Basis of Structural Design

Size: px
Start display at page:

Download "Basis of Structural Design"

Transcription

1 Basis of Structural Design Course 3 Structural action: trusses and beams Course notes are available for download at Arch Truss rafter tie Linear arch supporting a concentrated force: large spreading reactions at supports Relieving of support spreading: adding a tie between the supports 1

2 Truss forces Truss members connected by pins: axial forces (direct stresses) only Supports: one pinned, allowing free rotations due to slight change of truss shape due to loading one roller bearing support ("simple support") - allowing free rotations and lateral movement due to loading and change in temperature - (C) - (C) + (T) Forces in the truss: tie is in tension (+) rafters are in compression (-) Truss forces If more forces are present within the length of the rafter bending stresses To avoid bending stresses, diagonal members and vertical posts can be added More diagonals and posts can be added for larger spans in order to avoid bending stresses 2

3 Alternative shape of a truss For a given loading find out the shape of a linear arch (parabolic shape) Add a tie to relieve spreading of supports Highly unstable shape Alternative shape of a truss Add web bracing (diagonals and struts) in order to provide stability for the pinned upper chord members If the shape of the truss corresponds to a linear arch web members are unstressed, but they are essential for stability of the truss Reverse bowstring arches: advantage: longer members are in tension disadvantage: limited headroom underneath 3

4 Truss shapes Curved shape of the arch: difficult to fabricate trusses with parallel chords Trusses with parallel chords: web members (diagonals and struts) carry forces whatever the loads Pratt truss: top chord in compression bottom chord and diagonals in tension economical design as longer members (diagonals) are in tension Howe truss: top chord in compression bottom chord in tension diagonals in compression Truss shapes Warren truss: top chord in compression bottom chord in tension diagonals in tension and compression economy of fabrication: all members are of the same length and joints have the same configuration 4

5 Truss joints Pinned joints statically determinate structures member forces can be determined from equilibrium only Rigid joints small bending stresses will be present, but which are negligible due to the triangular shape Traditionally trusses are designed with pinned joints, even if members are connected rigidly between them Space trusses The most common plane truss consists of a series of triangles The corresponding shape in three dimensions: tetrahedron (a) The truss at (b) is a true space truss theoretically economical in material joints difficult to realise and expensive Two plane trusses braced with cross members are usually preferred 5

6 Statically indeterminate trusses Indeterminate trusses: large variety Example (a): cross diagonals in the middle panel, so that one of the diagonals will always be in tension Example (b): Sydney Harbour Bridge, Australia - both supports pinned Beams Beam: a structure that supports loads through its ability to resist bending stresses Leonardo da Vinci ( ): the strength of a timber beam is proportional to the square of its depth Leonhard Euler and Daniel Bernoulli were the first to put together a useful theory around

7 Forces in a Pratt truss loaded by a unit central force Beams: analogy with trusses Forces in a Howe truss Forces in a truss with double diagonals (reasonable estimate) Chords: Beams: analogy with trusses The forces in the top and bottom chord members in any panel are equal, but of opposite signs, and they increase with the distance from the nearest support Chords have to resist the bending moment, proportional to the distance from the nearest support Diagonals: The forces in the diagonal members are equal, but opposite in sign, and have the same values in all panels Diagonals have to resist the shear forces, the same in all panels 7

8 Beams: analogy with trusses Bending and shear deformations in a truss Steel plate girder Steel plate girder: heavy flanges and thin web welded together, and reinforced by transversal stiffeners Unit vertical force at the midspan Top flange: in compression Bottom flange: tension Web: shear, with principal tension and compression stresses similar to those in a truss After web buckling, only tensile loads are resisted by the web, plate girder acting as a Pratt truss 8

9 Top flange in compression Bottom flange in tension Beams: bending action linear variation of normal stress Normal stress proportional to distance from the neutral plane Simplifications: Thin web, thick flanges web has a small contribution to the bending resistance (ignore it) Normal stress can be considered uniform on flanges Moment resistance Beams: bending action Idealised double T beam: M = σ A d/2 Rectangular beam of the same area and depth: M = σ b d 2 /6 = σ A d/6 The best arrangement of material for bending resistance: away from the neutral axis A/2 A/2 d +σ σ σ F = σ (A/2) F = σ (A/2) F = σ (0.5d b/2) dm = σ A d/2 A d 2d/3 M = σ A d/6 b +σ F = σ (0.5d b/2) 9

10 Beams: bending action Examples of efficient location of material for bending resistance light roof beams (trusses) hot-rolled and welded girder Beams: bending action Examples of efficient location of material for bending resistance panel construction 10

11 Beams: bending action Examples of efficient location of material for bending resistance corrugated steel sheet Beams: bending action Examples of efficient location of material for bending resistance castellated joist 11

