1. The probability P(A) for any event A is 0 P(A) If S is the sample space in a probability model, then P(S)=1.

Size: px
Start display at page:

Download "1. The probability P(A) for any event A is 0 P(A) If S is the sample space in a probability model, then P(S)=1."

Transcription

1 Probability Rules Probability II Chapter 4 1. The probability P(A) for any event A is 0 P(A) 1.. If S is the sample space in a probability model, then P(S)=1. 3. For any event A, P(A does not occur) = 1- P(A). 4. If A and B are disjoint events, P(A or B)=P(A)+P(B). 5. For any two events, P(A or B) = P(A)+P(B)-P(A and B). More rules: P(A and B) Another situation of frequent interest, finding P(A and B), the probability that both events A and B occur. P(A and B)= P(event A occurs and event B occurs) As for the Addition rule, we have two versions for P(A and B). Independent events Two events are independent if the probability that one event occurs on any given trial of an experiment is not influenced in any way by the occurrence of the other event. : toss a coin twice Event A: first toss is a head (H) Event B: second toss is a tail (T) Events A and B are independent. The outcome of the first toss cannot influence the outcome of the second toss. Imagine coins spread out so that half were heads up, and half were tails up. Pick a coin at random. The probability that it is headsup is 0.5. But, if you don t put it back, the probability of picking up another heads-up coin is now less than 0.5. Without replacement, successive trials are not independent. In this example, the trials are independent only when you put the coin back ( sampling with replacement ) each time. A woman's pocket contains quarters and nickels. She randomly extracts one of the coins and, after looking at it, replaces it before picking a second coin. Let Q1 be the event that the first coin is a quarter and Q be the event that the second coin is a quarter. Are Q1 and Q independent events? YES! Why? Since the first coin that was selected is replaced, whether Q1 occurred (i.e., whether the first coin was a quarter) has no effect on the probability that the second coin is a quarter, P(Q). In either case (whether Q1 occurred or not), when we come to select the second coin, we have in our pocket: 1

2 More s EXAMPLE: Two people are selected at random from all living humans. Let B1 be the event that the first person has blue eyes and B be the event that the second person has blue eyes. In this case, since the two were chosen at random, whether the first person has blue eyes has no effect on the likelihood of choosing another blue eyed person, and therefore B1 and B are independent. On the other hand... EXAMPLE: A family has 4 children, two of whom are selected at random. Let B1 be the event that the first child has blue eyes, and B be the event that the second chosen child has blue eyes. In this case B1 and B are not independent since we know that eye color is hereditary, so whether the first child is blue-eyed will increase or decrease the chances that the second child has blue eyes, respectively. Decide whether the events are independent or dependent Event A: a salmon swims successfully through a dam Event B: another salmon swims successfully through the same dam Event A: parking beside a fire hydrant on Tuesday Event B: getting a parking ticket on the same Tuesday The Multiplication Rule for independent events If A and B are independent, P(A and B) = P(A) P(B) The Multiplication Rule for independent events: Roll two dice. Event A: roll a 6 on a red die Event B: roll a 5 on a blue die. What is the probability that if you roll both at the same time, you will roll a 6 on the red die and a 5 on the blue die? Since the two dice are independent, P(A and B)=P(A) P(B)=1/6 1/6 = 1/36 Recall the blood type example: Two people are selected at random from all living humans. What is the probability that both have blood type O? Let O1= "the first has blood type O" and O= "the second has blood type O" We need to find P(O1 and O) Since the two were chosen at random, the blood type of one has no effect on the blood type of the other. Therefore, O1 and O are independent and we may apply Rule 5: P(O1 and O) = P(O1)*P(O) =.44*.44= Probability Rules 1. The probability P(A) for any event A is 0 P(A) 1.. If S is the sample space in a probability model, then P(S)=1. 3. For any event A, P(A does not occur) = 1- P(A). 4. If A and B are disjoint events, P(A or B)=P(A)+P(B). 5. General Addition Rule: For any two events, P(A or B) = P(A)+P(B)-P(A and B). 6. If A and B are independent, P(A and B) = P(A) P(B)

