# EXPLICIT UPPER BOUNDS FOR THE SOLUTIONS OF SOME DIOPHANTINE EQUATIONS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Annales Academire Scientiarum Fennicre Series A. I. Mathematica Volumen 5, 1980, 3-12 EXPLICIT UPPER BOUNDS FOR THE SOLUTIONS OF SOME DIOPHANTINE EQUATIONS r. cyöny 1. fntroduction Let L be an algebraic number field of degree />1 with a ring of integers Zr. Let F(x):r'(xr,...,x^)qZ"lxr,...,x^f be a decomposable form of degree n >3 in m>2 variables. We may suppose without loss of generality that the coefficient of xi is not zero (see e.g. 12) and [ 1]). Suppose that in the factorization F(x) : aolr(x)...l,(x), o + ao(zt, of F the system I of the linear forms Li(x):x1lazix2*...*d-ix*, j:1,...,n, is connected (i.e. for any distinct i, 7 with l=i, j=n there is a sequence Z,: Lir,..., Lr":Li in I such that for eachu with I <u<u-l Lr_, Lr.t, have a linear combination with non-zero algebraic coefficients which belongsto 9; cf. [3] or [1]) and that there is no llx(l for which I7(x):0, j:1,...,nd. Let fi,frr,..., z" be fixed non-zero algebraic integers in Z and let dbe a positive integer. Assume that nr,..., fis are not units. In [l] we obtained as a consequence of our main result that the diophantine equation (1) l7(r) - ni,...tli;" has only finitely many solutiorcin x(zi, z1t...t2"(z with Nrta((*r,...,x-))=d and 2r,...,2"=-O and that all these solutions can be effectively determined. In the proof of our theorem in [11] there occurred various constants which were said to be effectively computable, but which in fact were not explicitly calculated. The purpose of the present paper is to derive appropriate values for these constants, and thereby to obtain an explicit upper bound for the sizes of the solutions of (1). Our main result generalizes a recent theorem of Kotov and SprindZuk [7] concerning the Thue-Mahler equation. Further, it generalizes some results of Györy 16l, U\, Györy and Papp [3], U4l, [15] and Trelina [25] concerning norm form, discriminant form and index form equations, respectively. 1) If in particular ftt:z, then wise nonproportional linear forms in every binary form F Zrlxry\ which has at least three pairits factorization satisfies these conditions.

2 K. Gvönv 2. Results Let L, F(x):F(x1,...,x^),,frr,...,2" and d be deflned as above. Denote by G the splitting fleld of.f(x) over L and let [G: Qf:g, lg:l]:f. Let Rn and ho (resp. J?, and h) be the regulator and the class number of G (resp. of L). Let r denote the number of fundamental units in G. Put lnlrc(il =b arrdz) laoutjl<a (with arr:l for 7:1,...,n). Suppose, for convenience, that in (l) (nt):p!', pr,..., p" being distinct prime ideals in I with norms N(p,):p{', i:1,...,s. Here pr,...,p" denote rational primes not exceeding P. With the above notations we have the following Theo rem l. Let L, F (xr,..., x^),, frr,..., n" and d be as aboue. Then for euery solution of the equation (l) in xl,..., x- Zr, ZL,..., z"(z with Nrlg((xt,..., x-))=d, ZL,..., z">0 there exists a unit e in L such tltqt (2) wher e max ttr; )..., lu,*å, (p{' p{"'")orltn\ = drlt T, T - exp {nz ChaRf p0 (log P)u Äo log' (Rä hå(ro*holog P)'r +z. (Ac+s/,c log P *n log A*logb)), C: (25(r+sff 3)g)zz'+ra"f +28rr+42, Äå: mu* (Re, e) and Äi: max (Rr., e). Suppose rl&x1<;=5 l",l=9(=e). From Theorem 1 we can easily deduce the following theorem. Theorem 2. Let L, F(xr,..., x^), 0, frr,..., n" and d be defined as aboue. Then all solutions of the equation (l) in xt,..., x*(za, Zt,..., z"(z with N((rr,..., x^))=d, zt,..., z">0 satisfy (3) max {itt,...,ix*i} = r1l,tn(d,ttrf(*bse*'), p{,,r... p{,, " = (dl t t T)tn th L. Theorem 2 can be regarded as a p-adic analogue of our Theorem I in [13]. Our theorems have several consequences. In this paper we restrict ourselves to some applications concerning diophantine equations. Further applications will be given in a separate paper. We shall state the consequences of Theorem 2 only, but from Theorem 1 one can deduce similar corollaries. Let L,,nr,..., z" and d be as above and let f(x,y) Zrlx,y] be a binary form of degree n>3. There is an extensive literature on the Thue-Mahler equation (4) f (x, y) : frni'...rtx" 2) Wl denotes the maximum absolute value of the conjugates of an algebraic number 7.

