# Calculating landscape surface area from digital elevation models

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CALCULATING SURFACE AREA 829 Calculating landscape surface area from digital elevation models Jeff S. Jenness Abstract There are many reasons to want to know the true surface area of the landscape, especially in landscape analysis and studies of wildlife habitat. Surface area provides a better estimate of the land area available to an animal than planimetric area, and the ratio of this surface area to planimetric area provides a useful measure of topographic roughness of the landscape. This paper describes a straightforward method of calculating surface-area grids directly from digital elevation models (DEMs), by generating 8 3-dimensional triangles connecting each cell centerpoint with the centerpoints of the 8 surrounding cells, then calculating and summing the area of the portions of each triangle that lay within the cell boundary. This method tended to be slightly less accurate than using Triangulated Irregular Networks (TINs) to generate surface-area statistics, especially when trying to analyze areas enclosed by vector-based polygons (i.e., management units or study areas) when there were few cells within the polygon. Accuracy and precision increased rapidly with increasing cell counts, however, and the calculated surface-area value was consistently close to the TIN-based area value at cell counts above 250. Raster-based analyses offer several advantages that are difficult or impossible to achieve with TINs, including neighborhood analysis, faster processing speed, and more consistent output. Useful derivative products such as surface-ratio grids are simple to calculate from surface-area grids. Finally, raster-formatted digital elevation data are widely and often freely available, whereas TINs must generally be generated by the user. Key words elevation, landscape, surface area, surface ratio, terrain ruggedness, TIN, topographic roughness, rugosity, triangulated irregular network Landscape area is almost always presented in terms of planimetric area,as if a square kilometer in a mountainous area represents the same amount of land area as a square kilometer in the plains. Predictions of home ranges for wildlife species generally use planimetric area even when describing mountain goats (Oreamnos americanus) and pumas (Felis concolor). But if a species behavior and population dynamics are functions of available resources, and if those resources are spatially limited, I suggest assessing resources using surface area of the landscape. Surface area also is a basis for a useful measure of landscape topographic roughness. The surface-area ratio of any particular region on the landscape can be calculated by dividing the surface area of that region by the planimetric area. For example, Bowden et al. (2003) found that ratio estimators of Mexican spotted owl (Strix occidentalis lucida) population size were more precise using a version of this surface-area ratio than with planimetric area. Many wildlife species are identified with topographic attributes, including the topographic roughness or ruggedness of the landscape. For example,wakelyn (1987) found greater numbers of Rocky Mountain bighorn sheep (Ovis canadensis canadensis) in mountain ranges with higher measures of topographic relief, and Gionfriddo and Krausman (1986) found that desert bighorn sheep (O. c. mexicana) generally were found at or near Author's address: United States Department of Agriculture Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Drive, Flagstaff, AZ 86001, USA; Wildlife Society Bulletin 2004, 32(3): Peer refereed

2 830 Wildlife Society Bulletin 2004, 32(3): the tops of steep slopes and close to steep, rocky escape terrain. Warrick and Cypher (1998) found that kit foxes (Vulpes macrotis mutica) near Bakersfield, California were strongly associated with low topographic ruggedness, and Wiggers and Beasom (1986) found that Texas white-tailed deer (Odocoileus virginianus texanus) appeared to prefer areas with less topographic ruggedness than desert mule deer (O. hermionus crooki). A variety of methods exist in the literature for measuring terrain irregularity. Hobson (1972) described some early computational methods for estimating surface area and discussed the concept of surface-area ratios. Beasom (1983) described a method for estimating land surface ruggedness based on the intersections of sample points and contour lines on a contour map, and Jenness (2000) described a similar method based on measuring the density of contour lines in an area. Mandelbrot (1983:29, ) described the concept of a fractal dimension in which the dimension of an irregular surface lies between 2 (representing a flat plain) and 3 (representing a surface that goes through every point within a volume). Calculating this fractal dimension can be very challenging computationally, and Polidori et al. (1991), Lam and De Cola (1993), and Lorimer et al. (1994) discussed a variety of methods for estimating the fractal dimension for a landscape. An estimate of surface area also could be derived from slope and aspect within a cell (Berry 2002), although Hodgson (1995) demonstrated how most slope-aspect algorithms generate values reflecting an area times the size of the actual cell. Surface-area values derived with this method would therefore be unduly influenced by adjacent cells. In this paper I demonstrate a straightforward method for calculating the surface area of landscapes from digital elevation models (DEMs), which are widely and freely available within the United States and are becoming increasingly available throughout the rest of the world (Jet Propulsion Laboratory 2003, Gesch et al. 2002, United States Geological Survey [USGS] 2002). I compared surface-area values produced by this method with values produced with triangulated irregular networks (TINs), which are 3-dimensional vector representations of a landscape created by connecting the DEM elevation values into a continuous surface. Unlike DEMs, these TINs are continuous vector surfaces and therefore can be precisely measured and clipped. I also discuss advantages and disadvantages of this method in comparison to using TINs. Methods Throughout this paper I refer to grids, and in this case a grid is a specific type of geographic data used by ArcInfo and ArcView. A grid essentially is a raster image in which each pixel is referred to as a cell and has a particular value associated with it. For USGS DEMs, the cell value reflects the elevation in meters of the central point in that cell. The method described here derives surface areas for a cell using elevation information from that cell plus the 8 adjacent cells. For example, given a sample elevation grid, this method would calculate the surface area for the cell with elevation value 165 based on the elevation values of that cell plus the 8 surrounding cells (Figure 1). That central cell and its surrounding cells are pictured in 3-dimensional space as a set of adjacent columns, each rising as high as its specified elevation value (Figure 2b). The 3-dimensional centerpoints of each of these 9 cells are used to calculate the Euclidian distance between the focal cell s centerpoint and the centerpoints of each of the 8 surrounding cells. I use the term surface length to highlight the 3-dimensional character of this line; this is not the planimetric (horizontal) distance between cell centerpoints. Next, calculate the surface lengths of the lines that connect each of the 8 surrounding cells with the ones adjacent to it to get the lengths of the sides of the 8 triangles projected in 3-dimensional space that all meet at the centerpoint of the central cell (Figure 3b). These surface lengths are calculated using the Pythagorean theorem. Thus, for any 2 cell center- Figure 1. Small Digital Elevation Model (DEM) with elevation values overlaid on each cell. Use a moving window approach to calculate the surface area for each cell based on the elevation from that cell plus the elevation values for the 8 surrounding cells.

