Ultimate Bearing Capacity

Size: px
Start display at page:

Download "Ultimate Bearing Capacity"

Transcription

1 CE-63 Foundation Analysis and Design Ultimate earing Capacity The load per unit area o the oundation at which shear ailure in soil occurs is called the ultimate bearing capacity. Principal Modes o Failure: General Shear Failure: oad / Area ment u Settle Sudden or catastrophic ailure Well deined ailure surace ulging on the ground surace adjacent to oundation Common ailure mode in dense sand Principal Modes o Failure: ocal Shear Failure: oad / Area u ttlement Set u Common in sand or clay with medium compaction Signiicant settlement upon loading Failure surace irst develops right below the oundation and then slowly extends outwards with load increments Foundation movement shows sudden jerks irst (at u ) and then ater a considerable amount o movement the slip surace may reach the ground. A small amount o bulging may occur next to the oundation. 3

2 Principal Modes o Failure: Punching Failure: oad / Area u ttlement Set u Common in airly loose sand or sot clay Failure surace does not extends beyond the zone right beneath the oundation Extensive settlement with a wedge shaped soil zone in elastic euilibrium beneath the oundation. Vertical shear occurs around the edges o oundation. Ater reaching ailure load-settlement curve continues at some slope and mostly linearly. 4 Principal Modes o Failure: Relative depth o ou undation, D /* Relative density o sand, D r Punching shear ocal shear General shear Vesic (973) Circular Foundation ong Rectangular Foundation * = + 5 Terzaghi s earing Capacity Theory j neglected g Shear Planes Rough Foundation Surace 45 φ / D III e a II u φ I φ d b II Strip Footing Eective overburden = γ.d 45 φ / i III c - φ soil k Assumption / ratio is large plain strain problem D Shear resistance o soil or D depth is neglected General shear ailure Shear strength is governed by Mohr-Coulomb Criterion 6

3 Terzaghi s earing Capacity Theory u. =.Pp +.Ca.sin φ γ tan φ 4 u b a φ Ca= / cosφ φ Pp u. =.Pp +.c.sin φ γ tan φ 4 φ I Pp = Ppγ + Ppc + Pp Ca.tanφ Ppγ = due to only sel weight o soil in shear zone φ d Pp Ppc = due to soil cohesion only (soil is weightless) Pp = due to surcharge only 7 Terzaghi s earing Capacity Theory Weight term Cohesion term u. =.Ppγ γ tan φ + (.Ppc +.c.sin φ ) +.Pp 4. ( 0.5γ.Nγ ) Surcharge term.c.nc..n Terzaghi s bearing capacity euation u = c.n c +.N + 0.5γ.Nγ Terzaghi s bearing capacity actors Nγ = K tan φ Pγ φ cos N c = ( N ) cot φ e a φ cos π φ in rad. a= tan φ 4 N = 8 9 3

4 Terzaghi s earing Capacity Theory ocal Shear Failure: Modiy the strength parameters such as: c m = c 3 u = c. N c + N γ N. γ 3 φ m = tan tanφ 3 Suare and circular ooting: =.3 c. N + N γ N. γ u c =.3 c. N + N γ N. γ u c For suare For circular 0 Terzaghi s earing Capacity Theory Eect o water table: Case I: D w D Surcharge, = γ. Dw + γ ( D Dw) D w Case II: D D w (D + ) Surcharge, = γ. DF In bearing capacity euation replace γ by- Dw D γ = γ + ( γ γ ) Case III: D w > (D + ) No inluence o water table. Another recommendation or Case II: d γ = ( H + dw) γsat γ + ( H d ) w w H H D Rupture depth: imit o inluence dw = Dw D H = 0.5tan ( 45 + φ ) Skempton s earing Capacity Analysis or cohesive Soils ~ For saturated cohesive soil, φ = 0 N =, and N γ = 0 For strip ooting: D Nc = with limit o Nc 7.5 D For suare/circular Nc = with limit o Nc 9.0 ooting: For rectangular ooting: D Nc = or D.5 Nc = or D >.5 = cn. + u c Net ultimate bearing capacity, = u γ. D u =. nu cn c 4

