REVISTA MEXICANA DE FíSICA 47 (6) problem in l1ewcoordinates, bidimensional case

Size: px
Start display at page:

Download "REVISTA MEXICANA DE FíSICA 47 (6) 525-531. problem in l1ewcoordinates, bidimensional case"

Transcription

1 INVESTlGACIÓN REVISTA MEXICANA DE FíSICA 47 6) DICIEMBRE 2001 The Sun-Earth-Moon problem in l1ewcoordinates, bidimensional case A. Escalona Bucndía l and E. Piña Garza:.! Departamelllo de FÚ'ica, Uniwrsidad Autónoma AlctHJw!itana./z.tapa!apa Apartado postal 55534, Mh-ico, [)..~,MOLleo e-ii/j i1: Recibido e16 de marzo de 200J: ilceplado el 14 de ag.o",lodc 2001 \Ve pre:-.elll a lin approach 10 the study of the bidimensional ea:-.e for the Slln-E<H"lh.~loon problem using!lew eoordinatcs intnxluccd by Pilla ano J;lIléncz-i.ara. By adding the hypothesis that the Eartb-Moon sy:-.tellldescribe", a circular orhit amulld the Sun, we can eliminare 1m: 01' lhe coordinalcs. rhus rhe system is redlleeo into a problem wilh IWOdegree!'>of freedom Kl'Yll'Imis: Three bojy problem; mooll theory; celestial mechanics Pn:SClll:llllíl:-'una primera aproximación al estujio del caso bidimcnsional del pruhlema Sol-Tierra-Luna ulilizando las nuevas coordenadas pre:-.ellladas por Piña y Jiméncz Lara, Al agregar la hipótesis de que el sislema Ticrra-Luna ue:-.cihe una órhita circular alrededor del Sol, polkltloseliminar una de las coordenadas, de esta mancra el sistema qucda reducido a UIl prohlema Je dos grados de libertad. /)e,w.,-ili)f"'s: Problema de tres cuerpos; teoría lunar. lllcdnica celesle!'acs: 40.01l.-j: h: %20.-n 1.!ntroduction I.el IJ' I/I,:.!,In: l he the mas ses of Sun, Earth and!\1001l and JI. 1. and,. be the distances Earth-Moon, SUll-Moon, and SlIn-Earth. respectivcly, The new set uf coardinates is delined in ; noll-incrtial rcference syslem, parallcl to the directions of Ihe principal nenia axes of the triangle described by lhe three bodies. \Vith the origin at lhe barycenler [1,2). The lransfonnalioll of this frame inlo :'1 inertial system is made by" rolalion matrix. r = GS i i = 1,2,3), Becallse the problcm is restricted lo the bidimensional case, we need jllsl lllle ElIler angle so :"'/) - sin';; 0) G = Si' ;") CO;~1/1 ~. 1) This coordinate 4} \ViIIenable lis to sludy the motion of Ihe hree parlicles as a whole body sec Fig. 1). In Ihe rotaling frame, the conditioll that lhe orie:in is at lile baryccnter can be \\.Titten ~ L:.mj~i= O. 2) Tlle panicular selection of the reference systeill makcs Ihe inerlia Illtltrix lo be diagonal, this can be wrilten in the fol~ lowin,g equilliolls: 3) Ikc:lu... e tllree particles conform ti plane, just lwo 01'the lilolllcnts of inenia are independent: [:~ = l[ + ["l' Pii1a :lild Jiménel-Lara define t\vocoordinates with dimensions of k'ngth Jl l, n:.! relatcd ta these lllalllents of inertia [2] 4) o) J, = d ;, 6) FIjURE where l. L' Ang.h:. S,I" In this way, Eq. 2) becomes /f/'1/1'2"),:~ 1 [ + 1,'2 + 'ln J ' = '';l;f'''''2.,:.'j:~j')' S,~ '';1'.';"21/' '';:')' In. Sr = 1 S IJ = O. where III = In l' li/:.!, //1.:\). And Eqs. 3 )-5) become./ S,.MS" = O. S MST J ',/1'1 = [= I/,Ri, 8) Therc is anothcr coordinatc. an angle a, related to {he conflguratioll of lile syslcm. Thcre is not a simple geometrical interprclalían for this coordinate; the definition is given in Eqs. 1CJ) :lnd 20), and we \ViIIlIlake a redefinition i; Sec, 4. Equations 2)-5) can be sllllllllarized d~fining t\vo veclors 9) 10) 1 1) 12) 13) S MS T','o,l. = 1'1 = phi, 14 )