3 Calculating surface area Jenness 831 Figure 2. Using the elevation values from Figure 1, cells A-I represent cells necessary to calculate the surface area for the central cell (a). The cells can be visualized as a set of adjacent columns each rising to their respective elevation values (b). points P and Q: where a=planimetric (horizontal) distance from P to Q, b=difference in elevation between P and Q, c=surface distance from P to Q. Distance b is easy to calculate because it is simply the absolute difference between the 2 cell elevation values. Distance a is even easier for the cells directly to the north, east, south, and west, because it is simply the length of the side of the cells (L). For cells in diagonal directions, use the Pythagorean theorem again to calculate that distance a = 2L 2. Conducting these calculations for the central cell plus the 8 adjacent cells produces the lengths for the sides of the 8 triangles connecting the center of the central cell to the centers of the 8 adjacent cells. However, this leads to a minor complication because these triangles extend past the cell boundary and therefore represent an area larger than the cell. The triangles must be trimmed to the cell Figure 3. Calculate 3-dimensional lengths between the center of the central cell to the centers of the surrounding cells, and the lengths between adjacent surrounding cells, to get the edge lengths for the triangles I VIII (a). These triangles form a continuous surface over the 9 cells (b). boundaries (Figure 4) by dividing all the length values by 2. This action is justified based on the Side- Angle-Side similarity criterion for similar triangles (Euclid 1956:204), which states that If two triangles have one angle equal to one angle and the sides about the equal angles proportional, the triangles will be equiangular and will have those angles equal which the corresponding sides subtend. Each original triangle is similar to its corresponding clipped triangle because the 2 sides extending from the center cell in the original triangle are exactly twice as long as the respective sides in the clipped triangle, and the angles defined by these 2 sides are the same in each triangle. Therefore, the third side of the clipped triangle must be exactly half as long as the corresponding side of the original triangle. Now when the lengths of the 3 sides are used to calculate the area of the triangle, the 3 sides will represent only the portion of the triangle that lies within the cell boundaries. For example, using the elevation DEM from Figure 1, and assuming that

4 832 Wildlife Society Bulletin 2004, 32(3): Table 1. Elevation values for the 9 cells in Figure 2a are used to generate 16 surface lengths for the edges of the 8 triangles in Figure 3a. These surface lengths are divided in half to get the edges for the 8 triangles in Figure 4a. Surface Triangle Planimetric Elevation Surface length (m) edge length (m) difference (m) length (m) 2 AB BC DE EF GH HI AD BE CF DG EH FI EA EC EG EI Figure 4. Surface area within the cell should only reflect the areas of triangles i viii (a), so trim the triangles to the cell boundaries (b) by dividing all the triangle side lengths by 2. cells are 100 m on a side and that elevation values are also in meters, begin by calculating the 16 triangle edge lengths for the 8 3-dimensional triangles radiating out from the central cell E (Figures 2a, 3a). Divide these surface lengths in half to get the sides for triangles i viii in Figure 4 (Table 1), and use those lengths to determine the surface areas for each triangle (Table 2). The area of a triangle given the lengths of sides a, b, and c (Abramowitz and Stegun 1972) is calculated as: where Finally, sum the 8 triangle area values to get final surface-area value for the cell (10, m 2 in this example). This is 280 m 2 more than planimetric area of the cell (100 m 100 m=10,000 m 2 ). Testing I tested the accuracy of this method by generating a surface-area grid in which the cell value for each cell reflected the surface area within that cell. I then calculated total surface area within several sets of polygons randomly distributed across the landscape. I initially calculated polygonal surface areas using the methods described in this paper and then compared those with surface-area values calculated via TINs. As 3D vector representations of the landscape, these TINs provide a true continuous surface based on the DEM elevation values. They provide a good baseline to compare against Table 2. Calculations of true surface area for triangles i viii (Figure 4a) based on the 16 edge lengths from Table 1. Triangle Triangle Edges Edge lengths (m) area (m 2 ) i EA, AB, BE 71.81, 50.99, , ii BE, BC, EC 50.06, 50.56, , iii AD, DE, EA 50.12, 50.80, , iv EC, CF, EF 70.89, 50.25, , v DE, DG, EG 50.80, 50.16, , vi EF, FI, EI 50.99, 51.31, , vii EG, EH, GH 70.89, 50.06, , viii EH, EI, HI 50.06, 73.91, ,338.64