3 Explicit upper bounds for the solutions of some diophantine equations and its applications; we refer the reader to the papers of Coates [3], [4], [5], SprindZuk 1221,123), [24], Kotov [6] and Kotov and SprindZuk [7] and thence to the literature mentioned there. The best known upper bounds for the solutions of (4) are due to Kotov and SprindZuk [7]. Their bounds are especially good in terms of s. However, in [7] it is assumed that n>5 and the constants corresponding to our constant C are not explicitly calculated in terms of I and n. Corollary l. Let f(x,y)(zr.[x,y1 be a binary form of degree n>3 with spliltingfield G ouer L. Suppose that f(1,0)zo and that f(x,l) has at least three distinct zeros. Then all solutions of the equation (4) in x,y Zr, 2t,...,2"(Z with N((x,y))=d, Zt,...,2">O satisfy u*'), (s) max {Fl, lrl} = Wl'tn (drtt r*)'(å ''* where s) p{r,r... p{"zs s (dtfi T*)rntor,.T1 * _ t - exp {n2 ChrRffl (1og P)u Äo logt (Aä ho) - with the C defined aboue.. (Ro * h*log P)'r +2(Ao * sholog P + nlog QW)+ log b)) In terms of Ro, hnar,.d P our upper boundin (5) is better than that of Kotov and SprindZuk [17]. Let K be an exten.sion of degree n>3 of L and let G be the smallest normal extension of I containing K. Let aon*,r(x1*a2x2*...*a^x^)(zrlxr,..., x*] be a norm form in m>2 variables such that K:Llaz,...,d-), ll(ar):l):nr>3, i:2,.,,,m, all,d" nr...n*:n. Consider the norm form equation (6) ao lt{xtr(x, -f dzxz+... t c*x*) - n1'... Tt?" with the, nr,..., z" introduced above. Put max (lanl, laoarl,...,lana^l)<a. When s:0, that is, when no rq)..., ns are specified, Papp and I [13], [5] obtained explicit bounds for the sizes of the solutions of (6). Those bounds depend on A, B and certain parameters of Z and K. As a consequence of Theorem 2 we obtain the following p-adic generalization of these results. Corollary 2. Under the aboue assumptions all solutions of the equation (6) in xt,..., x^qzy., Zt,..., z"(z with N((rr,..., x*))=d, zl,..., z"=0 satisfy (3). Our bound established here depends on G instead of K. In the case L:Q. our Corollary 2 makes effective, for a wide class of norm forms, a recent theorem of Schlickewei l2ll on norm form equations. t) As usual, lfl denotes the maximum absolute value of the conjugates of the coefficients of the polynomial I