2 THE SUN-EARHI.MOON PROBLEM IN NEW COORDINATES, BIDI \lensional CASE \\'here '/1, M= O Lel a ami h bc'two vectors. in a spac~ of mi.lsscs. orthogollal to JII ami orthogonal to each oth~r Ihe last condilion is arhitrary hltt simplitics the calculalions). a. 1 = h. JlI 1) f/i'2 J J) J. 1I1;l = él h = J, 15 ) Sinl"L ooth Sr and S!I are orthogonal to lll, lhey musl be linear colllhinalions of a and b, Assuming wherc matrix II depends on lhe masses of the paj1icles 0- Iy.,c. 2. EIllIali)lIs )f JII)li)lI.,., nl"' /j.,., I/I.-:'l~.,,1 The lagrangian of lhe systclli is given by [3] -filial!ji) -fii:!fl.,l!j.2. 22) -I: l rt. I!J: l a~iar = 1 ', 16) 23) hmh T = Il. al\ih T = J. 17) where w is thc angular velm:ity. I is the malrix of inertia, and 18) Piil<l and Jilll ncz-lara define a sllch that [2] S, = af:!cosa + hu:!silla, S'I = -ar t silla + hui cosa, Inlhis way, Eqs. )- 14) are satislicd. Si tlct' 1" = Is, - s:l'.,i' = Is" - s,i'. r' = Is, - s,i'. /") ni si"',, + I!j cos'" ) /I.!. = 13 Ri 'os:! rt + nj sill:! rt, rol 2Rj-Ui)sillrTCOSa 19) 20) lile rebtion tor lile new coordinates and the distances IJ,. ;lild 1" L';1llht: \vritlen as 21 ) RestriclL'd lo Ihe bidillll'j1sional case w by E'Is. 12)- 14). 19) ""d 20) we gel L = ~[ili + ii; + Jli + ;),,' + J,') - 'ir, n,,,j,j- F. 24) Thc corrcsponding canonicall1lol1lents are /''2 = I,R'2' So \\-'c gcl thl' hal1liltonian 'ff = I,f?"f t trj);,- - '21/[1nl~';I. 25) 26) 27) 28) H = -1 [ Pi " + 1', + 2/,. 29) AmI Ihe t'quatiolls ni -= N., -=,. of l1lolioll 1', t' ):! /', JI')l' "1' n n RI + ~ v + - l ll',:!fj] 1'1Ii - un'.10). ).12) 1', JI' Da ' -/1, /)-") + p~ :W,.._-- + lii l' " "1" n').l I I - ll~ a, :,>Ri + R~ +')--=.fj 1) - - /' " "Ui - un.l 35) 36).'3) /', = l, ByEq.21) _->!!.J.. ) J' - ", /' :lrj + F!f Ui - nj)' JI' ijr'2 37) ijl' 0.\ ui sill'" + 1,', <'OS'" ) n.,.., ~.,,. u-.-',u:; :-illl- 1 + Ni l'os- f, ').\ " '2 /{0. - H ) SlIl J "os a.18) Rn'. "'-In. 1-'1.\. -l7 6) 200l) 525-5~1

3 A. ESCALONA ljuenoia ANO E. P :':A I"I{Zt\ 527 wlll'n: X can be any ol' r, ni' or n:!. p~.'., is a constant ol' 1tion. in ract it is the anglll:ir lllolllcntulll of the syslem. 3. SUII-Earth.MoolI case \Ve lieed an explicit form 1'01'a and h in order to calculate th\? lllalrix B. Since f\la is onhogonal lo h it must he a lineal l"\lihinatloll of a and 1 Ma = ; :<l+ Jllll. FIGUJ{E") Sllll-Earth.fvlo0 syslern. Solvjn~ rol"a, orlhogonality wilh 1leads lo which is,1 qlladratic equalion 1'01':r. Vector b obeys the same I:qllation. so, taking the higgcr solutioll, :1:1' for a ami the ",1;i1In,.1'", for h..ti" and.1, can be calculated using Eqs. 16) dllll 17l.1I:spcctively. :nr Ihe SlIn.Earth-,\loon case If/ I» 1H:.!, the matrix U can h\.' appra:\imated by I/I~.: 1It~) +--'- 1IJ:.! -.1' f/l.:f - ~r =. In Ihis fonn, Piña ami Jiméllcz-Lara gd the fojlowing rcslllts. :2}: f2 f2 Il/.:.! ':1 B = f21 :1 f2 III:.! -1,,) 1 I kes its lllaxillllllll allt!minilllum vallles at full t\"iooil,lild ne\\' l\1001l respeclively, oscillating aroul1d ;: constanl valllc +0_1 ). TII I h) J' lakes this valllc at tlrst ami last quarter wherc, /:::/'» JI, thus This allows to Illtlkc an estimation: J:! > :J550R 1. lile tri;lll~1e conformed by ti1\.' thrcc bodies is very nar- 1'0\.. '. and ] ys 0the.r axis in the rotating frame, with the Sun ar Ihe.1: > ti.. ide and the Earth-l\loon couple at the oppositc side see Hg. 2). 4. Redefillill~ a "2..., III:.! + 1fI:~ :.! /' = ----R,. J'I/.:.!III,:~ J::: 1" ,.,..., Jrn 2 l:j :! = ----R.). In'l + t 3 - Considering tllat the vallle 01' 1 has small oscillations aroul1d!ti \Ve redefine.12) This 17 1 \';lriahle describes slllal] oscillations arallnd zera, r!lcn \Ve \.'an rewrite El]. 21) as so \ve gel Ihe disl;lnces in terms 01' 17l' Detlning 1" = ;''101 { " -' = G.:.12SGo. ItI:.!, IS- 1" e ::: S1Il 2 al) 2 SIn a n US 1"., ",1- J'1l., "os- 1" n' = Be. lhe transfol'lllalioll llltltrix depends 0J'q only: -.~"'iil 17" 'C)San ) SII 17" C'IS J'",.. ) "os. 1" - SII ) \Hiting it in terj1ls oi" the lliasses 1, 1." - J1II.,III,,) e -= /1:1 1"2 Jm:!1II::. 46) /. 2 1-//1:: :!~ -'2JII/:!TlI:1 1/1."1-/:1 1mder lo recove,- Eqs. 1<))aJHi 20) in tcrms 01' ]l' \'ccfors a alld h are modifted too a' = a "lis 1" + h sin J'", 47) This causes a'. h' i- J. our Ihis condition is not relevanl as long as Eqs. 16)- IH) rcmain satislicd. Hel'. Me.\. Fú. -l7 «l) 2001)