5 Eective Area Method or Eccentric oading D In case o Moment loading M y ex = F V =-e y A F = e y M x = F V e x e y =-e y In case o Horizontal Force at some height but the column is centered on the oundation M = F. d y Hx FH M = F. d x Hy FH 3 General earing Capacity Euation: (Meyerho, 963) = cn.. s. d. i + N.. s. d. i γ. N.. s. d. i u c c c c γ γ γ γ Shape actor Depth actor inclination actor Empirical correction actors ( ) φ.tan N tan 45. e π φ = + Nc = N cotφ Nγ = ( N ) tan (.4φ ) [y Hansen(970): Nγ =.5 N tan φ [y Vesic(973): ( ) ( ) ( ) ( ) Nγ = N + tan φ = cn.. s. d. i. g. b + N.. s. d. i. g. b γ. N.. s. d. i. g. b u c c c c c c γ γ γ γ γ γ Ground actor ase actor 4 5 5

6 Meyerho s Correction Factors: Shape Factors φ sc = + 0. tan 45+ or φ 0 o s sγ 0. tan 45 φ = = + + or lower φ value s = = s γ Depth D φ or φ 0 o Factors dc = + 0. tan 45+ D φ d = dγ = + 0. tan 45+ or lower φ value d = = d γ Inclination Factors o β ic = i = 90 i γ β = φ 6 Hansen s Correction Factors: FH ic = or φ = 0. c 5 0.5F H i = FV + c..cotφ Inclination Factors Depth Factors Shape Factors For φ = 0 D dc = 0.4 or D D dc = 0.4 tan or D > ( F ) / H ic = + or φ > 0. su 5 0.7F H iγ = FV + c..cotφ For φ > 0 D dc = or D D dc = tan or D > For D < For D > tan.( sin ) D d = + φ φ ( ) D d = + tan φ. sinφ tan sc = 0. ic. or φ = 0 s = + i. ( ) sinφ d γ = sc = 0.( ic). or φ > 0 sγ = 0.4 iγ.( ) Hansen s Recommendation or cohesive saturated soil, φ'=0..( ) = cn + s + d + i + u c c c c Notes:. Notice use o eective base dimensions, by Hansen but not by Vesic.. The values are consistent with a vertical load or a vertical load accompanied by a horizontal load H. 3. With a vertical load and a load H (and either H =0 or H >0) you may have to compute two sets o shape and depth actors s i,, s i, and d i,, d i,. For i, subscripts use ratio / or D/. 4. Compute u independently by using (s i, d i ) and (s i, d i ) and use min value or design. 8 6

7 Notes:. Use H i as either H or H, or both i H >0.. Hansen (970) did not give an i c or φ>0. The value given here is rom Hansen (96) and also used by Vesic. 3. Variable c a = base adhesion, on the order o 0.6 to.0 x base cohesion. 4. Reer to sketch on next slide or identiication o angles η and β, ooting depth D, location o H i (parallel and at top o base slab; usually also produces eccentricity). Especially notice V = orce normal to base and is not the resultant R rom combining V and H i Note:. When φ=0 (and β 0) use N γ = -sin(±β) in N γ term.. Compute m = m when H i = H (H parallel to ) and m = m when H i = H (H parallel to ). I you have both H and H use m = (m + m ) /. Note use o and, not,. 3. H i term.0 or computing i, i γ (always). 7

8 Suitability o Methods IS: Recommendations = cn.. s. d. i +. N. s. d. i γ. N.. s. d. i Net Ultimate earing capacity: ( ) For cohesive soils nu c c c c = c. N. s. d. i where, N = 5.4 nu u c c c c N, N, N γ as per Vesic(973) recommendations c c γ γ γ γ Shape Factors Depth Factors Inclination Factors sc = + 0. s 0. = + s 0.4 For rectangle, = γ For suare and circle, s c = 3.3 s =. sγ = 0.8 or suare, sγ = 0.6 or circle D φ dc = + 0. tan 45+ D φ d = dγ = + 0. tan 45+ or φ 0 o = = or φ < 0 o d d γ The same as Meyerho (963) 3 earing Capacity Correlations with SPT-value Peck, Hansen, and Thornburn (974) & IS: Recommendation 4 8