5 because they can be precisely clipped to polygon boundaries and measured. I used elevation data derived from 15 1 o 1 o USGS 1:250,000-scale DEMs downloaded from the USGS EROS data center website (USGS 2002). I converted these DEMs into ArcInfo grids and combined them into a single seamless grid using the ArcView Spatial Analyst extension (Environmental Systems Research Institute [ESRI] 2000b), and then projected the final grid into the UTM Zone 12 projection using the Reproject Grids extension (Quantitative Decisions 1999). The projected grid contained approximately 19 million cells. This data set was developed for use in a separate study (Ganey et al. 1999), and as part of that study I clipped the grid to an irregular-shaped polygon covering mountainous central portions of Arizona and western New Mexico (Figure 5). Because of the clip, only about 6.8 million of these cells contained elevation values. Cell dimensions were approximately 92 m 92 m, and the entire region containing data covered 54,850 km 2. Generating polygons Accuracy under ideal conditions. To generate an accuracy baseline, I used polygons that conformed perfectly to cell edges. These polygons had none of the edge-effect problems found in normal irregularly shaped polygons, and therefore surfacearea calculations within them should give results as close as possible to values determined by TIN-based calculations. I generated 500 such rectangular polygons with random lengths, widths, and locations (Figure 6a) with the only provisos being that they lay completely within the digital elevation model and that their edges conform perfectly to the cell edges. These rectangles ranged in area from 16 ha (18 cells) to 33,661 ha (39,601 cells). I then classified them into 13 size classes based on cell counts Calculating surface area Jenness 833 Figure 5. Sample elevation data derived from 1 o 1 o USGS 1:250,000-scale DEMs, containing approximately 6.8 million elevation values arrayed across the mountainous central portions of Arizona and western New Mexico. to see if there were any changes in accuracy as cell counts increased. Accuracy in real-world conditions. I used a realworld example of 983 irregularly shaped watersheds originally developed for a separate research effort (Ganey et al. 1999) (Figure 6b). These watersheds ranged in size from 1.7 ha (2 cells) up to 33,980 ha (39,579 cells). As with the rectangles, I classified these polygons into 13 size classes based on cell size. Accuracy vs. area-to-edge ratio. Finally, to examine accuracy as a function of the relationship between area and edge length, I generated a set of 700 elliptical polygons of random shape and orientation, but all with an internal area equal to approximately 215 ha (250 cells) (Figure 6c). I chose this size because, based on visual examination of the data, it appeared to be at approximately the upper boundary of the size range at which most variation in accuracy seems to occur, and therefore ellipses of this size should be sensitive to edge-effect problems. Because of the random arrangement of these ellipses, actual cell counts ranged from cells (x - = 251, SD=4). Hence, I standardized area-to-edge ratio

6 834 Wildlife Society Bulletin 2004, 32(3): By this method, a perfect circle would receive an area-to-edge ratio of 1 while an infinitely long ellipse would receive a value of 0. I suspected that the accuracy would improve as the area-to-edge ratios approached 1, so I generated these 700 ellipses such that there would be 70 ellipses in each 0.1-unit range between 0 and 1 (i.e., 70 ellipses between 0 and 0.1,70 between 0.1 and 0.2, etc.). This allowed me to assess accuracy over the full range of possible area-to-edge values. Figure 6. Three sets of sample polygons used to test the accuracy of this method: a) 500 rectangular polygons randomly distributed across the landscape, whose boundaries exactly correspond with cell edges in the DEM so that both grid-based and TIN-based calculations of surface areas from these polygons will reflect the exact same underlying surface; b) 983 watersheds distributed across the landscape, providing real-world examples of irregularly shaped polygons; and c) 700 elliptical polygons of random shape and orientation (some of which are so elongated that they appear as lines), each with a size approximately equal to 215 ha (250 cells), randomly distributed across the landscape. values based on the area and circumference of a perfect circle (i.e., the shape with the maximum possible area-to-edge ratio) with an area equivalent to 250 cells. Each ellipse received an area-toedge value of: Generating surface areas per polygon I used the ArcView 3.2a GIS package with Spatial Analyst 2.0 (ESRI 2000a, b), plus the Surface Areas and Ratios from Elevation Grid extension (Jenness 2001a), to automate the surface-area calculations and to provide surface area statistics for the various sets of test polygons. To calculate TINs for each polygon, I used ArcView with 3D Analyst (ESRI 1998) along with the Surface Tools for Points, Lines and Polygons extension (Jenness 2001b) to generate the polygon statistics. When generating a TIN from a grid data set, ArcView automatically selects the grid cell centerpoints to use with the TIN based on a vertical accuracy that you specify (ESRI 1997:32). A vertical accuracy of 10, for example, would produce a TIN surface model that was always within 10 vertical map units of the grid cell centers. ArcView does not accept a vertical accuracy of 0, so I generated TINs with vertical accuracies of m. Statistical tests I evaluated how close the grid-based surface-area values for each polygon came to the TIN-based values by generating a ratio of the TIN-based value to the grid-based value. By this method, a value of 1 indicates a perfect match. For each sample polygon data set, I generated boxplots of these ratios within each size class to examine the range of values among size classes. I then calculated correlation between the grid-based and TIN-based values using Spearman s rank correlation (r s ) because my surfacearea values were not normally distributed. Finally, I checked for any potential multiplicative or additive biases by computing simple linear regression analyses, forced through the origin, for each data set and checking that the slope values were approximately equal to 1. I used SPSS 9.0 (SPSS, Inc. 1998) for all statistical analyses.