4 5.28 TItE SlJN.EARTlI-MOON PROBLEM IN NEW COOR[>INATES. BIDI.\1ENSIO,"JAL CASE 13'= Thl"n:fore. for Ihe Sun.Eanll-/'vloon case \Ve llave I;wm l!lis POilll '''''e call this malrix. B and we call r7 lo rr l' lhe only dlange in lile hamiltonian ami the equalions 01' 10- ioll is lhe L'.\plicil fol"ln of lhe Illiltrix n. j\'lultiplying Eq. 21) al lhe right side by the inverse matri.\ 13-'= 1H'2+'1,: )'2 JITI'2'I1:l..//1/'21T1: lll'.! + 'I':l JrII'21:~ JIII'.!'Il.;j JIII"].'II:1 II mi +0_1) 49)., III~ J'''"}.III':f ~ r 1//"].+I:1 1//"2 1 :l )/1/"21.: III'.! + 1:1 fl/ ':1 +0 _1_), 50) lit 1 In f rst ami lasl juaner. where a ~ ti and l' ~ rccovt'r tall '2a = )/"2"':1"., --~-V Ift:\ = /li. 1., + 1. '" ',') -,., 1"- = n-, , ~ - Rj q, we 54) 55) Dividing Eq. 53) by lht' ditterellce 01' Eqs. 5 and 52) '.. e gel 56) \Ve can Illa~e the estim<llion: In full 01" new Moon. JI:! = q'.! +,.".2-2jl". f Ul '1.a == :t.tj,ooo,j.jgg. therefore we have JlI'.! - 3 I/I'.!+I/I:~ -1.,. 1.,'J Hís1I1 a+r1.cos-a, 51) 1"1 < 1I.III1I:l. 5. Rcco\'cry 01' a two hody problcl The differencc in three ordel"s of magnitudc between R I <lne! H:! allows I /1; - j)' 10 Illake :-'Olllt:'approximations: 1 [ ' n')] -1 1+'2--i+) --+. /1,, [1, 57),, l/l.) -/1/..\., rr - 1" p- = I'"2 + 1//:\ '.') '2 U} - Rj siu a {'osa. 52) 53) lile lerll\ R1/Uj is )Itl- lo ). so Ihe hamillonian can be ap R)XimaICd by 1 [" 1'; +. 1';,,p"p" _/1,] \"" «8) = - 1',- + P;+ --,--+ ", +._, '2,1 - /} R"}. 1?1 The appro.\imated equations of motion for n 1 and ti) are 1, - :! - f',; + P,~, +h iljl/llll/..)l/i..~ , ,- l/ni,p1p t " ni, [/'1 + 1J/.:~ sill:! a {2;1:: 1 {2;H"!. 1) "os'.! a l/ni H"!. - _. )'/II"}.ll1-: l ' l r' /.".2ti /:\ r l I"].+ IIt:\ {2; "., + _- _ + _ ) In:~ {j"j \ l/i'.!,..1 III'.! + 1/1:: r,.:~ /1/1 + "':1 1 2'" 1),ir,'" 1 1 ) 2 sil!" nls."]. " = ~ 1'. 1 + '2--!!...-' P ). til" P", -, 60) hom Ihe available astronomical dala H,5] \I,.'e hnd that l1t/ P, l < O,lIt) L thus,\'e can ~ISSllIllC thal ; '" I 'l" I. J = --:;:;-. 61) I,[lj \Vilh Ihe S;UIlt: appro.\illlatioll in Eq. 59), whcn 1 =: ) lid ') ~ j,ve ohlain., :' />:, t ' I1 V'''"}..''':I ~.I.,I/I.'I "1.)_ + /,)., IIHJ - r ni )1 1 ' 3 in this,,,:ay. when H'.!» NI lhl" equations for R'1 and l/j can be I"educcd 10 Ihose rol" lw) hody problclll. Therefore, we can expecl that lhe behavior dcscribed for U l alllll/j consisl'i in slllall oscillations.lrolllhi a kcplerian orbie 62)