9 earing Capacity Correlations with SPT-value Teng (96): For Strip Footing: For Suare and Circular Footing: nu = w w ( ) N R N D R 6 nu = N. R. w + 3( 00 + N ). D. R w 3 For D >, take D = Water Table Corrections: D w D w Rw = [ Rw D Dw D R w = [ R w D D imit o inluence 5 earing Capacity Correlations with CPT-value IS: Recommendation: Cohesionless Soil.5 to.0 c value is taken as average or this zone nu c Schmertmann (975): c kg N N γ in 0.8 cm D 0.5 = (cm) 0 6 earing Capacity Correlations with CPT-value IS: Recommendation: Cohesive Soil = c. N. s. d. i nu u c c c c Soil Type Normally consolidated clays Point Resistance Values Range o Undrained ( c ) kg/cm Cohesion (kg/cm ) c < 0 c /8 to c /5 Over consolidated clays c > 0 c /6 to c / 7 9

10 earing Capacity o Footing on ayered Soil φ Depth o rupture zone = tan 45 + or approximately taken as Case I: ayer- is weaker than ayer- Design using parameters o ayer - Case II: ayer- is stronger than ayer- Distribute the stresses to ayer- by : method and check the bearing capacity at this level or limit state. ayer- Also check the bearing capacity or original ayer- oundation level using parameters o ayer- Choose minimum value or design φ Another approximate method or c -φ soil: For eective depth tan 45 + Find average c and φ and use them or ultimate bearing capacity calculation ch + ch + ch tanφh+ tanφh + tan φ3h cav = tanφav = H + H + H +... H + H + H earing Capacity o Stratiied Cohesive Soil IS: Recommendation: 9 earing Capacity o Footing on ayered Soil: Stronger Soil Underlying Weaker Soil Depth H is relatively small Punching shear ailure in top layer General shear ailure in bottom layer Depth H is relatively large Full ailure surace develops in top layer itsel 30 0

11 earing Capacity o Footing on ayered Soil: Stronger Soil Underlying Weaker Soil 3 earing Capacity o Footing on ayered Soil: Stronger Soil Underlying Weaker Soil earing capacities o continuous ooting o with under vertical load on the surace o homogeneous thick bed o upper and lower soil 3 earing Capacity o Footing on ayered Soil: Stronger Soil Underlying Weaker Soil For Strip Footing: ch D a Ks tanφ u = b + + γh + γh t H Where, t is the bearing capacity or oundation considering only the top layer to ininite depth For Rectangular Footing: ch tan a D Ks φ u = b + + γh γh t H Special Cases:. Top layer is strong sand and bottom layer is saturated sot clay c = 0 φ = 0. Top layer is strong sand and bottom layer is weaker sand c = 0 c = 0. Top layer is strong saturated clay and bottom layer is weaker saturated clay φ = 0 φ = 0 33

12 Eccentrically oaded Foundations Q M = Q 6M + max min M e = Q = Q 6M max min Q 6e = + Q 6e = e For e > There will be separation 6 o oundation rom the soil beneath and stresses will be redistributed. = e Use or s, and, or dc, d, d γ to obtain c, s, s = γ u Q. u = u A The eective area method or two way eccentricity becomes a little more complex than what is suggested above. It is discussed in the subseuent slides 34 Determination o Eective Dimensions or Eccentrically oaded oundations (Highter and Anders, 985) Case I: e e and e = e e 3 3e = A = ( ) = max, A = 35 Determination o Eective Dimensions or Eccentrically oaded oundations (Highter and Anders, 985) Case II: e e < 0.5 and 0 < < 6 e e A ( ) = max, = + A ( ) = 36