7 Results The ratios of TIN-based to grid-based surface-area values for the 500 rectangles tended to be very close to 1 in all size classes (Figure 7), with slightly more variation at the lower size classes. The TIN-based values tended to be slightly but consistently higher than the grid-based values at cell counts >2,500, with mean ratio values ranging from Regression through the origin produced a slope value of (SE < , 95% CI = ). The TIN-based surface areas and the gridbased surface areas were highly correlated (r s > 0.999). The ratios among the 983 watersheds also tended to come close to 1 in all size classes (Figure 8). Again,the greatest variability was at the smallest size class (cell count<250). TIN-based calculations again were highly correlated with grid-based calculations (r s > 0.999). Regression through the origin produced a slope value of (SE < , 95% CI = ). The set of 700 standardized ellipses showed a general trend toward increasing accuracy and precision as the area-toedge ratios approached 1, with the range of values in each class becoming progressively narrower (Figure 9). The median value was close to 1 in all cases, but the correlation between TIN-based and Calculating surface area Jenness 835 Figure 7. Boxplots representing the ratio of TIN-based surface area over grid-based surface area, for the 500 randomly distributed rectangles from Figure 6a. The edges of these rectangles perfectly correspond with the edges of the underlying grid cells. Horizontal bars within boxes represent the median, the tops and bottoms of the boxes represent the 75th and 25th quantiles, and the whiskers represent the range excluding outliers and extremes. Outliers (values >1.5 box lengths from box) are displayed with the symbol o and extremes (values >3 box lengths from the box ) are displayed with the symbol *. grid-based calculations among these smaller polygons was lower than with the larger polygons (r s = 0.825). Regression through the origin produced a slope value of (SE = 0.001, 95% CI = ). Figure 8. Boxplots representing the ratio of TIN-based surface area over grid-based surface area, for the 983 watersheds from Figure 6b.

8 836 Wildlife Society Bulletin 2004, 32(3): Figure 9. Boxplots representing the ratio of TIN-based surface area over grid-based surface area, for the 700 standardized ellipses from Figure 6c. These ellipses have a constant internal area but random shapes, orientations, and locations. They are classified according to their standardized area-to-edge ratio, where 0 reflects an infinitely stretched ellipse and 1 reflects a perfect circle. Discussion Raster data sets such as DEMs and surface-area grids are inherently less accurate and precise than vector data sets such as TINs and polygons. The most accurate measure of the surface area within a polygon should include all the area within the polygon and no more. Except in unusual circumstances, raster data sets do not meet this criterion because cells in a raster data set do not sit perfectly within polygon boundaries. Cells typically overlap the polygon edges, and GIS packages generally consider cells to be inside a polygon only if the cell center lies inside that polygon. Therefore, raster representations of polygons have a stairstepped appearance, incorporating some areas outside the polygon and missing some areas inside. Cells lying directly on the border always lie partly inside and partly outside a polygon, but they are always classified as being entirely inside or outside the polygon. Therefore, the accuracy of a surfacearea measurement within a polygon is affected by what proportion of the cells lie along the polygon edge. This proportion typically decreases as the number of cells increases, so accuracy should also increase as the number of cells increases. Although cell-based calculations are inherently less precise and accurate than vector-based calculations, this method still came extremely close to duplicating results from TIN-based surface-area calculations. Accuracy and precision increased as the number of cells increased. Under ideal conditions in which the test polygon edges corresponded exactly to the cell edges, this method produced nearly identical surface-area calculations. The regression slope values and extremely low standard error values demonstrated that there was no apparent bias in this method. Surface-area values computed using this method did tend to be slightly lower than those computed with TINbased methods, but only on the order of about m 2 /ha, suggesting that this method did well at duplicating TIN-based values for grid cells that do not lie on polygon boundaries. Under conditions more analogous to real-world situations, this method produced variable accuracies when there were <250 cells in a particular polygon and good-to-excellent accuracy at cell counts >250. At higher cell counts, the grid-based values were almost identical to TIN-based values. The analysis of the 983 watersheds showed considerably more variability when the polygons contained <250 grid cells (Figure 8), which is reasonable considering the inherent imprecision in gridbased processes. Polygons containing relatively few grid cells would be most affected by errors caused by grid cells lying on the polygon boundary. The proportion of interior cells to edge cells increased as overall cell counts increased, causing more of the total polygon surface area to be derived from the highly accurate interior cell values. This trend was also illustrated in the calculations involving the 700 standardized ellipses, in which variability steadily decreased as area-to-edge ratios approached 1. The range of values in the class was 4 times as large as the range in the class and 7 times the range in the class

