the 2009 International Building Code

How to Design Helical Piles per the 2009 International Building Code ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

More information

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples Prof. V.S.Raju (Formerly: Director, IIT Delhi & Professor and Dean, IIT Madras) Email: rajuvs_b@yahoo.com

More information

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 JRHill@HaywardBaker.com

More information

PILE FOUNDATIONS FM 5-134

PILE FOUNDATIONS FM 5-134 C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

More information

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was

More information

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS Proceedings of Indian Geotechnical Conference IGC-2014 December 18-20, 2014, Kakinada, India ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS Kant, L., M. Tech Student, Department of Earthquake

More information

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

More information

STATIC PILE LOAD TEST MANUAL. GEOTECHNICAL CONTROL PROCEDURE GCP-18 Revision #4

STATIC PILE LOAD TEST MANUAL. GEOTECHNICAL CONTROL PROCEDURE GCP-18 Revision #4 STATIC PILE LOAD TEST MANUAL GEOTECHNICAL CONTROL PROCEDURE GCP-18 Revision #4 AUGUST 2015 GEOTECHNICAL CONTROL PROCEDURE: STATIC PILE LOAD TEST MANUAL GCP-18 Revision #4 STATE OF NEW YORK DEPARTMENT

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS 8601 North Black Canyon Highway Suite 103 Phoenix, AZ 8501 For Professionals Engaged in Post-Tensioning Design Issue 14 December 004 DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS by James D. Rogers 1 1.0

More information

GUIDANCE NOTES FOR DEVELOPMENTS OR ENGINEERING WORKS IN THE VICINITY OF SPT SUBWAY INFRASTRUCTURE JULY 2005

GUIDANCE NOTES FOR DEVELOPMENTS OR ENGINEERING WORKS IN THE VICINITY OF SPT SUBWAY INFRASTRUCTURE JULY 2005 GUIDANCE NOTES FOR DEVELOPMENTS OR ENGINEERING WORKS IN THE VICINITY OF SPT SUBWAY INFRASTRUCTURE JULY 2005 CONTENTS 1.0 INTRODUCTION 2.0 OVERVIEW OF SPT APPROACH TO DEVEOPMENTS/WORKS IN THE VICINITY OF

More information

1.2 Advantages and Types of Prestressing

1.2 Advantages and Types of Prestressing 1.2 Advantages and Types of Prestressing This section covers the following topics. Definitions Advantages of Prestressing Limitations of Prestressing Types of Prestressing 1.2.1 Definitions The terms commonly

More information

Dynamic Load Testing of Helical Piles

Dynamic Load Testing of Helical Piles Dynamic Load Testing of Helical Piles ANNUAL KANSAS CITY SPECIALTY SEMINAR 2014 JANUARY 10, 2014 Jorge Beim JWB Consulting LLC Pile Dynamics, Inc. Main Topics Brief description of the Dynamic Load Test

More information

PILE TESTING SPECIFICATION

PILE TESTING SPECIFICATION PILE TESTING SPECIFICATION 1.0 GENERAL This specification deals with the testing of a pile by the application of an axial load or force. It covers vertical and raking piles tested in compression (i.e.

More information

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

More information

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Nordic Steel Construction Conference 212 Hotel Bristol, Oslo, Norway 5-7 September 212 ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Marouene Limam a, Christine Heistermann a and

More information

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 392 397, Article ID: IJCIET_07_03_040 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

DESIGNING STRUCTURES IN EXPANSIVE CLAY

DESIGNING STRUCTURES IN EXPANSIVE CLAY DESIGNING STRUCTURES IN EXPANSIVE CLAY A GUIDE FOR A RCHITECTS AND E NGINEERS Table of Contents 1. Introduction Page 1 2. Common Foundation Systems Page 2 3. Drilled Piers Page 3 a. Skin Friction Piers

More information

Behaviour of buildings due to tunnel induced subsidence

Behaviour of buildings due to tunnel induced subsidence Behaviour of buildings due to tunnel induced subsidence A thesis submitted to the University of London for the degree of Doctor of Philosophy and for the Diploma of the Imperial College of Science, Technology

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information