4 K. Gvönv Let L, K,G,0,frt,...,fr" be as above. Let dt,...,d* be m>2 algebraic integers in K such that K:L(a12..., a.). Suppose that l, dt,...,d,m are linearly independent oyer L and that rräx1<;<a lorl=,q. Generalizing my results obtained in the case L:Q., s:0 ([6], [7]), in [14] Papp and I established upper bounds for the solutions of the discriminant form equation (7) Discr" tl(arxr*...+ c*x*) - ni'...7t2s" Corollary 3. Under the aboue assumptions all solutions of the equation (7) in xt,...,x-(zr, 21,...,2"(Z with N((xr,...,x^))=d, 2t,...,2">0 satisfy (3) with n replaced by n'. It is difficult to compare the estimates of our Corollaries 3 and 4 with those obtained in [1a] because the bounds derived in [14] depend on certain parameters of Z and K, but not on G. Further, in [1a] the constants corresponding the C defined above are not explicitly given a) in terms of / and n. Corollaries 3 and 4 give better bounds in å than those obtained in [4]. Since in [4] we derived our estimates in a more direct way (from my results [8], [9] concerning algebraic integers of given discriminant), the estimates of [14] are much better in terms of l. Let again L,K,G,,frr,..., z, be defined as above. Consider an of the field extension KIL (i.e. a subring of Z* containing Z, that has the full dimension n as a Zr-module) and suppose that 0 has a relative integral basis of the form l, dt,..., o(r-1 over I. (Such an integral basis exists for a number of orders of KIL; see e.g. [J, U8] and [14]). It is easy to see (cf. [lad that Discr*r"(arx1*... * a,-1jr,-r) : [Ind"7, («rx. *...1cl,n-rxn-) 'D*ru(, dr,...,dn-t), where the decomposable form lnd*,1(arx1i...lan-.-xn-r)(zrlxr,..., xn-tf is called the index form of the basis 1,d',..., a,-, of 0 over I. Denote by D*,r(O) the principal ideal generatedby D*,r(1, dl,..., o,-r) and suppose maxr=,=n-, la,.l = =1. Consider the index form equation (8) Ind*,,(ot xr+... * dn-txn-j - frni'... rtzs" In the case L:Q, s:0 the author [6], [7] obtained an effectively computable bound for the solutions x.-,...,x,-, of (8). Later Trelina [25] generalized this result of the author to arbitrary s>1. Independently of Trelina, Papp and I [4] established an upper bound for the solutions x.,...,x^(zl, Z!,...,2">0 in the general case when s> 1 and I is an arbitrary but flxed number field. In [25] and [4] the constants corresponding to our constant C are effectively computable but are not explicitly calculated in terms of I and n. 4' In the special case s-0 our constants in [14] and [13] are explicitly computed.

5 Explicit upper bounds for the solutions of some diophantine equations Corollary 4. All solutions of the equation (8) in xr,..., x,-1 Zy, zr,..., z"(z with N((xt,..., x,-r))=d, z!,..., z"=0 satisfy (e) max {EJ,..., lr,lj} = ld*tr(1, ar,..., c,_) pz1ttn(flttt7**1,(;;bge*'), where p{rrr...p{, Zs s (dttr T**1rrtrrr, T** : exp {n6 ChaRlP, (log P)5 Än log3 (Å[ /rn).. (Rc + /,c log P)"/ + 2 (Ä e * sh olog P -t- nb log A *log (b, N (D K t v,ith the C defined aboue. In the special case L:Q (9) is better in terms of b, P and s than the bound obtained by Trelina [25]. On the other hand, her bound is better in Athan (9) (because she followed a similar argument to that applied earlier in [6]; see also [14]). In [25] the bound depends on the maximal prime factor and the number of distinct prime factors of D*,n(O), but not on D*,n(0). We could easily get a similar result forthe equation (8) by taking the prime ideal factorization of D*,r(l,dt,...,dn-r) in Q6) and applying our Corollary 3. It is evident that our Corollaries 3 and 4 have applications to algebraic integers with given discriminant and given index, respectively. However, in case of algebraic numbers the more direct deductions used in [8] and [9] yield better estimates. 3. Proofs To prove our theorems we need some lemmas. We keep the notations of Section2. We suppose that there are rrreal and2r, complex conjugate fields to G and that they are chosen in the usual manner: if 0 is in G then 0(') is real for l<i<r, and 0(i+rr-0iT fo. rr*l<i<rr*12. Lemma l. Let a be a non-zero element in G with llforp(a)l :M and let o be a positiue integer. There exists a unit e in G such that (10) llog lm -tto (ue')(il ll = +Åo, i : I,..., s, where cl:(6rg2llogg)' or cl:l according as r>l or r:0. Proof. This is Lemma 3 in [0]. Let \$r,..., S, be distinct prime ideals in G lying above rational primes not exceeding P, and let pr,..., p, ba algebraic integers in G such that (1u,):\$1", i:,...,t. Let fri:x,1t!,;...1t!'i, where Q+x,eZ" with lno,n(x)l=n, and let utj,...,urt be non-negative rational integers, j:1,2,3. Suppose lr, Ar, ),, are non-zero algebraic integers in G satisfying maxj W-l=n.