10 838 Wildlife Society Bulletin 2004, 32(3): at cell counts >250. The calculations involved, while most effectively computed in a GIS package, also could easily be done in a spreadsheet. For users of ESRI s ArcView 3.x software with Spatial Analyst, the author offers a free extension that automates the process and directly produces surface-area and surface-ratio grids from grid-formatted DEMs. This extension may be downloaded from the author s website at arcview/surface_areas.htm or from the ESRI ArcScripts site at details.asp?dbid= Acknowledgments. I thank J. Aguilar-Manjarrez, L. I. Engelman, J. L. Ganey, L. M. Johnson, R. King, D. Whitaker, G.White, and an anonymous reviewer for their valuable assistance with reviewing early drafts of this manuscript. Literature cited ABRAMOWITZ, M., AND I.A. STEGUN Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover Publications, New York, New York, USA. BEASOM, S. L A technique for assessing land surface ruggedness. Journal of Wildlife Management 47: BERRY, J. K Use surface area for realistic calculations. Geoworld 15(9): BOWDEN, D. C., G. C.WHITE,A. B. FRANKLIN, AND J. L. GANEY Estimating population size with correlated sampling unit estimates. Journal of Wildlife Management 67: ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE Using the ArcView spatial analyst:advanced spatial analysis using raster and vector data. Environmental Systems Research Institute, Redlands, California, USA. ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE Using ArcView 3D analyst: 3D surface creation, visualization, and analysis. Environmental Systems Research Institute, Redlands, California, USA. ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE ArcView 3D analyst. (ArcView 3.x Extension). Version 1. Environmental Systems Research Institute, Redlands, California, USA. ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE. 2000a. ArcView GIS 3.2a. Environmental Systems Research Institute, Redlands, California, USA. ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE. 2000b. ArcView spatial analyst. (ArcView 3.x Extension). Version 2. Environmental Systems Research Institute, Redlands, California, USA. EUCLID The thirteen books of Euclid s elements: translated with introduction and commentary by Sir Thomas L. Heath. Volume 2 (Books III IX). Second Edition Unabridged. Dover Publications, New York, New York, USA. GANEY, J. L., G. C. WHITE, A. B. FRANKLIN, AND J. P. WARD, JR Monitoring population trends of Mexican spotted owls in Arizona and New Mexico: a pilot study. Study plan RM Rocky Mountain Research Station, Flagstaff, Arizona, USA. GESCH, D., M. OIMOEN, S. GREENLEE, C. NELSON, M. STEUCK, AND D. TYLER The national elevation dataset. Photogrammetric Engineering & Remote Sensing 68: GIONFRIDDO, J. P., AND P. R. KRAUSMAN Summer habitat use by mountain sheep. Journal of Wildlife Management 50: HOBSON, R. D Chapter 8 - surface roughness in topography: quantitative approach. Pages in R. J. Chorley, editor. Spatial analysis in geomorphology. Harper & Row, New York, New York, USA. HODGSON, M. E What cell size does the computed slope/aspect angle represent? Photogrammetric Engineering & Remote Sensing 61: JENNESS, J The effects of fire on Mexican spotted owls in Arizona and New Mexico. Thesis, Northern Arizona University, Flagstaff, USA. JENNESS, J. 2001a. Surface areas and ratios from elevation grid. (ArcView 3.x Extension). Jenness Enterprises. Available online at areas.htm (accessed October 2003). JENNESS, J. 2001b. Surface tools for points, lines and polygons. (ArcView 3.x Extension). Version 1.3. Jenness Enterprises. Available online at [date accessed October 2003]. JET PROPULSION LABORATORY Shuttle Radar Topography Mission (Web Page). Available online at (accessed October 2003). LAM,N.S.N., AND L. DECOLA Fractals in geography. PTR Prentice-Hall, Englewood Cliffs, New Jersey, USA. LORIMER,N.D., R. G.HAIGHT,AND R.A. LEARY The fractal forest: fractal geometry and applications in forest science. United States Department of Agriculture Forest Service, North Central Forest Experiment Station, General Technical Report; NC-170. St. Paul, Minnesota, USA. MAHDI, A., C. WYNNE, E. COOPER, L. ROY, AND K. SHAW Representation of 3-D elevation in terrain databases using hierarchical triangulated irregular networks: a comparative analysis. International Journal of Geographical Information Science 12: MANDELBROT, B. B The fractal geometry of nature. W. H. Freeman, New York, New York, USA. POLIDORI, L., J. CHOROWICZ,AND R. GUILLANDE Description of terrain as a fractal surface, and application to digital elevation model quality assessment. Photogrammetric Engineering & Remote Sensing 57: QUANTITATIVE DECISIONS Reproject Grids (ArcView 3.x extension): Quantitative Decisions. Available online at (accessed October 2003). SPSS, INC SPSS 9.0 for Windows. SPSS, Chicago, Illinois, USA. UNITED STATES GEOLOGICAL SURVEY :250,000-scale digital elevation models. (Web Page). Available online at: ftp://edcftp.cr.usgs.gov/pub/data/dem/250/. [date accessed October 2003]. WAKELYN, L. A Changing habitat conditions on bighorn sheep ranges in Colorado. Journal of Wildlife Management 51: WANG, K., AND C-P. LO An assessment of the accuracy of triangulated irregular networks (TINs) and lattices in ARC/INFO. Transactions in GIS 3: WARRICK,G.D.,AND B. L. CYPHER Factors affecting the spa-

11 Calculating surface area Jenness 839 tial distribution of San Joaquin kit foxes. Journal of Wildlife Management 62: WIGGERS, E. P., AND S. L. BEASOM Characterization of sympatric or adjacent habitats of 2 deer species in West Texas. Journal of Wildlife Management 50: Jeff Jenness is a wildlife biologist with the United States Forest Service s Rocky Mountain Research Station in Flagstaff, Arizona. He received his B.S. and M.S. in forestry, as well as an M.A. in educational psychology, from Northern Arizona University. Since 1990 his research has focused primarily on issues related to Mexican spotted owls in the southwestern United States. He has also become increasingly involved in GIS-based analyses, and in 2000 he started a GIS consulting business in which he specializes in developing GIS-based analytical tools. He has worked with universities, businesses, and governmental agencies around the world, including a long-term contract with the Food and Agriculture Organization of the United Nations (FAO), for which he relocated to Rome, Italy for 3 months. His free ArcView tools have been downloaded from his website and the ESRI ArcScripts site over 100,000 times. Associate editor: White

### Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored.