13 Determination o Eective Dimensions or Eccentrically oaded oundations (Highter and Anders, 985) Case III: e e and 0 < < < e e A = + = ( ) A = 37 Determination o Eective Dimensions or Eccentrically oaded oundations (Highter and Anders, 985) e Case IV: e < and < 6 6 e e A = A = = ( )( ) 38 Determination o Eective Dimensions or Eccentrically oaded oundations (Highter and Anders, 985) Case V: Circular oundation er R A = 39 3

14 Meyerho s (953) area correction based on empirical correlations: (American Petroleum Institute, 987) 40 earing Capacity o Footings on Slopes Meyerho s (957) Solution u = cn c + 0.5γ N γ Granular Soil c = 0 u = 0.5γ N γ 4 earing Capacity o Footings on Slopes Meyerho s (957) Solution Cohesive Soil φ = 0 u = cn c γ H Ns = c 4 4

15 earing Capacity o Footings on Slopes Graham et al. (988), ased on method o characteristics 000 For 00 D 0 = earing Capacity o Footings on Slopes Graham et al. (988), ased on method o characteristics 000 For 00 D 0 = earing Capacity o Footings on Slopes Graham et al. (988), ased on method o characteristics For D 0.5 = 45 5

16 earing Capacity o Footings on Slopes Graham et al. (988), ased on method o characteristics For D.0 = 46 earing Capacity o Footings on Slopes owles (997): A simpliied approach g u α = 45+φ / ' g' u e D 45 φ / d a α b α c e' 45 φ / d' r a' α α r o b' c' e' 45 φ / ' d' g' u a' α α b' c' Compute the reduced actor N c as: abde N c = Nc. abde Compute the reduced actor N as: Aaeg N = N. A aeg 47 Soil Compressibility Eects on earing Capacity Vesic s (973) Approach Use o soil compressibility actors in general bearing capacity euation. These correction actors are unction o the rigidity o soil G Rigidity Index o Soil, I s r : Ir = c + σ vo tanφ Critical Rigidity Index o Soil, I cr : φ tan 45 Irc = 0.5. e / Compressibility Correction Factors, c c, c g, and c For Ir I rc cc = c = c γ = For I r < I rc 3.07.sin φ.log0 (. I ) tan r φ + + sinφ c = cγ = e For φ = 0 cc = log Ir c For φ > 0 cc = c N tanφ ( D ) σ = γ. + / vo 48 6

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters Soil Mechanics Shear Strength of Soils Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw 1 Outline Shear Failure Soil Strength Mohr-Coulomb Failure Criterion Laboratory Shear Strength Test

More information

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA

More information

CE 366 SETTLEMENT (Problems & Solutions)

CE 366 SETTLEMENT (Problems & Solutions) CE 366 SETTLEMENT (Problems & Solutions) P. 1) LOAD UNDER A RECTANGULAR AREA (1) Question: The footing shown in the figure below exerts a uniform pressure of 300 kn/m 2 to the soil. Determine vertical

More information

Bearing Capacity (Daya Dukung Tanah)

Bearing Capacity (Daya Dukung Tanah) Bearing Capacity (Daya Dukung Tanah) Dr. Ir.H. Erizal, MAgr Definisi Daya dukung yang diizinkan (allowable bearing cap.) tekanan maksimum yang dapat diaplikasikan ke tanah dimana 2 kondisi diatas dipenuhi.