6 K. Gvönv Lemma 2. If (11) LPt+ )'z1z+ lsfr, : 0 then (r2) fr.: oöi, where o:4ltir...ti, with some unit q(g and non-negatiue rational integers at,..., at and ör Zn such that (13) rgfåläl = exp{ctpn(logp)3änlog3(ä[/ro)(rc+hclogp)'+2. where c[ : (25 (r I t * 3) g)zot. (Rc + thclog Pt log (H N)\, +Lst + ztt Proof. This is a special case of our Lemma 6 in [12]. The proof of this lemma is based on some explicit estimates of van der Poorten [19] and van der Poorten and Loxton [20]. Proof of Theorem 1. We follow the proof of our theorem established in [11]. It will be assumed that the reader is familiar with the contents of [11], and only a minimal amount of the discussion of that paper will be repeated here. Writing ai,:asaii, we have air Zo for each i and j. We shall prove our theorem for the equation (14).f(x) : a[-lf(x) : il 4e) : a\-r frni,...n""", J:L where Zj(x) : ai, x1*... I al^ix^. Let xr,..., x*1 21,..., Z" be any solution of (1a) with xt,..., x^cz1-, N((xr,...,x-))=d ar.d 2r,...,2">0. Put (15) fri : aiixll...-la!^ix^, j : l,...,n. Let pr,..., \$, be all distinct prime ideals in G lying above p.,..., p". From (14) we get (16) 1Br;:!I;Sr"r...!F,''r, i:1,...,/t, where the 2f, are integral ideals in G such and the (Jo, are non-negative rational integers. The definitions and notations given in [1 1] remain unchanged, except that we now have k):ql1\$i,r...fi,r, (17) lncrcu)l= Ab-r)sbrptshc and, by Lemma 1, (18) lpol =,tpo", lxil = c{l-rbrts Pthc for k:1,..., t and i:1,...,n, where cf :exp {(cirl2)ro}. L Il] we may choose cs:2az and we may apply Lemma 2 to (17) of [11]. Then we get (19) fio: o6r, o : esplr...lt?',