In this lesson you will create a Digital Elevation Model (DEM). A DEM is a gridded array of elevations. In its raw form it is an ASCII, or text, file. First, you will interpolate elevations on a topographic

### GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

### An Introduction to Point Pattern Analysis using CrimeStat

Introduction An Introduction to Point Pattern Analysis using CrimeStat Luc Anselin Spatial Analysis Laboratory Department of Agricultural and Consumer Economics University of Illinois, Urbana-Champaign

### From Topographic Maps to Digital Elevation Models. Anne Graham Daniel Sheehan MIT Libraries IAP 2013

From Topographic Maps to Digital Elevation Models Anne Graham Daniel Sheehan MIT Libraries IAP 2013 Which Way Does the Water Flow? A topographic map shows relief features or surface configuration of an

### A Method Using ArcMap to Create a Hydrologically conditioned Digital Elevation Model

A Method Using ArcMap to Create a Hydrologically conditioned Digital Elevation Model High resolution topography derived from LiDAR data is becoming more readily available. This new data source of topography

### Comparison of Programs for Fixed Kernel Home Range Analysis

1 of 7 5/13/2007 10:16 PM Comparison of Programs for Fixed Kernel Home Range Analysis By Brian R. Mitchell Adjunct Assistant Professor Rubenstein School of Environment and Natural Resources University

### A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION

A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION Zeshen Wang ESRI 380 NewYork Street Redlands CA 92373 Zwang@esri.com ABSTRACT Automated area aggregation, which is widely needed for mapping both natural

### Raster Data Structures

Raster Data Structures Tessellation of Geographical Space Geographical space can be tessellated into sets of connected discrete units, which completely cover a flat surface. The units can be in any reasonable

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

### Tutorial 8 Raster Data Analysis

Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

### A HYDROLOGIC NETWORK SUPPORTING SPATIALLY REFERENCED REGRESSION MODELING IN THE CHESAPEAKE BAY WATERSHED

A HYDROLOGIC NETWORK SUPPORTING SPATIALLY REFERENCED REGRESSION MODELING IN THE CHESAPEAKE BAY WATERSHED JOHN W. BRAKEBILL 1* AND STEPHEN D. PRESTON 2 1 U.S. Geological Survey, Baltimore, MD, USA; 2 U.S.

### Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?

Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information

### INTRODUCTION TO ARCGIS SOFTWARE

INTRODUCTION TO ARCGIS SOFTWARE I. History of Software Development a. Developer ESRI - Environmental Systems Research Institute, Inc., in 1969 as a privately held consulting firm that specialized in landuse

### Chapter 2 Reading Topographic Maps and Making Calculations

Chapter 2 Reading Topographic Maps and Making Calculations In this chapter you will learn about: Reading the margins Interpreting contour lines Estimating slope Estimating aspect Estimating acreage Estimating

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Raster Operations. Local, Neighborhood, and Zonal Approaches. Rebecca McLain Geography 575 Fall 2009. Raster Operations Overview

Raster Operations Local, Neighborhood, and Zonal Approaches Rebecca McLain Geography 575 Fall 2009 Raster Operations Overview Local: Operations performed on a cell by cell basis Neighborhood: Operations

### Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model

Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with

### FORENSIC GEOLOGY TOPOGRAPHIC MAPS AND PROFILES

NAME 89.215 - FORENSIC GEOLOGY TOPOGRAPHIC MAPS AND PROFILES I. Introduction A map is a miniature representation of a portion of the earth s surface as it appears from above. A forensic scientist uses

### Geography 4203 / GIS Modeling. Class 11: Sampling and Core Areas

Geography 4203 / 5203 GIS Modeling Class 11: Sampling and Core Areas Some Updates - Projects! Projects!!! 12 March deadline for data demo, ready for use Make sure you have the data at hand which you intend

### A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.

A Geographic Information System (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. GIS allows us to view,

### Landforms form an integral part

Landform classification using GIS by Karsten Drescher, Terralogix Consulting, and Willem de Frey, Ekoinfo Refining existing landform classifications using ESRI s model builder. Landforms form an integral

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Notable near-global DEMs include

Visualisation Developing a very high resolution DEM of South Africa by Adriaan van Niekerk, Stellenbosch University DEMs are used in many applications, including hydrology [1, 2], terrain analysis [3],

### Representing Geography

3 Representing Geography OVERVIEW This chapter introduces the concept of representation, or the construction of a digital model of some aspect of the Earth s surface. The geographic world is extremely

### Data source, type, and file naming convention

Exercise 1: Basic visualization of LiDAR Digital Elevation Models using ArcGIS Introduction This exercise covers activities associated with basic visualization of LiDAR Digital Elevation Models using ArcGIS.

### Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map

Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map Mark Schnur EES 5053 Remote Sensing Fall 2007 University of Texas at San Antonio, Department of Earth and Environmental Science, San Antonio,

### EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

### Chapter 5: Working with contours

Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

### MiSP Topographic Maps Worksheet #1a SLOPE AND TOPOGRAPHIC CONTOURS

MiSP Topographic Maps Worksheet #1a Name Date Introduction: SLOPE AND TOPOGRAPHIC CONTOURS Topographic contours are shown by lines of different widths. Each contour is a line of equal elevation; therefore,

### Natural Neighbour Interpolation

Natural Neighbour Interpolation DThe Natural Neighbour method is a geometric estimation technique that uses natural neighbourhood regions generated around each point in the data set. The method is particularly

### TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL

TOPOGRAPHIC MAPS MAP 2-D REPRESENTATION OF THE EARTH S SURFACE TOPOGRAPHIC MAP A graphic representation of the 3-D configuration of the earth s surface. This is it shows elevations (third dimension). It

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### GIS Data in ArcGIS. Pay Attention to Data!!!