3 One more rule We need a general rule for P(A and B). For this, first we need to learn Conditional probability. Notation: P(B A). This means the probability of event B, given that event A has occurred. Event A represents the information that is given. All the students in a certain high school were surveyed, then classified according to gender and whether they had either of their ears pierced: Suppose a student is selected at random from the school. Let M and not M denote the events of being male and female, respectively, and E and not E denote the events of having ears pierced or not, respectively. M not M E not E What is the probability that the student has one or both ears pierced? Since a student is chosen at random from the group of 500 students out of which 34 are pierced, P(E)=34/500=.648 What is the probability that the student is a male? Since a student is chosen at random from the group of 500 students out of which 180 are males, P(M)=180/500=.36 What is the probability that the student is male and has ear(s) pierced? Since a student is chosen at random from the group of 500 students out of which 36 are males and have their ear(s) pierced, P(M and E)=36/500=.07 Conditional Probability Now something new: Given that the student that was chosen is a male, what is the probability that he has one or both ears pierced? We will write "the probability of having one or both ears pierced (E), given that a student is male (M)" as P(E M). We call this probability the conditional probability of having one or both ears pierced, given that a student is male: it assesses the probability of having pierced ears under the condition of being male. The total number of possible outcomes is no longer 500, but has changed to 180. Out of those 180 males, 36 have ear(s) pierced, and thus: P(E M)=36/180=0.0. 3

4 General formula P( Aand B) P( B A) = P( A) The above formula holds as long as P(A)>0 since we cannot divide by 0. In other words, we should not seek the probability of an event given that an impossible event has occurred. On the "Information for the Patient" label of a certain antidepressant it is claimed that based on some clinical trials, there is a 14% chance of experiencing sleeping problems known as insomnia (denote this event by I), there is a 6% chance of experiencing headache (denote this event by H), and there is a 5% chance of experiencing both side effects (I and H). Thus, P(I)=0.14 P(H)=0.6 P(I and H)=0.05 P(I)=0.14 P(H)=0.6 P(I and H)=0.05 Important!!! (a) Suppose that the patient experiences insomnia; what is the probability that the patient will also experience headache? Since we know (or it is given) that the patient experienced insomnia, we are looking for P(H I). According to the definition of conditional probability: P(H I)=P(H and I)/P(I)=.05/.14=.357. (b) Suppose the drug induces headache in a patient; what is the probability that it also induces insomnia? Here, we are given that the patient experienced headache, so we are looking for P(I H). P(I H)=P(I and H)/P(H)=.05/.6=.193. In general, P( A B) P( B A) Independence Testing for Independence Recall: two events A and B are independent if one event occurring does not affect the probability that the other event occurs. Now that we've introduced conditional probability, we can formalize the definition of independence of events and develop four simple ways to check whether two events are independent or not. Two events A and B are independent if P( B A) = P( B) or P( A and B) = P( A) P( B) Two events A and B are dependent if P( B A) P( B) or P( A and B) P( A) P( B) 4

5 Recall the side effects example. there is a 14% chance of experiencing sleeping problems known as insomnia (I), there is a 6% chance of experiencing headache (H), and there is a 5% chance of experiencing both side effects (I and H). Thus, P(I)=0.14 P(H)=0.6 P(I and H)=0.05 Are the two side effects independent of each other? To check whether the two side effects are independent, let's compare P(H I) and P(H). In the previous part of this lecture, we found that P(H I)=P(H and I)/P(I)=.05/.14=.357 while P(H)=.6 P(H I) P(H) Knowing that a patient experienced insomnia increases the likelihood that he/she will also experience headache from.6 to.357. The conclusion, therefore is that the two side effects are not independent, they are dependent. General Multiplication Rule Comments P(A and B)=P(A)*P(B A) For independent events A and B, we had the rule P(A and B)=P(A)*P(B). Now, for events A and B that may be dependent, to find the probability of both, we multiply the probability of A by the conditional probability of B, taking into account that A has occurred. Thus, our general multiplication rule is stated as follows: Rule 7: The General Multiplication Rule: For any two events A and B, P(A and B)=P(A)*P(B A) This rule is general in the sense that if A and B happen to be independent, then P(B A)=P(B) is, and we're back to Rule 5 - the Multiplication Rule for Independent Events: P(A and B)=P(A)*P(B). Recall the definition of conditional probability: P(B A)=P(A and B)/P(A). Let's isolate P(A and B) by multiplying both sides of the equation by P(A), and we get: P(A and B)=P(A)*P(B A). That's it...this is the General Multiplication Rule. Probability Rules Counting 1. The probability P(A) for any event A is 0 P(A) 1.. If S is the sample space in a probability model, then P(S)=1. 3. For any event A, P(A does not occur) = 1- P(A). 4. If A and B are disjoint events, P(A or B)=P(A)+P(B). 5. General Addition Rule: For any two events, P(A or B) = P(A)+P(B)-P(A and B). 6. If A and B are independent, P(A and B) = P(A) P(B) 7. General Multiplication Rule: P( A and B) = P(A) P(B A) Fundamental Counting Rule Factorial Rule Permutation (when all items are different) Permutation (when some items are like) Combination 5