7 Explicit upper bounds for the solutions of some diophantine equations 9 where e, is a unit in G, ar,...,ar(z with ao>o and ör Zo with (20) DJ = "rp {2gc[Ps (log P)sRn logs (Ä[h.)( RG+hctogp),+2. '(Rc+thclog P*nlog A*logb)\ : Tr, q : l, 2, 3, in place of (27) of [1]. Continuing the argument of [11], a suitable choice for cru is nglho log 2. Further, in view of the above estimates (18), (20) and of (32) of [11] we obtain (34) of [lt], that is, (2r) Fl = ti -ii./'t le,thl< exp {c,, s log p tog Tr\ : r, k:r with crr:clrnf7re. In place of (35) of Il] we get now from (14) (22) (a6-,dpi,...p3': (f,...,) :((Spf... pl,)"q...r,\, where uo:zoår. Formula (21) implies ord* (tr,1) = ngtogr, for each prime ideal of G lying above po. Similarly, orde (afi-18) = (n-l)glog A-tf loeb. The argument of [11] applies if we replace in (36) and (37) of [l t] min (u o e o - ord* ([I ] =rt i), r:oeo) by -i, ( [oo eu * ord.p (aff - I g) - ord.(,i!,r,), uo, r). Then we have (38) and (39) of [1] with crn:lrng and cn6:2crr. Let now p!'n,... prrr"-(zrfr...n!"):(x), where xezr, and choose ( as in [11]. Then (39) of [ll] implies that a suitable value for c.ois cnofg:)ftrfgro. Lemma I together with (3a) and (41) of [11] imply that an appropriate choice for cn is 2ncn Rflg, and it follows immediately that suitable values for cn, and crn occurring in (a3) and (45) of [ll] are given by (312)cn2 and 2cn, respectively. To estimate lvl and lfl *" can use Had"amard's inequality. Since m<nf, itis easily seen that appropriate choices for cnu and cnu are (nf){lza"f and (nf)flzanf-l, respectively. Consequently, crz c&rr be taken as (cnu)elf d:(nf)elz1,o4. In view of Lemma I cn, can obviously be taken as (cn)ttt exp {(cirl2)rr\ - (nf)nt"a'stt dttt exp {(c{rl2)r"y. Finally, in (52) of [1] a suitable choice for conis cnrcuuc\;l, which is less than (nf)zno 1z'o 4tr' { tt t n,}. "*p 'l z ttll'

8 10 K. Gvönv So, by (52) of [1] we have (23) -r4ax ffi= c\$ts: c4eexp {SnfghaRfslogPlogfr} L=i=n : cns exp {8rci (fgn)z hrå}s2 (log P)z log Tr\ : dttt exp {l6r(sfn)zgz clc[hrrlp, (log P)5,Ro log3 (ÅUro)..(Rc+hclog P;"r+z (Åc+shc log P*nlog A+logb)). Since 16r(.f)2gBclc[=(25(r+y'+3)g)22r+7s r+2rsf+4', bound for maxl=;=, ffi. Finally, it follows from (44), (45) and (50) of [1i] that (23)providesthe desired upper (p{' "'... p{"')r h, = N I o ni'... nz')l : I N o rc(fr,... fr )l : lnorcqt)l':n"rc(*,... (,)l ci{t{g, = and this completes the proof of Theorem 1. Proof of Theorem2. Let x,,...,x-, z!,...,2" be an arbitrary but fixed solution of (1) with the given properties. By Theorem I there exists a unit e for which (2) holds. Further, from (1) we get (24) F(exr,..., ex^) : e'ftrl'...n'"'. But it follows from (2) that W=FA.:*t = A'-'l l i Wl', = A'-ll1l(d't'71ff'o'o : rn, i:l where 7 denotes the expression occurring in (2). On the other hand, by (14) we have Thus we obtain from Q4) lafi-le(exr,..., ex*)l = (madrltt1 = (nfadt/tt)' : Tu. Ir1 : -lr-y = Tn.Tl-', = whence (25) lu1 = lplu',(nfit-rat(dutt)#bee+q-l). Finally Q) and (25) imply (3). Proof of Corollary l. In what follows it will again be supposed that the reader is familiar with the proofs of the corollaries occurring in [11]. By assumption there are at least three pairwise nonproportional linear factors in the factorization f (x, y) : ao(x*ury)...(x*a"y). So, in order to apply our Theorem 2 it suffices to give an upper bound for max ([i, 1o r1,...,w,1). But it is known that 1"rq1=1oS+Vi=zn; hence (5) follows from (3). nls.