5 ,\ ESCALONA BUENOíA ANO 1:'.. PIÑA GARZA m,. 529 FH;UKE 4. Surface 01'seclion 1:. lllotion are invariant under the transformation 6. Eliminating ~ Ld H be lhe Jacobi vector, \',:hich points from the barycenter ni"lhe Eanh-t\loon systclll lo lhe Sun {ti] sec f-ig. 3). From lhe fcolllctry of the system, \"C can writc a relation of t!lis \ t:.''lorand vcclors p. q. and r; in lhe inertial refercnce syslcm P = J':'1 - q = 1", - l':!, r~= R - np, Ih}) 64) 1"= 1", -I" = -H.-lip. 1:;) \\'hcre l = 1I1,:!./In:! + m:~), j = 1fI:J1fI.2 + 1It:: ). As,1 consequcncc,.' = R' + 13'1>" + 21Jp. n. Suhstitution in El). 5)) leads ro uf sin:! a + Ri eos"!. J = 1/1"2 + '/:1 n:!.. JlI/ 1 1/l:1 Thl'refore we can wrile R 1 in lerls 01' U. /l aud a: h6) 67) hs) As lhe cccclllricity of Earth's orbit around Ihe Sun is...mal!. abaut J.Oli. in arder 10 make a tirst approximation lo rhe prohh:m. d., " = III,+II JR' -~--~ - JI"') I SlIl a --,-o 1 - JII1!,'H 3 "os a we add the hypothesis fl = 'llistilll!.. 69) Thc 1Il0tiOll 01"the Earth-Moon systcm around the Sun is rcduced 10 a llniforin circular motion, meanwhile the connguralion oftlle lriangle confonned by the three bodies is described by U [ nd J. \Vith this idea, the smne used by Hill [6.7], lhe ~y~telll is reduced inlo a problem wilh Iwo degrees of freedomo Thcl"e are t\\'o inval'iant planes linder this ransformation: R.f'./'" = O) and U, = O.a.f'"). Weusethelatteras.1 surface of scction, callcd ~~ sce Fig. 4). On this surface the hamiltonian is reduced to I, =;- I' -+ 2' t fmm which, \Ve can \\TiIC p:! + p~ n <- ni - f'} + 2 LH - F). 70) >j -+f'; + I'J,). [{j + \, 71 ) 72) By Ihis procedure, giving Il and P1.' and uslllg Eq. 69), 1'1 is determined for cach point on except for a signo \Ve define a Poincaré Illapping 73) as the integralion of the equatiolls af mol ion starting from initial condition~ on ~. \\.'ith P J > O, unlil the solutions intersect Ihe sallle surface, with PI > O. Transformation lo is an il1volulioll. that is 16 = l. Thus fhc rc\"crsibilify propcrty can be \vrinen [8J as Dcflning file involulions: 1) = 1\1/ lo we get a transfornlj~ tiolls group 0 74) M}-' = 1I 75) 1 " lj+~ = M}I,., 76) 1j _~_= I}M'. 77) A syllllllclry tille is the set 01' points on the surface of scclion invarianl lindel':ln involulion 7. S)'nllnctr~' Hnes r} = {S E LV: = lis}. 78) 'I'hi."i is a reversible system, so wc can apply the technique of th!..' SYIlllllctl'Y lines. The hamiltonian and the equalions 01" The propcrties 01' these syllllllctry lines are given by Ihe transfortl1<.llions group. Firsl of all, Ihey are related with cach R{'\,. AleJ:. Fú. 47 «1) 2001) 525-5~ 1