6 Fundamental Counting Rule For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of m n ways. : Suppose you have 3 shirts (call them A, B, and C), and 4 pairs of pants (call them w, x, y, and z). Then you have m = 3, n = 4: 3 4 = 1 possible outfits: Aw, Ax, Ay, Az, Bw, Bx, By, Bz,Cw, Cx, Cy, Cz Notation The factorial symbol! Denotes the product of decreasing positive whole numbers. For example, 6! = = 70 By special definition, 0! = 1. TI-83, 84: MATH PRB 4:! First enter 6, then! Factorial Rule A collection of n different items can be arranged in order n! different ways : Suppose you have four candles you wish to arrange from left to right on your dinner table. The four candles are vanilla, mulberry, orange, and raspberry fragrances (shorthand: V, M, O, R). How many options do you have? Solution: for the first choice you have 4 choices; for the second, 3; for the third, ; and for the last, only 1. The total ways then to select the four candles are: 4!=4 3 1 = 4. Permutation Rule: (when items are all different) We must have a total of n different items available. (This rule does not apply if some items are identical to others.) We must select r of the n items (without replacement.) Order DOES matter. ABC is NOT the same as BCA. n P r n! = ( n r)! Permutation There are eight horses in a race. In how many different ways can these horses come in first, second, and third? n = 8 r = 3 8! 8! P = = = 336 ( 8 3)! 5! 8 3 Permutations Rule ( when some items are identical to others ) If there are n items with n 1 alike, n alike,... n k alike, the number of permutations of all n items is n! n 1!. n! n k! 6

7 How many distinguishable ways can the letters in SECRETARIES be written? Number of letters: n = 11 S: E: 3 R: 11! = 1, 663, 00! 3!! Combinations Rule: We must have a total of n different items available. We must select r of the n items (without replacement.) Order DOES NOT matter. The combination ABC is the same as CBA. n C r n! = r!( n r)! Combination Rule Calculator (TI-83/84) Eight players are in a competition, top three will be selected for the next round (order does not matter). How many possible choices are there? Order does NOT matter, so with n= 8, and r = 3: 8! C = = 56 3!( 8 3)! 8 3 Math PRB : npr use this for Permutation (when all n items are different) : 10P3: enter 10 first, then npr, then 3. 3: ncr use this for Combination : 10C3: enter 10 first, then ncr, then 3. 4:! use this for factorial : 7!: enter 7 first, then the factorial sign Discrete Probability Distribution Binomial Probability Distribution Random variable has a single numerical value, determined by chance, for each outcome of a procedure. Random variables are usually denoted X or Y Chapter 5 Discrete takes on a countable number of values (i.e. there are gaps between values). Continuous there are an infinite number of values the random variable can take, and they are densely packed together (i.e. there are no gaps between values) 7

8 Would the following random variables, X, be discrete or continuous? X = the number of sales at the drive-through during the lunch rush at the local fast food restaurant. X = the time required to run a marathon. X = the number of fans in a football stadium. X = the distance a car could drive with only one gallon of gas. Random variables A probability distribution is a description of the chance a random variable has of taking on particular values. It is often displayed in a graph, table, or formula. Properties: Discrete probability distribution includes all the values of DRV; For any value x of DRV: 0 P(x) 1; The sum of probabilities of all the DRV values equals to 1; The values of DRV are mutually exclusive. An industrial psychologist administered a personality inventory test for passive-aggressive traits to 150 employees. Individuals were rated on a score from 1 to 5, where 1 was extremely passive and 5 extremely aggressive. A score of 3 indicated neither trait. The results are shown below: Frequency cont. Construct the probability distribution: Verify that it s a probability distribution. For all values of X, 0 P(x) 1 Frequency Probability P(X=x) 4/150 = /150 = 0. 4/150 = /150 = =1 1/150 = 0.14 cont. cont. Probability P(X=x) Probability P(X=x) Graph the distribution. Note: the area of each bar is equal to the probability of a particular outcome What is the probability that randomly selected worker got a score 3 or less? P(X 3) = = 0.66 What is the probability that a randomly selected worker scored at least 4? P(X 4) = = 0.34 What is the probability that a randomly selected worker did not score 5? P( X 5) = =