More information

VERTICAL STRESS INCREASES IN SOIL TYPES OF LOADING. Point Loads (P) Line Loads (q/unit length) Examples: - Posts. Examples: - Railroad track

VERTICAL STRESS INCREASES IN SOIL TYPES OF LOADING. Point Loads (P) Line Loads (q/unit length) Examples: - Posts. Examples: - Railroad track VERTICAL STRESS INCREASES IN SOIL Point Loads (P) TYPES OF LOADING Line Loads (q/unit length) Revised 0/015 Figure 6.11. Das FGE (005). Examples: - Posts Figure 6.1. Das FGE (005). Examples: - Railroad

More information

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

More information

Estimation of Compression Properties of Clayey Soils Salt Lake Valley, Utah

Estimation of Compression Properties of Clayey Soils Salt Lake Valley, Utah Estimation of Compression Properties of Clayey Soils Salt Lake Valley, Utah Report Prepared for the Utah Department of Transportation Research Division by Steven F. Bartlett, PhD. P.E. Assistant Professor

More information

Soil Strength. Performance Evaluation of Constructed Facilities Fall 2004. Prof. Mesut Pervizpour Office: KH #203 Ph: x4046

Soil Strength. Performance Evaluation of Constructed Facilities Fall 2004. Prof. Mesut Pervizpour Office: KH #203 Ph: x4046 ENGR-627 Performance Evaluation of Constructed Facilities, Lecture # 4 Performance Evaluation of Constructed Facilities Fall 2004 Prof. Mesut Pervizpour Office: KH #203 Ph: x4046 1 Soil Strength 2 Soil

More information

PILE FOUNDATIONS FM 5-134

PILE FOUNDATIONS FM 5-134 C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

13. AN INTRODUCTION TO FOUNDATION ENGINEERING

13. AN INTRODUCTION TO FOUNDATION ENGINEERING 13-1 13. AN INTRODUCTION TO FOUNDATION ENGINEERING 13.1 TYPES OF FOUNDATIONS The foundation is that portion of a structure that transmits the loads from the structure to the underlying foundation material.

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

More information

When to Use Immediate Settlement in Settle 3D

When to Use Immediate Settlement in Settle 3D When to Use Immediate Settlement in Settle 3D Most engineers agree that settlement is made up of three components: immediate, primary consolidation and secondary consolidation (or creep). Most engineers

More information

Figure 2.31. CPT Equipment

Figure 2.31. CPT Equipment Soil tests (1) In-situ test In order to sound the strength of the soils in Las Colinas Mountain, portable cone penetration tests (Japan Geotechnical Society, 1995) were performed at three points C1-C3

More information

Soil Mechanics SOIL STRENGTH page 1

Soil Mechanics SOIL STRENGTH page 1 Soil Mechanics SOIL STRENGTH page 1 Contents of this chapter : CHAPITRE 6. SOIL STRENGTH...1 6.1 PRINCIPAL PLANES AND PRINCIPAL STRESSES...1 6.2 MOHR CIRCLE...1 6.2.1 POLE METHOD OF FINDING STRESSES ON

More information

How To Model A Shallow Foundation

How To Model A Shallow Foundation Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

More information

DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST

DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST III Międzynarodowa Konferencja Naukowo-Techniczna Nowoczesne technologie w budownictwie drogowym Poznań, 8 9 września 005 3rd International Conference Modern Technologies in Highway Engineering Poznań,

More information

THE EFFECT OF THE SPINDLE SYSTEM ON THE POSITION OF CIRCULAR SAW TEETH A STATIC APPROACH

THE EFFECT OF THE SPINDLE SYSTEM ON THE POSITION OF CIRCULAR SAW TEETH A STATIC APPROACH TRIESKOVÉ A BEZTRIESKOVÉ OBRÁBANIE DREVA 2006 12. - 14. 10. 2006 305 THE EFFECT OF THE SPINDLE SYSTEM ON THE POSITION OF CIRCULAR SAW TEETH A STATIC APPROACH Roman Wasielewski - Kazimierz A. Orłowski Abstract

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

More information

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives In this section you will learn the following Penetrometer Tests Standard penetration test Static cone penetration test Dynamic cone

More information

FOOTING DESIGN EXAMPLE

FOOTING DESIGN EXAMPLE County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

More information

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 391 CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOIL-STRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soil-structure interaction

More information

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY International Conference on Structural and Foundation Failures August 2-4, 2004, Singapore ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY A. S. Osman, H.C. Yeow and M.D. Bolton