GIS Data in ArcGIS Pay Attention to Data!!! 1 GIS Data Models Vector Points, lines, polygons, multi-part, multi-patch Composite & secondary features Regions, dynamic segmentation (routes) Raster Grids,

### GIS Analysis Concepts

GIS Analysis Concepts Copyright C. Schweik 2011 (Some material adapted from Heywood et al 1998; Theobald, 1999 ) 1 What kinds of analysis can we do with GIS? 1. Measurements 2. Layer statistics 3. Queries

### ANALYSIS 3 - RASTER What kinds of analysis can we do with GIS?

ANALYSIS 3 - RASTER What kinds of analysis can we do with GIS? 1. Measurements 2. Layer statistics 3. Queries 4. Buffering (vector); Proximity (raster) 5. Filtering (raster) 6. Map overlay (layer on layer

### Geometry Essential Curriculum

Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

### v Software Release Notice -. Acquired Software

v Software Release Notice -. Acquired Software 1. Software Name: Software Version: ArcView GIs@ 3.3 2. Software Function: ArcView GIS 3.3, developed by Environmental Systems Research Institute, Inc. (ESRI@),

### GIS: Geographic Information Systems A short introduction

GIS: Geographic Information Systems A short introduction Outline The Center for Digital Scholarship What is GIS? Data types GIS software and analysis Campus GIS resources Center for Digital Scholarship

### INSTRUCTIONS FOR MAKING 3D,.DWG CONTOUR LINES

INSTRUCTIONS FOR MAKING 3D,.DWG CONTOUR LINES A TUTORIAL FROM SPATIAL AND NUMERIC DATA SERVICES NICOLE SCHOLTZ AND GEOFF IVERSON Overview... 2 A. Get a Digital Elevation Model (DEM)... 3 B. Open ArcMap,

### What is GIS? Geographic Information Systems. Introduction to ArcGIS. GIS Maps Contain Layers. What Can You Do With GIS? Layers Can Contain Features

What is GIS? Geographic Information Systems Introduction to ArcGIS A database system in which the organizing principle is explicitly SPATIAL For CPSC 178 Visualization: Data, Pixels, and Ideas. What Can

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### REGIONAL SEDIMENT MANAGEMENT: A GIS APPROACH TO SPATIAL DATA ANALYSIS. Lynn Copeland Hardegree, Jennifer M. Wozencraft 1, Rose Dopsovic 2 INTRODUCTION

REGIONAL SEDIMENT MANAGEMENT: A GIS APPROACH TO SPATIAL DATA ANALYSIS Lynn Copeland Hardegree, Jennifer M. Wozencraft 1, Rose Dopsovic 2 ABSTRACT: Regional sediment management (RSM) requires the capability

### Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

A Correlation of Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates

### Understanding Raster Data

Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### G302 Review of Maps / Topographic Maps

G302 Review of Maps / Topographic Maps I. Introduction A. Map- a 2-d, scaled representation of the earth's surface, 1. Model of Earth's Surface 2. Basic functions: to represent horizontal distance, direction,

### A Short Guide to Modern Mapping Systems for Managing Woodlands

A Short Guide to Modern Mapping Systems for Managing Woodlands A Geographic Information System (GIS) is a powerful mapping system many professional foresters use to maintain clients management portfolios.

### SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

### Spatial Data Analysis

14 Spatial Data Analysis OVERVIEW This chapter is the first in a set of three dealing with geographic analysis and modeling methods. The chapter begins with a review of the relevant terms, and an outlines

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### STATE OF NEVADA Department of Administration Division of Human Resource Management CLASS SPECIFICATION

STATE OF NEVADA Department of Administration Division of Human Resource Management CLASS SPECIFICATION TITLE PHOTOGRAMMETRIST/CARTOGRAPHER V 39 6.102 PHOTOGRAMMETRIST/CARTOGRAPHER II 33 6.110 PHOTOGRAMMETRIST/CARTOGRAPHER

### Technical Study and GIS Model for Migratory Deer Range Habitat. Butte County, California

Technical Study and GIS Model for Migratory Deer Range Habitat, California Prepared for: Design, Community & Environment And Prepared by: Please Cite this Document as: Gallaway Consulting, Inc. Sevier,

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### Introduction to GIS. Dr F. Escobar, Assoc Prof G. Hunter, Assoc Prof I. Bishop, Dr A. Zerger Department of Geomatics, The University of Melbourne

Introduction to GIS 1 Introduction to GIS http://www.sli.unimelb.edu.au/gisweb/ Dr F. Escobar, Assoc Prof G. Hunter, Assoc Prof I. Bishop, Dr A. Zerger Department of Geomatics, The University of Melbourne

### REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011

REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working

### Vector analysis - introduction Spatial data management operations - Assembling datasets for analysis. Data management operations

Vector analysis - introduction Spatial data management operations - Assembling datasets for analysis Transform (reproject) Merge Append Clip Dissolve The role of topology in GIS analysis Data management

### This is Geospatial Analysis II: Raster Data, chapter 8 from the book Geographic Information System Basics (index.html) (v. 1.0).