9 Explicit upper bounds for the solutions of some diophantine equations 11 Proof of Corollary2. The argument of the proof of Corollary4 of [11] shows that the equation (6) satisfies all the conditions of our Theorem 2. This proves the required assertion. Proof of Corollary 3. As is known, there exists d,:o.r*arar*...+a*a^ with ar(zr, lql=nn, i:2,...,m. Let xr:xl, xi:aix;+xl, i:2,...,m. Then (7) gives Discr" p(axi* urx'r a^x'-): ni,...z';. By applying Theorem 2 to this equation our statement follows (cf. [11]). Proof of Corollary 4. Every solution of (8) satisfles (26) Discr*7, (arx1*... I a,-rxo-r) : D*tr(1, d.,..., ao-r) P2nl"'...n!'"' Now Corollary 3 applies and (9) follows immediately. References [l] BEnwrcr, W. E. H.: Integral bases. - Reprinted by Stechert-Hafner Service Agency, New York-London, [2] Bonnvrcn, Z. I., and, I. R. Snnrenrvlcrr: Number theory. - Academic Press, New York-London, [3] Corrns, J.: An effective p-adic analogue of a theorem of Thue. - Acta Arith. 15, 1969, [4] ColrrsrJ.: Aneffectivep-adic analogueof atheoremof Thuell.Thegtreatestprimefactor of a binary form. - Acta Arith. 16, 1970, [5] Colrrs, J.: An effective p-adic analogue of a theorem of Thue III. The diophantine equation y2:x3+k. - Acta Arith. 16, 1970, [6] Gvönv, K.: Sur les polynömes ä coefficients entiers et de discriminant donn6, III. - Publ. Math. Debrecen 23, 1.976, 14l-165. [7] Gvönv,K.: Polynomials with given discriminant. - Colloquia Mathematica Societatis Jånos Bolyai 13, Debrecen, 1974,Topics in number theory, edited by P. Turän, North-Holland Publishing Company, Amsterdam-Oxford-New Y ork, 197 6, [8] Gvönv, K.: On polynomials with integer coefficients and given discriminant, IV. - Publ. Math. Debrecen 25, 1978, , [9] Gvönv, K.: On polynomials with integer coefficients and given discriminant, V. p-adic generalizations. - Acta Math. Acad. Sci. Hungar. 32,7978, [0] Gvönv, K.: On the solutions of linear diophantine equations in algebraic integers of bounded norm. - Ann. Univ. Sci. Budapest. Eötvös Sect. Math. (to appear). [11] Gvönv, K.: On the geatest prime factors of decomposable forms at integer points. - Ann. Acad. Sci. Fenn. Ser. AI4, , [12] Gvönv, K.: On the number of solutions of linear equations in units of an algebraic number field. - Comment. Math. Helv. 54, 1979, [13] Gvönv, K., and Z. Z, Pltpp: Effective estimates for the integer solutions of norm form and discriminant form equations. - Publ. Math. Debrecen 25, 1978, [4] GvönvrK.,and Z.Z.Prpp: On discriminant form and index form equations. - Studia Sci. Math. Hungar. (to appear). [15] Gvönv, K., and Z. Z,Pepp: Norm form equations and explicit lower bounds for linear forms with algebraic coefficients. - To appear.

### APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and

### On the greatest and least prime factors of n! + 1, II

Publ. Math. Debrecen Manuscript May 7, 004 On the greatest and least prime factors of n! + 1, II By C.L. Stewart In memory of Béla Brindza Abstract. Let ε be a positive real number. We prove that 145 1

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca

### FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Solving a family of quartic Thue inequalities using continued fractions

Solving a family of quartic Thue inequalities using continued fractions Andrej Dujella, Bernadin Ibrahimpašić and Borka Jadrijević Abstract In this paper we find all primitive solutions of the Thue inequality

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### Monogenic Fields and Power Bases Michael Decker 12/07/07

Monogenic Fields and Power Bases Michael Decker 12/07/07 1 Introduction Let K be a number field of degree k and O K its ring of integers Then considering O K as a Z-module, the nicest possible case is