More information

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST OBJEVTIVES To determine the shear strength parameters for a

More information

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc. Design Manual Chapter 6 - Geotechnical 6B - Subsurface Exploration Program 6B-2 Testing A. General Information Several testing methods can be used to measure soil engineering properties. The advantages,

More information

PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center

PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Drained and Undrained Conditions. Undrained and Drained Shear Strength

Drained and Undrained Conditions. Undrained and Drained Shear Strength Drained and Undrained Conditions Undrained and Drained Shear Strength Lecture No. October, 00 Drained condition occurs when there is no change in pore water pressure due to external loading. In a drained

More information

Improvement in physical properties for ground treated with rapid impact compaction

Improvement in physical properties for ground treated with rapid impact compaction International Journal of the Physical Sciences Vol. 6(22), pp. 5133-5140, 2 October 2011 Available online at http://www.academicjournals.org/ijps ISSN 1992-1950 2011 Academic Journals Full Length Research

More information

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil ISSN: 319-53 (An ISO 39: 00 Certified Organization) A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil Utpal Kumar Das Associate Professor, Department

More information

A N Beal EARTH RETAINING STRUCTURES - worked examples 1

A N Beal EARTH RETAINING STRUCTURES - worked examples 1 A N Beal EARTH RETAINING STRUCTURES - worked examples 1 Worked examples of retaining wall design to BS8002 The following worked examples have been prepared to illustrate the application of BS8002 to retaining

More information

GUJARAT NARMADA VALLEY FERTILIZER CO. LTD. (GNFC Ltd) TECHNICAL REPORT GEOTECHNICAL INVESTIGATION FOR PROPOSED TDI PLANT AT VILLAGE RAHIYAD, DAHEJ

GUJARAT NARMADA VALLEY FERTILIZER CO. LTD. (GNFC Ltd) TECHNICAL REPORT GEOTECHNICAL INVESTIGATION FOR PROPOSED TDI PLANT AT VILLAGE RAHIYAD, DAHEJ GUJARAT NARMADA VALLEY FERTILIZER CO. LTD. (GNFC Ltd) TECHNICAL REPORT OF GEOTECHNICAL INVESTIGATION FOR PROPOSED TDI PLANT AT VILLAGE RAHIYAD, DAHEJ BY: DR.K.C.THAKER B.E.(CIVIL) ; M.TECH (S.M.); (I.I.T,

More information

CE-632 Foundation Analysis and Design

CE-632 Foundation Analysis and Design CE-63 Foundation Analysis and Design Pile Foundations 1 Indian Standards on Piles IS 911 : Part 1 : Sec 1 : 1979 Driven cast in-situ concrete piles IS 911 : Part 1 : Sec : 1979 Bored cast-in-situ piles

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts.

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts. 8.7. Design procedure for foundation The design of any foundation consists of following two parts. 8.7.1 Stability analysis Stability analysis aims at removing the possibility of failure of foundation

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

FUNDAMENTALS OF CONSOLIDATION

FUNDAMENTALS OF CONSOLIDATION FUNDAMENTALS OF CONSOLIDATION SAND (Vertical Stress Increase) CLAY CONSOLIDATION: Volume change in saturated soils caused by the expulsion of pore water from loading. Saturated Soils: causes u to increase

More information

How To Design A Foundation

How To Design A Foundation The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

More information

Soil Mechanics. Soil Mechanics

Soil Mechanics. Soil Mechanics Soil is the most misunderstood term in the field. The problem arises in the reasons for which different groups or professions study soils. Soil scientists are interested in soils as a medium for plant

More information

Consolidation and Settlement Analysis

Consolidation and Settlement Analysis 19 Consolidation and Settlement Analysis Patrick J. Fox Purdue University 19.1 Components of Total Settlement 19.2 Immediate Settlement 19.3 Consolidation Settlement Total Consolidation Settlement Rate