This is Geospatial Analysis II: Raster Data, chapter 8 from the book Geographic Information System Basics (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Unit 1, Review Transitioning from Previous Mathematics Instructional Resources: McDougal Littell: Course 1

Unit 1, Review Transitioning from Previous Mathematics Transitioning from previous mathematics to Sixth Grade Mathematics Understand the relationship between decimals, fractions and percents and demonstrate

### G492 GIS for Earth Sciences Map Projections and Coordinate Systems

G492 GIS for Earth Sciences Map Projections and Coordinate Systems I. Introduction A. Fundamental Concern with Map Work 1. Maps / GIS a. 2-D representation of Earth surface b. locations of map features

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### Practical Calculation of Polygonal Areas

Practical alculation of Polygonal reas Tom avis tomrdavis@earthlink.net http://www.geometer.org/mathcircles January 30, 006 bstract In this paper we will consider practical methods to find the area of

### Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

### Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

### AUTOMATIC TERRAIN EXTRACTION WITH DENSE POINT MATCHING (EATE)

Introduction AUTOMATIC TERRAIN EXTRACTION WITH DENSE POINT MATCHING (EATE) etraining Demonstrates how to automatically extract terrain data using Dense Point Matching (eate) in IMAGINE Photogrammetry.

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Assessment Anchors and Eligible Content

M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings

### Geometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam.

Geometry Review Here are some formulas and concepts that you will need to review before working on the practice eam. Triangles o Perimeter or the distance around the triangle is found by adding all of

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### Using Spatial Statistics In GIS

Using Spatial Statistics In GIS K. Krivoruchko a and C.A. Gotway b a Environmental Systems Research Institute, 380 New York Street, Redlands, CA 92373-8100, USA b Centers for Disease Control and Prevention;

### Intro to GIS Winter 2011. Data Visualization Part I

Intro to GIS Winter 2011 Data Visualization Part I Cartographer Code of Ethics Always have a straightforward agenda and have a defining purpose or goal for each map Always strive to know your audience

### Investigating Area Under a Curve

Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Drawing a histogram using Excel

Drawing a histogram using Excel STEP 1: Examine the data to decide how many class intervals you need and what the class boundaries should be. (In an assignment you may be told what class boundaries to

### Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details

Appendix C - Risk Assessment: Technical Details Page C1 C1 Surface Water Modelling 1. Introduction 1.1 BACKGROUND URS Scott Wilson has constructed 13 TUFLOW hydraulic models across the London Boroughs

### Definition of Photogrammetry. Aircraft: Cessna 206 Turbo Charged

LSIT RLS Review Seminar: Photogrammetry John Cahoon Certified Photogrammetrist President Kenney Aerial Mapping, Inc. 4008 North 15 th Avenue Phoenix, AZ 85015 602-258-6471 jcahoon@kam-az.com www.kam-az.com

### Digital Terrain Model Grid Width 10 m DGM10

Digital Terrain Model Grid Width 10 m Status of documentation: 23.02.2015 Seite 1 Contents page 1 Overview of dataset 3 2 Description of the dataset contents 4 3 Data volume 4 4 Description of the data

### 3D Visualization of Seismic Activity Associated with the Nazca and South American Plate Subduction Zone (Along Southwestern Chile) Using RockWorks

3D Visualization of Seismic Activity Associated with the Nazca and South American Plate Subduction Zone (Along Southwestern Chile) Using RockWorks Table of Contents Figure 1: Top of Nazca plate relative

### GIS Spatial Data Standards

GIS Spatial Data Standards Manatee County, FL GIS Section, Information Services Department TABLE OF CONTENTS I. Introduction 2 A. Purpose 2 B. Reference 2 II. Spatial Reference Information 2 A. Projection:

### Topographic Maps. I. Introduction

Topographic Maps I. Introduction A. Topographic maps are essential tools in geologic and engineering studies because they show the configuration of Earth's surface in remarkable detail and permit one to

### Modeling Fire Hazard By Monica Pratt, ArcUser Editor

By Monica Pratt, ArcUser Editor Spatial modeling technology is growing like wildfire within the emergency management community. In areas of the United States where the population has expanded to abut natural

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

### 2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT Final Report by Michael Lackner, B.A. Geography, 2003 February 2004 - page 1 of 17 - TABLE OF CONTENTS Abstract 3 Introduction 4 Study

### SPATIAL DATA ANALYSIS

SPATIAL DATA ANALYSIS P.L.N. Raju Geoinformatics Division Indian Institute of Remote Sensing, Dehra Dun Abstract : Spatial analysis is the vital part of GIS. Spatial analysis in GIS involves three types

### Data Visualization Techniques and Practices Introduction to GIS Technology

Data Visualization Techniques and Practices Introduction to GIS Technology Michael Greene Advanced Analytics & Modeling, Deloitte Consulting LLP March 16 th, 2010 Antitrust Notice The Casualty Actuarial

### Physical Geography Lab Activity #13

Name Physical Geography Lab Activity #13 Due date Slopes and Profiles COR Objective 7, SLO 3 Slope refers to a change in elevation from one point to another. The steepness of a slope can be a big deal.

### GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed

### Session 6 Area. area midline similar figures

Key Terms in This Session Session 6 Area Previously Introduced scale factor New in This Session area midline similar figures Introduction Area is a measure of how much surface is covered by a particular

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

### FCAT Math Vocabulary

FCAT Math Vocabulary The terms defined in this glossary pertain to the Sunshine State Standards in mathematics for grades 3 5 and the content assessed on FCAT in mathematics. acute angle an angle that

### 3D VISUALIZATION OF GEOTHERMAL WELLS DIRECTIONAL SURVEYS AND INTEGRATION WITH DIGITAL ELEVATION MODEL (DEM)

Presented at Short Course VII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 27 Nov. 18, 2012. GEOTHERMAL TRAINING PROGRAMME