12 Beams: bending action Examples of efficient location of material for bending resistance columns requiring bending resistance in any direction: tubular sections Beams: shear stresses Simply supported beam of uniform rectangular crosssection loaded by a concentrated central force W: can carry a moment M = σ b d 2 /6 has a deflection δ If the beam is cut in two parts along the neutral plane: sliding takes place between the two overlapped beams the two overlapped beams can carry a moment M = 2 [σ b (d/2) 2 /6] = σ b d 2 /12, half of the uncut beam the deflection of the two overlapped beams is 4δ 12

13 Beams: shear stresses In the uncut beam stresses should be present along the neutral plane to prevent sliding of the lower and upper halves of the beam: shear stresses Smaller stresses would be required to keep the unity of action if the beam were cut above the neutral plane Shear stresses parabolic variation in a rectangular cross-section carried mainly by the web, on which they can be considered to be constant for a steel double T beam Simply supported beam subjected to a uniformly distributed load Structural shapes The "perfect" use of material for bending resistance in a beam with idealised double T crosssection (M = σ A d/2): parabolic variation of height A/2 A/2 13

14 Structural shapes Simply supported truss subjected to a uniformly distributed load The "perfect" use of material for "bending" action: parabolic variation of height Structural shapes Bridge with a simply supported central span and two cantilevered sides The shape of the truss must resemble the bending moment diagram in order to make efficient use of material in upper and bottom chords Quebec railway bridge 14

15 Structural shapes Forth bridge, Scotland Angel Saligny bridge, Romania 15

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

Since the Steel Joist Institute

Since the Steel Joist Institute SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

More information

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Basis of Structural Design

Basis of Structural Design Basis of Structural Design Course 5 Structural action: - Cable structures - Multi-storey structures Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Cable structures

More information

Reinforced Concrete Design SHEAR IN BEAMS

Reinforced Concrete Design SHEAR IN BEAMS CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses STEEL BUILDIGS I EUROPE Single-Storey Steel Buildings Part 5: Detailed Design of Trusses Single-Storey Steel Buildings Part 5: Detailed Design of Trusses 5 - ii Part 5: Detailed Design of Trusses FOREWORD

More information

ARCH 331 Structural Glossary S2014abn. Structural Glossary

ARCH 331 Structural Glossary S2014abn. Structural Glossary Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

Chapter 3 - Structural Design

Chapter 3 - Structural Design Chapter 3 - Structural Design 3.0 General 3.0.1 Design Overview Greenhouse buildings are a complete structure including the structural support and enclosure elements. The primary structural system includes:

More information

Truss Fabrication with Light Gage Steel Framing

Truss Fabrication with Light Gage Steel Framing FROM THE FOUNDATION Truss Fabrication with Light Gage Steel Framing By Richard H. Kapp, P.E. Note: Italicized portions contributed by Brad Beczkalo. See article, p. 15. L ight gage steel trusses have been

More information

The Analysis of Open Web Steel Joists in Existing Buildings

The Analysis of Open Web Steel Joists in Existing Buildings PDHonline Course S117 (1 PDH) The Analysis of Open Web Steel Joists in Existing Buildings Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Design of an Industrial Truss

Design of an Industrial Truss Design of an Industrial Truss Roofing U 2 U 3 Ridge U 4 Sagrod 24 U 1 U 5 L 0 L 1 L 2 L 3 L 4 L 5 L 6 6@20 = 120 Elevation of the Truss Top Cord Bracing Sagrod Purlin at top, Bottom Cord Bracing at bottom

More information

Steel joists and joist girders are

Steel joists and joist girders are THE STEEL CONFERENCE Hints on Using Joists Efficiently By Tim Holtermann, S.E., P.E.; Drew Potts, P.E.; Bob Sellers, P.E.; and Walt Worthley, P.E. Proper coordination between structural engineers and joist

More information

Statics and Mechanics of Materials

Statics and Mechanics of Materials Statics and Mechanics of Materials Chapter 4-1 Internal force, normal and shearing Stress Outlines Internal Forces - cutting plane Result of mutual attraction (or repulsion) between molecules on both

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

Trusses Theory and in LEGO TJ Avery, c. 2001 (updated May 2009)

Trusses Theory and in LEGO TJ Avery, c. 2001 (updated May 2009) Page 1 of 10 Trusses Theory and in LEGO TJ Avery, c. 2001 (updated May 2009) This article explains what a truss is and how it functions structurally. Also presented are examples of how to build a truss

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Introduction. What Will You Gain From This Presentation? Benefits of Structural Steel

Introduction. What Will You Gain From This Presentation? Benefits of Structural Steel Introduction This presentation was developed as a teaching aid with the support of the American Institute of Steel Construction. Its objective is to provide technical background and information for connections

More information

MYSTERY ARCHITECTURE

MYSTERY ARCHITECTURE Science Olympiad Summer Institute MYSTERY ARCHITECTURE Sample List of Materials This list of Materials 20 - #32 Rubber Bands, Brown 20 Small Rubber Bands, assorted size/colors 1 - Roll Scotch Tape 4 5