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

Pullout Testing of Xgrid PET PVC 40/20 IT and Xgrid PET PVC 80/30 IT In Sand

Pullout Testing of Xgrid PET PVC 40/20 IT and Xgrid PET PVC 80/30 IT In Sand Xgrid PET PVC 40 30 IT and PET PVC 80 30 IT in Sand - Pullout Testing Page 1 Pullout Testing of Xgrid PET PVC 40/20 IT and Xgrid PET PVC 80/30 IT In Sand February, 2006 Submitted to: TEMA Technologies

More information

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction 2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Reliability of

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Doug Jenkins 1, Chris Lawson 2 1 Interactive Design Services, 2 Reinforced

More information

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO STANDARD IS: 2720 (Part 16) 1979. DEFINITION California bearing ratio is the ratio of force per unit area required to penetrate in to a soil mass with

More information

Laterally Loaded Piles

Laterally Loaded Piles Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

THE EFFECT OF IMPROVEMENT SURROUNDING SOIL ON BORED PILE FRICTION CAPACITY

THE EFFECT OF IMPROVEMENT SURROUNDING SOIL ON BORED PILE FRICTION CAPACITY International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 260-273, Article ID: IJCIET_07_01_022 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

APPENDIX G SETTLEMENT

APPENDIX G SETTLEMENT APPENDIX G SETTLEMENT TABLE OF CONTENTS G.1 IN T R O D U C T IO N... 1 G.2 MATERIAL PLACEMENT AND COMPACTION... 1 G.2.1 Incom pressible M aterials... 1 G.2.2 Compressible Materials... 2 G.2.3 Soil P lacem

More information

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage 3.3. Evaluation of Building Foundation Damage Basic Terminology: Damage: Destruction, deformation, inclination and settlement of a building foundation caused by an earthquake. Damage grade: Degree of danger

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

ALLOWABLE LOADS ON A SINGLE PILE

ALLOWABLE LOADS ON A SINGLE PILE C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

More information

FINAL REPORT ON SOIL INVESTIGATION

FINAL REPORT ON SOIL INVESTIGATION FINAL REPORT ON SOIL INVESTIGATION FOR PROPOSED CONSTRUCTION AT SS-6B AREA AT HPCL VISAKH REFINERY VISAKHAPATNAM ANDHRA PRADESH J.J. ASSOCIATES(VISAKHAPATNAM) AETP(P) LIMITED #11-6-3, RockDale Layout,

More information

An Example of Using ReSSA in Complex Geometry of Reinforced Tiered Slope Introduction Background

An Example of Using ReSSA in Complex Geometry of Reinforced Tiered Slope Introduction Background An Example of Using ReSSA in Complex Geometry of Reinforced Tiered Slope By Dov Leshchinsky Copyright 2001, ADAMA Engineering, Inc. All Rights Reserved Introduction Geosynthetic reinforced soil structures

More information

Chapter 5 Force and Motion I

Chapter 5 Force and Motion I Chapter 5 orce and Motion I I. ewton s irst law. II. ewton s second law. III. Particular orces: -Gravitational - Weight -ormal -riction - ension IV. ewton s third law. ewton mechanics laws cannot be applied

More information

Effect of Gradation on Bearing Capacity and Settlement of Reinforced Sand

Effect of Gradation on Bearing Capacity and Settlement of Reinforced Sand Effect of Gradation on Bearing Capacity and Settlement of Reinforced Sand M. S. Dixit Research Scholar, Department of Civil Engineering, Government College of Engineering, Aurangabad (Maharashtra State),

More information

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate Addendum HELICAL PULLDOWN Micropile (HPM) Introduction The HPM is a system for constructing a grout column around the shaft of a standard Helical Screw Foundation (see Figure A1). To begin the process,

More information

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1 INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

10.1 Powder mechanics

10.1 Powder mechanics Fluid and Particulate systems 424514 /2014 POWDER MECHANICS & POWDER FLOW TESTING 10 Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 10.1 Powder mechanics RoNz 2/38 Types of flow of