6 530 THE SUN-EARTH-MOON PROOLEM IN NEw COORDINATES, OIDIMENSIONAL CASE r. FIjllRE 5. Pc:riodil.: orhib. R AU) 000' r, üooj) í 0000, r. \ "." \ ~ \ \' FH UR.I: 7. V"IUI.?<'llf a. "1 " ~~, ID.y) \~.OOl~ -"IXJJJ f;. O,uUo '. olher by 79) 1,[', = ['2)_'" 80) rhen. \\'L' l';lil gl't he whole family 01'symmetry ines. :-.tarting: trolll ro dlhl I'J' T\\'o reslllts lllakc tbis furmalislli ver)' llseful: /) :\ poillt in Ihe intcrscctioll oj 1WO s)'lll1j1ctry lilles S El', n 1', is a periodic poinl s=;\ lr'ls ;l1ld ih pt'riod is Dile of lhe divisors of l.i - 1.:1. XII FI UR.I; X. SYlllllldry linc:-.. p. u..u o h) An l'\'l'1l pl'riod orbit has 1\\'0 poinls 0r" or {\Vn points )1l \'1. \nd ;In odd periad orbit has une point 0 )' and olle poill! 0 l' 1 sec f"ig. 5). This redut't's lhe scarching rol" periadic orbirs into scarching ror intl'rsl..'ctiolls 01' lhe symlllclry lines with ro and r 1" In Ibis I.'ase, in ~. lhe horizontal axis F rr = O) is in- \arian! lkr1\: Iransformation ). so this is Ihe s)'llliliell"y I ne 1'0'.- X. Thl' Jcriodic orhits From tl1e da1<l of october of 1999 [.IJ. whcll Ihe mean Earth- Sun di:-.l;llltt "'<1:-' U.D970 ::i: O.))'2i AU, ami Ihc hypolhe- "i" n == 1 AU. \vc calculate succcssive vallles fol' U I ami r. In Fi~",. ) ;lnd 7 v.c can sec Ihe extreme values of 1 and Ihc zcro.. '..ni' Ji 1 ; full ~ 100n anl! ne\v r..iooil, Ihe 9th and '2.~,lhd; y:-. rc"pcclivl..'ly. The phasc locking. betwcell R1 and 1 is evidenl l Eq.I~7l...' conditions R 1 ::::. l, 1'., ;:::O imply ir ::::.J. so lhe /L'rol':-' n ni match ", lh Ihc t:xtrcmal vallle:-. 01"1 in ;lll) perio\ic orhil OH 1'' I;rolll aslr<hl\lmical dala 1,1,;)] we make an estimalioll or Ihe I..'nc r ;y ami an,8ular 1I10mcntum orthe syslcm thal \VC need F\ ttr.e 9. POllearé lll:lppill,8. foi"lhe Poincaré mapping 1'v1. Figure 8 shows lhe sylllmetl'y lines l' 1 10 r l' it is ca..)' lo :-.ec lhal alt of lhclll inlerscci ro in Iwn POilllS, indicaling lhe presence o.t\\..o period.! points. hgurc l).hows a PoilKaré mapping conllrming lhe exis- SUlllilL"IlCL" 01" 1\\'0 st; hk per;odic nrbits. The pcriod of the llrhit inllll' T > l..ilil' i" ".li',if;.-, days. very clo...e ~othe sidereal Illol1ll1. :li'.:~i:ll day... ThL" pcriod uf lhe moit in lhe 1 < \l side is 17 A 78 days. I~lis would be lhe OI"bil of a 1\100 w;th n:trogradc 1Il0vt'1Ilcnl. 1</'1'. \In. F/\..t7 6) COOI)

7 A. ESCALONA BUENDIA A!'\D E. PISA larza E. Piii,l. Ce/e,\"{. i\kch. 7'" t 1991.J) 1)J. 2. E. Pil-laamI L. Jiméncz Lara. C'it'st. M/'ch. o he puhlishcd). :~. E. Pilla, /Jil/ÍlIliclI lit> Ro/acirmn UniVl:fSidad Autónoma \klrnpolit,lllil-i ztapalapa. Mé:":.ico. 196). 1. \I/I/I/rio lji.)j tlellnstitl/lo tll' ;\'\'ti"{jl/0i 1 dt'!ti UNA"" ljniwrsldad N,u:íollal Autónoma de i\1é:":.íl'o,,1\1éxio, )1)<)). S. \mll/rio 2))) dd Inslit/0 dl' A\/rorlOlfll'a dl' la UNAA1 Universidad Nacional Autónoma de :\1éxico_ Méx.ico, 200). j. D. Brouwcr,.1 J. Hori, 1'lIy.ü'.\' 1l1/l1,h/lDl101IlY oj lhe Moo/l cditl'd hy ZdL'IlCCKopill. I\CiKlclllic Prcss. Ncw York, 192), 7. M. C1utz\\'ilkr. Rn Atod. I'''n, R) SS9. s E. Pub anj L. JillléllCl Lara. I'hniw /J 2) ll)~o) 31), R'\'. I\kr. :t~."'7 6) 2)OI) )25-:')31

Periodic orbits for the elliptic case of the Sun-Earth-Moon problem in new coordinates

Periodic orbits for the elliptic case of the Sun-Earth-Moon problem in new coordinates INVESTIGACIÓN REVISTA MEXICANA DE FÍSICA 48 (5) 443 449 OCTUBRE 2002 Periodic orbits for the elliptic case of the Sun-Earth-Moon problem in new coordinates A. Escalona-Buendía and E. Piña Departamento.

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d: E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Scholarship Help for Technology Students

Scholarship Help for Technology Students i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f $150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li

More information

UNIVERSITY OF ILUNOхS LIBRARY AT URBANA-CHAMPA1GN AGR1CULT-"'J?'-

UNIVERSITY OF ILUNOхS LIBRARY AT URBANA-CHAMPA1GN AGR1CULT-'J?'- ' UNVRSTY F NхS LBRARY AT URBANA-HAMPA1GN AGR1ULT-"'J?'- igitied by the nternet Arhive 2012 ith fndg frm University f llis Urbn-hmpign http://.rhive.rg/detils/illismmeri1982med s 8 h U p m UU t g 5. -

More information

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z C O N C U R S O P Ú B L I C O E D I T A L N º 0 0 1 / 2 0 1 2 D i s p õ e s o b r e C o n c u r s o P ú b l i c o p a r a p r o v i m e n t o c a r g o s e v a g a s d a P r e f e i t u r a M u n i c i

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

STEEL PIPE NIPPLE BLACK AND GALVANIZED

STEEL PIPE NIPPLE BLACK AND GALVANIZED Price Sheet CWN-616 Effective June 06, 2016 Supersedes CWN-414 A Member of The Phoenix Forge Group CapProducts LTD. Phone: 519-482-5000 Fax: 519-482-7728 Toll Free: 800-265-5586 www.capproducts.com www.capitolcamco.com