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### On the largest prime factor of the Mersenne numbers

On the largest prime factor of the Mersenne numbers Kevin Ford Department of Mathematics The University of Illinois at Urbana-Champaign Urbana Champaign, IL 61801, USA ford@math.uiuc.edu Florian Luca Instituto

### The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### 3.7 Complex Zeros; Fundamental Theorem of Algebra

SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,

### On the number-theoretic functions ν(n) and Ω(n)

ACTA ARITHMETICA LXXVIII.1 (1996) On the number-theoretic functions ν(n) and Ω(n) by Jiahai Kan (Nanjing) 1. Introduction. Let d(n) denote the divisor function, ν(n) the number of distinct prime factors,

### Primitive Prime Divisors of First-Order Polynomial Recurrence Sequences

Primitive Prime Divisors of First-Order Polynomial Recurrence Sequences Brian Rice brice@hmc.edu July 19, 2006 Abstract The question of which terms of a recurrence sequence fail to have primitive prime

### SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### On the Union of Arithmetic Progressions

On the Union of Arithmetic Progressions Shoni Gilboa Rom Pinchasi August, 04 Abstract We show that for any integer n and real ɛ > 0, the union of n arithmetic progressions with pairwise distinct differences,

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### A note on infinite systems of linear inequalities in Rn

Carnegie Mellon University Research Showcase @ CMU Department of Mathematical Sciences Mellon College of Science 1973 A note on infinite systems of linear inequalities in Rn Charles E. Blair Carnegie Mellon

### Lecture Notes on Polynomials

Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

### Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

### 11 Ideals. 11.1 Revisiting Z

11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### Cyclotomic Extensions

Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

### Factoring of Prime Ideals in Extensions

Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

### An example of a computable

An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### A simple criterion on degree sequences of graphs

Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

### On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

### A generalized allocation scheme

Annales Mathematicae et Informaticae 39 (202) pp. 57 70 Proceedings of the Conference on Stochastic Models and their Applications Faculty of Informatics, University of Debrecen, Debrecen, Hungary, August

### FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

### The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

### Prime power degree representations of the symmetric and alternating groups

Prime power degree representations of the symmetric and alternating groups Antal Balog, Christine Bessenrodt, Jørn B. Olsson, Ken Ono Appearing in the Journal of the London Mathematical Society 1 Introduction

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### A DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE GENERALIZED FIBONACCI NUMBERS

A DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE GENERALIZED FIBONACCI NUMBERS ANA PAULA CHAVES AND DIEGO MARQUES Abstract. Let F n) n 0 be the Fibonacci sequence given by F m+ =

### ON THE COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL

ON THE COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL PAUL ERDÖS The cyclotomic polynomial F n (x) is defined as the polynomial whose roots are the primitive nth roots of unity. It is well known that Fn(x)

### Counting Primes whose Sum of Digits is Prime

2 3 47 6 23 Journal of Integer Sequences, Vol. 5 (202), Article 2.2.2 Counting Primes whose Sum of Digits is Prime Glyn Harman Department of Mathematics Royal Holloway, University of London Egham Surrey

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Groups, Rings, and Fields. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, S S = {(x, y) x, y S}.

Groups, Rings, and Fields I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ : S S S. A binary

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### Strongly Principal Ideals of Rings with Involution

International Journal of Algebra, Vol. 2, 2008, no. 14, 685-700 Strongly Principal Ideals of Rings with Involution Usama A. Aburawash and Wafaa M. Fakieh Department of Mathematics, Faculty of Science Alexandria

### OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith

### MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### On the Sign of the Difference ir( x) li( x)

mathematics of computation volume 48. number 177 january 1987. pages 323-328 On the Sign of the Difference ir( x) li( x) By Herman J. J. te Riele Dedicated to Daniel Shanks on the occasion of his 10 th

### On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression

On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression Carrie E. Finch and N. Saradha Abstract We prove the irreducibility of ceratin polynomials