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Vol.3, Issue.1, Jan-Feb. 2013 pp-284-290 ISSN: 2249-6645 Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Mahmoud M. Abu zeid, 1 Amr M. Radwan, 2 Emad A. Osman, 3 Ahmed M.Abu-bakr,

More information

OPERE DI PROTEZIONE CONTRO LA CADUTA MASSI: ASPETTI PROGETTUALI. Reti in aderenza. Daniele PEILA. Daniele PEILA

OPERE DI PROTEZIONE CONTRO LA CADUTA MASSI: ASPETTI PROGETTUALI. Reti in aderenza. Daniele PEILA. Daniele PEILA OPERE DI PROTEZIONE CONTRO LA CADUTA MASSI: ASPETTI PROGETTUALI Reti in aderenza 0 Simple mesh drapery system 1 Simple mesh drapery system 2 Fixed drapery sistem 3 Fixed drapery sistem 4 Fixed drapery

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand Discovery ANALYSIS The International Daily journal ISSN 2278 5469 EISSN 2278 5450 2015 Discovery Publication. All Rights Reserved Effect of grain size, gradation and relative density on shear strength

More information

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 3 Number 12 (2014) pp. 950-961 http://www.ijcmas.com Original Research Article Rehabilitation of Existing Foundation

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Dynamic Load Testing of Helical Piles

Dynamic Load Testing of Helical Piles Dynamic Load Testing of Helical Piles ANNUAL KANSAS CITY SPECIALTY SEMINAR 2014 JANUARY 10, 2014 Jorge Beim JWB Consulting LLC Pile Dynamics, Inc. Main Topics Brief description of the Dynamic Load Test

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

More information

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall

More information

Abstract. Keywords. Pouya Salari 1, Gholam Reza Lashkaripour 2*, Mohammad Ghafoori 2. Email: * lashkaripour@um.ac.ir

Abstract. Keywords. Pouya Salari 1, Gholam Reza Lashkaripour 2*, Mohammad Ghafoori 2. Email: * lashkaripour@um.ac.ir Open Journal of Geology, 2015, 5, 231-2 Published Online May 2015 in SciRes. http://www.scirp.org/journal/ojg http://dx.doi.org/./ojg.2015.55021 Presentation of Empirical Equations for Estimating Internal

More information

Stress Analysis, Strain Analysis, and Shearing of Soils

Stress Analysis, Strain Analysis, and Shearing of Soils C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind

More information

HOW TO DESIGN CONCRETE STRUCTURES Foundations

HOW TO DESIGN CONCRETE STRUCTURES Foundations HOW TO DESIGN CONCRETE STRUCTURES Foundations Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and

More information

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer HS-4210_MAN_09.08 product manual HS-4210 Digital Static Cone Penetrometer Introduction This Manual covers the measurement of bearing capacity using the Humboldt Digital Static Cone Penetrometer (DSCP).

More information

BRIDGE DESIGN SPECIFICATIONS NOVEMBER 2003 SECTION 4 - FOUNDATIONS

BRIDGE DESIGN SPECIFICATIONS NOVEMBER 2003 SECTION 4 - FOUNDATIONS SECTION 4 - FOUNDATIONS Part A General Requirements and Materials 4.1 GENERAL Foundations shall be designed to support all live and dead loads, and earth and water pressure loadings in accordance with

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

The Geometry of Perspective Projection

The Geometry of Perspective Projection The Geometry o Perspective Projection Pinhole camera and perspective projection - This is the simplest imaging device which, however, captures accurately the geometry o perspective projection. -Rays o

More information

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION

CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION CONCRETE FLOOR SLAB & CASTING BED CONSTRUCTION General 7 www.meadowburke.com 877-518-7665 MB1109 CONCRETE FLOOR SLAB AND CASTING BED CONSTRUCTION Quality Construction Begins at Ground Level Everything

More information

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions This is an attempt to create a stand alone self learning module on site investigation. Fasten your seat belts. Sit back, relax and enjoy. 1 2 Site Investigation Some unsung heroes of Civil Engineering

More information