More information

Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d

More information

int Ron t Marc ier rise e la Impasse du u Liv oue re M lin Berthel ry roix Fleu m Clos inot s int V urg S Faub Rue Rue du C rc de l ' Etuv e Stuart

int Ron t Marc ier rise e la Impasse du u Liv oue re M lin Berthel ry roix Fleu m Clos inot s int V urg S Faub Rue Rue du C rc de l ' Etuv e Stuart . Big i N éi N Cil l l Néi l N i C lli C i é Néi i i I. N -D z Ei if ig Vll Bl ig Vig l'o l S Bg i i g l Ci Qi i Blf Si ig l i i 1945 g li gg ég Ni l Bl l i H Si J iz Eg S i Villi I l Bl i i i H Bliz Dli

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

The Kustaanheimo-Stiefel Transformation in a Spinor Representation

The Kustaanheimo-Stiefel Transformation in a Spinor Representation Revista Brasileira de Fkica, Vol. 17, n? 2, 1987 The Kustaanheimo-Stiefel Transformation in a Spinor Representation J. BELLANDI FILHO and M.L.T. MENON Instituto de Fkíca, Universidade Estadual de Campinas,

More information

Present. and. RFA No79/2OO5

Present. and. RFA No79/2OO5 IN TE IG OURT OF KARNATAKA IRUIT BEN AT DARWAD Dted this the Q7th Dy of Mch 211 Pesent TE BLE MRJUSTIE KLMANJUNAT nd TE BLE MRJUSTIE NNAGAMOAN DAS BETWEEN: RFA No7/2OO5 Shi Adiveppgoud S/o MllngoudRyngoud,

More information

1 Scalars, Vectors and Tensors

1 Scalars, Vectors and Tensors DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH350 Classical Physics Handout 1 8.8.2009 1 Scalars, Vectors and Tensors In physics, we are interested in obtaining laws (in the form of mathematical

More information

1 Spherical Kinematics

1 Spherical Kinematics ME 115(a): Notes on Rotations 1 Spherical Kinematics Motions of a 3-dimensional rigid body where one point of the body remains fixed are termed spherical motions. A spherical displacement is a rigid body

More information

Example (1): Motion of a block on a frictionless incline plane

Example (1): Motion of a block on a frictionless incline plane Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow

More information

C;Ri.N. (o3s8: Université Louis Pasteur de Strasbourg. Institut National de Physique Nucléaire et de Physique des Particules t...

C;Ri.N. (<b &>o3s8: Université Louis Pasteur de Strasbourg. Institut National de Physique Nucléaire et de Physique des Particules t... (o3s8: C;Ri.N CWMB 7»-fi CO i\ ANGULAR ASSÏMBTRIBS IN A SHIELDED -^ PAIR LINE CO CJ H.-FANMarri, C.A. GMCIA CANAL «nd H. VUCETICH o \. CHRKE DE «CH.1RCHES KKXEAIRES UHIVERSITB LOUIS PASTEUR STRASBOURG

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics. Exercise 2 & course schedule change 521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

More information

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo

More information

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r.

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r. D a t a b a n k m r in g R a p p o r t M Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-0009 0 V o o r z ie n in g N ie u w la

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

Central configuration in the planar n + 1 body problem with generalized forces.

Central configuration in the planar n + 1 body problem with generalized forces. Monografías de la Real Academia de Ciencias de Zaragoza. 28: 1 8, (2006). Central configuration in the planar n + 1 body problem with generalized forces. M. Arribas, A. Elipe Grupo de Mecánica Espacial.

More information

Tulsa County Assessor's Monthly Revolving Fund Report

Tulsa County Assessor's Monthly Revolving Fund Report Tulsa County Assessors Monthly Revolving Fund Report Board of County Commissioners: In compliance with the provisions of Title 19 O.S. 684, this report is submitted for the Assessors Revolving Fund. A

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 T e le c o m m u n ic a t io n s a n d th e C h a n g in g G e o g r a p h ie s o f K n o w le d g e T r a n s m is s io n in th e L a te

More information

PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form)

PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form) PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form) Site developed by Steve Murov, Professor Emeritus of Chemistry, Modesto Junior College,

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

Geometric Camera Parameters

Geometric Camera Parameters Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 10 Rigid Body Motion (Chapter 5) What We Did Last Time! Found the velocity due to rotation! Used it to find Coriolis effect! Connected ω with the Euler angles! Lagrangian

More information

P R E F E I T U R A M U N I C I P A L D E J A R D I M

P R E F E I T U R A M U N I C I P A L D E J A R D I M D E P A R T A M E N T O D E C O M P R A S E L I C I T A O A U T O R I Z A O P A R A R E A L I Z A O D E C E R T A M E L I C I T A T с R I O M O D A L I D A D E P R E G O P R E S E N C I A L N 034/ 2 0

More information

Assignment 3. Solutions. Problems. February 22.