### AMBIGUOUS CLASSES IN QUADRATIC FIELDS

MATHEMATICS OF COMPUTATION VOLUME, NUMBER 0 JULY 99, PAGES -0 AMBIGUOUS CLASSES IN QUADRATIC FIELDS R. A. MOLLIN Dedicated to the memory ofd. H. Lehmer Abstract. We provide sufficient conditions for the

### LEARNING OBJECTIVES FOR THIS CHAPTER

CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

### ARTICLE IN PRESS Nonlinear Analysis ( )

Nonlinear Analysis ) Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A question concerning a polynomial inequality and an answer M.A. Qazi a,,

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Further linear algebra. Chapter I. Integers.

Further linear algebra. Chapter I. Integers. Andrei Yafaev Number theory is the theory of Z = {0, ±1, ±2,...}. 1 Euclid s algorithm, Bézout s identity and the greatest common divisor. We say that a Z divides

### F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

### On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### ON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]]

#A47 INTEGERS 4 (204) ON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]] Daniel Birmaer Department of Mathematics, Nazareth College, Rochester, New Yor abirma6@naz.edu Juan B. Gil Penn State Altoona,

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### 26 Ideals and Quotient Rings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

### 61. REARRANGEMENTS 119

61. REARRANGEMENTS 119 61. Rearrangements Here the difference between conditionally and absolutely convergent series is further refined through the concept of rearrangement. Definition 15. (Rearrangement)

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

### Absolute Factoring of Non-holonomic Ideals in the Plane

Absolute Factoring of Non-holonomic Ideals in the Plane D. Grigoriev CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d Ascq, France, e-mail: dmitry.grigoryev@math.univ-lille1.fr, website: http://logic.pdmi.ras.ru/

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME Alexey Chuprunov Kazan State University, Russia István Fazekas University of Debrecen, Hungary 2012 Kolchin s generalized allocation scheme A law of

### A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

### Limit theorems for the longest run

Annales Mathematicae et Informaticae 36 (009) pp. 33 4 http://ami.ektf.hu Limit theorems for the longest run József Túri University of Miskolc, Department of Descriptive Geometry Submitted June 009; Accepted

### PART I. THE REAL NUMBERS

PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS

### Concentration of points on two and three dimensional modular hyperbolas and applications

Concentration of points on two and three dimensional modular hyperbolas and applications J. Cilleruelo Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas Universidad

### 2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

### Lecture 3. Mathematical Induction

Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Two classes of ternary codes and their weight distributions

Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight

### CONTINUED FRACTIONS AND RSA WITH SMALL SECRET EXPONENT

CONTINUED FRACTIONS AND RSA WITH SMALL SECRET EXPONENT ANDREJ DUJELLA Abstract Extending the classical Legendre s result, we describe all solutions of the inequality α a/b < c/b in terms of convergents

### Powers of Two in Generalized Fibonacci Sequences

Revista Colombiana de Matemáticas Volumen 462012)1, páginas 67-79 Powers of Two in Generalized Fibonacci Sequences Potencias de dos en sucesiones generalizadas de Fibonacci Jhon J. Bravo 1,a,B, Florian

### Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

### CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

### s-convexity, model sets and their relation

s-convexity, model sets and their relation Zuzana Masáková Jiří Patera Edita Pelantová CRM-2639 November 1999 Department of Mathematics, Faculty of Nuclear Science and Physical Engineering, Czech Technical

### BX in ( u, v) basis in two ways. On the one hand, AN = u+

1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

### Subsets of Euclidean domains possessing a unique division algorithm

Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

### Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

### 4)(x) du(x) = n-' E?(zi(x)) du(x),

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 98, Number 1, September 1986 ORTHOGONALITY AND THE HAUSDORFF DIMENSION OF THE MAXIMAL MEASURE ARTUR OSCAR LOPES ABSTRACT. In this paper the orthogonality