9 The Mean and Standard Deviation of a Discrete Random Variable The mean or expected value of a discrete random variable is given by µ = xp( x) = x1 P( x1) + x P( x ) +... The variance of a discrete random variable is given by σ = ( x µ ) P( x) = ( x1 µ ) P( x1) + ( x µ ) P( x ) +... The standard deviation is σ = σ cont. Probability P(X=x) What is the mean score? What can you conclude? µ = xp( x) = x1 P( x1) + x P( x ) µ = =. 94 We can conclude that the mean personality trait is neither extremely passive nor extremely aggressive, but is slightly closer to passive. cont. Probability P(X=x) µ =. 94 Find the variance and standard deviation of the scores. What can you conclude? σ = ( x µ ) P( x) = ( x1 µ ) P( x1) + ( x µ ) P( x ) +... σ = ( 1. 94) (. 94) 0. + ( 3. 94) ( 4. 94) 0. + ( 5. 94) 014. σ = σ = σ = Most of the data values differ from the mean by no more than 1.3 points. 9

Review for Test 2. Chapters 4, 5 and 6

Review for Test 2. Chapters 4, 5 and 6 Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations)

Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Note: At my school, there is only room for one math main lesson block in ninth grade. Therefore,

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

Worksheet A2 : Fundamental Counting Principle, Factorials, Permutations Intro

Worksheet A2 : Fundamental Counting Principle, Factorials, Permutations Intro Worksheet A2 : Fundamental Counting Principle, Factorials, Permutations Intro 1. A restaurant offers four sizes of pizza, two types of crust, and eight toppings. How many possible combinations of pizza

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

Statistics 100A Homework 3 Solutions

Statistics 100A Homework 3 Solutions Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1.

PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1. PROBABILITY SIMPLE PROBABILITY SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and. There are two categories of simple probabilities. THEORETICAL

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables 1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

More information

Methods Used for Counting

Methods Used for Counting COUNTING METHODS From our preliminary work in probability, we often found ourselves wondering how many different scenarios there were in a given situation. In the beginning of that chapter, we merely tried

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

Assessment For The California Mathematics Standards Grade 6

Assessment For The California Mathematics Standards Grade 6 Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution l Consider a situation where there are only two possible outcomes (a Bernoulli trial) H Example: u flipping a

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2. Probability Distributions for Discrete Random Variables Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

A Few Basics of Probability

A Few Basics of Probability A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

MATH 106 Lecture 2 Permutations & Combinations

MATH 106 Lecture 2 Permutations & Combinations MATH 106 Lecture 2 Permutations & Combinations m j winter FS2004 1 Player Numbers Shirts have 2-digit numbers Six possible digits: 0, 1, 2, 3, 4, 5 How many different numbers? 6 6 36 6 possibilities for

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

PROBABILITY SECOND EDITION

PROBABILITY SECOND EDITION PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All

More information

Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I

Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0. Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant

More information

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

People have thought about, and defined, probability in different ways. important to note the consequences of the definition: PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models

More information

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001 Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

More information

Formula for Theoretical Probability

Formula for Theoretical Probability Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out

More information

Unit 19: Probability Models

Unit 19: Probability Models Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd. Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

More information

Chapter 3. Probability

Chapter 3. Probability Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Lesson 17: Margin of Error When Estimating a Population Proportion

Lesson 17: Margin of Error When Estimating a Population Proportion Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information

More information

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) Probability Section 9 Probability Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) In this section we summarise the key issues in the basic probability

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

More information

Probability & Probability Distributions

Probability & Probability Distributions Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions

More information

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 1. (4 points) The number of claims for missing baggage for a well-known airline

More information

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Mind on Statistics. Chapter 8

Mind on Statistics. Chapter 8 Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable

More information

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median

Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median Activities/ Resources for Unit V: Proportions, Ratios, Probability, Mean and Median 58 What is a Ratio? A ratio is a comparison of two numbers. We generally separate the two numbers in the ratio with a

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

More information

Descriptive Statistics and Measurement Scales

Descriptive Statistics and Measurement Scales Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

More information

Session 8 Probability

Session 8 Probability Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

More information

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics. Random variables University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

More information

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,

More information

Probability Distributions

Probability Distributions CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

Statistics 2014 Scoring Guidelines

Statistics 2014 Scoring Guidelines AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

More information

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard. Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

More information

Business Statistics 41000: Probability 1

Business Statistics 41000: Probability 1 Business Statistics 41000: Probability 1 Drew D. Creal University of Chicago, Booth School of Business Week 3: January 24 and 25, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Normal and Binomial. Distributions

Normal and Binomial. Distributions Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

More information