Assignment 3. Solutions. Problems. February 22. Assignment. Solutions. Problems. February.. Find a vector of magnitude in the direction opposite to the direction of v = i j k. The vector we are looking for is v v. We have Therefore, v = 4 + 4 + 4 =.

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

Three Body Problem for Constant Angular Velocity

Three Body Problem for Constant Angular Velocity Three Body Problem for Constant Angular Velocity P. Coulton Department of Mathematics Eastern Illinois University Charleston, Il 61920 Corresponding author, E-mail: cfprc@eiu.edu 1 Abstract We give the

More information

Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

More information

B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g...

B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g... V e lf rd s s e k re ta ria te t S a g s n r. 1 4 3 4 1 5 B re v id. 9 9 3 9 7 4 R e f. S O T H D ir. tlf. 4 6 3 1 4 0 0 9 s o fie t@ ro s k ild e.d k G o d k e n d e ls e s k rite rie r fo r p riv a tin

More information

Elements of Abstract Group Theory

Elements of Abstract Group Theory Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

More information

Parametric Equations

Parametric Equations Parametric Equations Part 1: Vector-Valued Functions Now that we have introduced and developed the concept of a vector, we are ready to use vectors to de ne functions. To begin with, a vector-valued function

More information

1 Introduction. 2 The G 4 Algebra. 2.1 Definition of G 4 Algebra

1 Introduction. 2 The G 4 Algebra. 2.1 Definition of G 4 Algebra 1 Introduction Traditionally translations and rotations have been analysed/computed with either matrices, quaternions, bi-quaternions, dual quaternions or double quaternions depending of ones preference

More information

SOLUTION v = v 0 + a c t. v = 8 + 6(0.5) = 11 rad>s. v = rv; v A = 2(11) = 22 ft>s. Ans. a t = ra; (a A ) t = 2(6) = 12.0 ft>s 2. Ans.

SOLUTION v = v 0 + a c t. v = 8 + 6(0.5) = 11 rad>s. v = rv; v A = 2(11) = 22 ft>s. Ans. a t = ra; (a A ) t = 2(6) = 12.0 ft>s 2. Ans. 16 3. The disk is originally rotating at v 0 = 8 rad>s. If it is subjected to a constant angular acceleration of a = 6 rad>s 2, determine the magnitudes of the velocity and the n and t components of acceleration

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Complex Numbers. w = f(z) z. Examples

Complex Numbers. w = f(z) z. Examples omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Lecture 14 More reading: Wolfson 10,11

Lecture 14 More reading: Wolfson 10,11 Lecture 14 Rotational Motion (continued) Center of mass The center of mass of an object is defined as RR cccc = ii rr iimm ii, ii mm ii rr dddd dddd (14.1) In words, this definition means that the position

More information

C e r t ifie d Se c u r e W e b

C e r t ifie d Se c u r e W e b C r t ifi d S c u r W b Z r t ifizi r t Sic h r h it im W b 1 D l gat s N ic o las M ay n c o u r t, C EO, D r am lab T c h n o lo gi s A G M ar c -A n d r é B c k, C o n su lt an t, D r am lab T c h n

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Morningstar Document Research

Morningstar Document Research Morningstar Document Research FORM8-K EMC INSURANCE GROUP INC - EMCI Filed: May 11, 2016 (period: May 11, 2016) Report of unscheduled material events or corporate changes. The information contained herein

More information

MA261-A Calculus III 2006 Fall Homework 2 Solutions Due 9/13/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 2 Solutions Due 9/13/2006 8:00AM MA6-A Calculus III 006 Fall Homework Solutions Due 9/3/006 8:00AM 93 #6 Find a b, where a hs; s; 3si and b ht; t; 5ti a b (s) (t) + (s) ( 93 #8 Find a b, where a 4j 3k and b i + 4j + 6k t) + (3s) (5t)

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

Chapter 2. Mission Analysis. 2.1 Mission Geometry

Chapter 2. Mission Analysis. 2.1 Mission Geometry Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude

More information

geometric transforms

geometric transforms geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

ň Ú Ú Č

ň Ú Ú Č Ú Ú ň Ú Ú Č Ú ň Ú Ž Č Ú Ž Ó Č ň Ž ň Ě Ý Ú Č Ú Č .{ +l ; l i.,i.t :i... (),i{ i,'...,.l l!,!. }, ii,)., i.a t-l.- C,..-'H -Ý':: 4,.J: C'É].,-t";g 5; i l'.i:.l) > t{ > P)O,.J 0" 3i an.ý u- ll c O },:, ll

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

Section 3.1 Radian Measure

Section 3.1 Radian Measure Section.1 Radian Measure Another way of measuring angles is with radians. This allows us to write the trigonometric functions as functions of a real number, not just degrees. A central angle is an angle

More information

1 Symmetries of regular polyhedra

1 Symmetries of regular polyhedra 1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field

Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field Dynamics Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field Amit K. Sanyal, Jinglai Shen, N. Harris McClamroch 1 Department of Aerospace Engineering University of Michigan Ann Arbor,

More information

C relative to O being abc,, respectively, then b a c.

C relative to O being abc,, respectively, then b a c. 2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Motion in Space: Velocity and Acceleration

Motion in Space: Velocity and Acceleration Study Sheet (13.4) Motion in Space: Velocity and Acceleration Here, we show how the ideas of tangent and normal vectors and curvature can be used in physics to study: The motion of an object, including

More information

ta tio n a l s c ie n c e b y s u p p o rtin g th e e m e rg in g G rid p ro to c o ls o n W in d o w s a n d

ta tio n a l s c ie n c e b y s u p p o rtin g th e e m e rg in g G rid p ro to c o ls o n W in d o w s a n d A p p e a rs in th e P ro c e e d in g s o f th e 2 0 0 5 In te rn a tio n a l C o n fe re n c e o n C o m p u ta tio n a l S c ie n c e (IC C S 2 0 0 5 ), E m o ry U n iv e rs ity, A tla n ta, G A, M

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

Propagation of the information in a one-way quantum computer

Propagation of the information in a one-way quantum computer ENSEÑANZA REVISTA MEXICANA DE FÍSICA E 53 1 115 119 JUNIO 2007 Propagation of the information in a one-way quantum computer M.A. Avila Centro Universitario UAEM Valle de Chalco, Universidad Autónoma del

More information

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L. Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Two classes of ternary codes and their weight distributions

Two classes of ternary codes and their weight distributions Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

Lecture L17 - Orbit Transfers and Interplanetary Trajectories S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

More information

CHEM 10113, Quiz 7 December 7, 2011

CHEM 10113, Quiz 7 December 7, 2011 CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B for uli With Rejoic Herts/ on mor ol dition # 10745-Z1 ime ortez Keyord ccompniment y effy Honoré INTRO With energy ( = c 88) Keyord * m7 B sus 4 B 7/B mj 9 /B SMPL B 7 *Without percussion, egin he 1995,

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

Solution Derivations for Capa #10

Solution Derivations for Capa #10 Solution Derivations for Capa #10 1) A 1000-turn loop (radius = 0.038 m) of wire is connected to a (25 Ω) resistor as shown in the figure. A magnetic field is directed perpendicular to the plane of the

More information

s r or equivalently sr linear velocity vr Rotation its description and what causes it? Consider a disk rotating at constant angular velocity.

s r or equivalently sr linear velocity vr Rotation its description and what causes it? Consider a disk rotating at constant angular velocity. Rotation its description and what causes it? Consider a disk rotating at constant angular velocity. Rotation involves turning. Turning implies change of angle. Turning is about an axis of rotation. All

More information

Solutions to Chapter 3 Exercise Problems

Solutions to Chapter 3 Exercise Problems Solutions to hapter Exercise Problems Problem.1 In the figure below, points and have the same horizontal coordinate, and ω = 0 rad/s. Draw and dimension the velocity polygon. Identify the sliding velocity

More information

Components of Acceleration

Components of Acceleration Components of Acceleration Part 1: Curvature and the Unit Normal In the last section, we explored those ideas related to velocity namely, distance, speed, and the unit tangent vector. In this section,

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination

More information

= = GM. v 1 = Ωa 1 sin i.

= = GM. v 1 = Ωa 1 sin i. 1 Binary Stars Consider a binary composed of two stars of masses M 1 and We define M = M 1 + and µ = M 1 /M If a 1 and a 2 are the mean distances of the stars from the center of mass, then M 1 a 1 = a

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Faraday s Law of Induction

Faraday s Law of Induction Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS

DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS 7 th EUROMECH Solid Mechanics Conference J. Ambrosio et.al. (eds.) Lisbon, Portugal, 7 11 September 2009 DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS Alexander A. Burov 1, Anna D. Guerman

More information

( ) *,+ -/.0 1 ) 2 ) + -' : ) ;0< + - 7'+ ) = >8> =

( ) *,+ -/.0 1 ) 2 ) + -' : ) ;0< + - 7'+ ) = >8> = ! " #$" %! # &!'# ( ) *,+ -/.0 1 ) 2 ) + -'35468789: ) ;0< + - 7'+ ) = >8> = =?5 "!'! #%@ 2 ) + -'3 ACB D E F G H G D I5J K F LMN O P Q R ST U U P V N W X0F D Y8U ZW X W O N W O [\C] ] L D8] ^ K F L _

More information

Isaac Newton s (1642-1727) Laws of Motion

Isaac Newton s (1642-1727) Laws of Motion Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Ch.8 Rotational Equilibrium and Rotational Dynamics.

Ch.8 Rotational Equilibrium and Rotational Dynamics. Ch.8 Rotational Equilibrium and Rotational Dynamics. Conceptual question # 1, 2, 9 Problems# 1, 3, 7, 9, 11, 13, 17, 19, 25, 28, 33, 39, 43, 47, 51, 55, 61, 79 83 Torque Force causes acceleration. Torque

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

Physics 11 Fall 2012 Practice Problems 4 - Solutions

Physics 11 Fall 2012 Practice Problems 4 - Solutions Physics 11 Fall 01 Practice Problems 4 - s 1. Under what conditions can all the initial kinetic energy of an isolated system consisting of two colliding objects be lost in a collision? Explain how this

More information