More information

Module 3. Limit State of Collapse - Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur

Module 3. Limit State of Collapse - Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur Module 3 Limit State of Collapse - Flexure (Theories and Examples) Lesson 4 Computation of Parameters of Governing Equations Instructional Objectives: At the end of this lesson, the student should be able

More information

STRUCTURAL CONCEPT FOR LIGHT GAUGE STEEL FRAME SYSTEM

STRUCTURAL CONCEPT FOR LIGHT GAUGE STEEL FRAME SYSTEM Chapter 9 STRUCTURAL CONCEPT FOR LIGHT GAUGE STEEL FRAME SYSTEM 9.1 BACKGROUND Steel is widely used in the construction of multi-storey buildings. However, steel construction is seldom used and is traditionally

More information

ispan, A Light Steel Floor System

ispan, A Light Steel Floor System ispan, A Light Steel Floor System D.M. Fox 1, R.M. Schuster 2, and M.R. Strickland 3 Abstract Described in this paper is a cold-formed steel floor system called ispan. The system is comprised of multi-functional

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Joist. Reinforcement. Draft 12/7/02

Joist. Reinforcement. Draft 12/7/02 Joist Reinforcement Draft 12/7/02 1 JOIST REINFORCING The purpose of this CSD Design Aid is to provide procedures and suggested details for the reinforcement of open web steel joists. There are three basic

More information

Building Construction. Lightweight construction. Conventional Construction

Building Construction. Lightweight construction. Conventional Construction Ventilation 53 Building Construction The firefighter s ability to safely and efficiently ventilate a building through its roof will depend to some degree on the firefighter s understanding of roof construction.

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Shear Forces and Bending Moments

Shear Forces and Bending Moments Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the

More information

Roof Rehab (Roof truss) Classroom Activity

Roof Rehab (Roof truss) Classroom Activity Roof Rehab (Roof truss) Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

INTERNATIONAL BUILDING CODE STRUCTURAL

INTERNATIONAL BUILDING CODE STRUCTURAL INTERNATIONAL BUILDING CODE STRUCTURAL S5-06/07 1604.11 (New), 1605 (New) Proposed Change as Submitted: Proponent: William M. Connolly, State of New Jersey, Department of Community Affairs, Division of

More information

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis Method of Sections for Truss Analysis Joint Configurations (special cases to recognize for faster solutions) Case 1) Two Bodies Connected F AB has to be equal and opposite to F BC Case 2) Three Bodies

More information

DESIGN OF BEAM-COLUMNS - I

DESIGN OF BEAM-COLUMNS - I 13 DESIGN OF BEA-COLUNS - I INTRODUCTION Columns in practice rarely experience concentric axial compression alone. Since columns are usually parts of a frame, they experience both bending moment and axial

More information

information sheet Structural Materials

information sheet Structural Materials information sheet Structural Materials Roundwood Applications The information provided below has been taken from the New Zealand Timber Design Guide 2007, published by the Timber Industry Federation and

More information

Rigid and Braced Frames

Rigid and Braced Frames Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Examples of New version for Designing members of Reinforced Concrete, Steel or Timber according to Eurocode 2, Eurocode 3 and Eurocode 5

Examples of New version for Designing members of Reinforced Concrete, Steel or Timber according to Eurocode 2, Eurocode 3 and Eurocode 5 Examples of New version for Designing members of Reinforced Concrete, Steel or Timber according to Eurocode 2, Eurocode 3 and Eurocode 5 Copyright RUNET Software www.runet-software.com 1 1. Examples 1.1

More information

2.0 External and Internal Forces act on structures

2.0 External and Internal Forces act on structures 2.0 External and Internal Forces act on structures 2.1 Measuring Forces A force is a push or pull that tends to cause an object to change its movement or shape. Magnitude, Direction, and Location The actual

More information

The Mathematics of Simple Beam Deflection

The Mathematics of Simple Beam Deflection The Mathematics of Simple Beam Laing O Rourke Civil Engineering INTRODUCTION Laing O Rourke plc is the largest privately owned construction firm in the UK. It has offices in the UK, Germany, India, Australia

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

Truss Structures. See also pages in the supplemental notes. Truss: Mimic Beam Behavior. Truss Definitions and Details

Truss Structures. See also pages in the supplemental notes. Truss: Mimic Beam Behavior. Truss Definitions and Details Truss Structures Truss: Mimic Beam Behavior Truss Definitions and Details 1 2 Framing of a Roof Supported Truss Bridge Truss Details 3 4 See also pages 12-15 in the supplemental notes. 1 Common Roof Trusses

More information

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS This appendix summarizes the criteria applied for the design of new hypothetical bridges considered in NCHRP 12-79 s Task 7 parametric

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

Bracing Webs in Trusses that have Dissimilar Configurations

Bracing Webs in Trusses that have Dissimilar Configurations Bracing Webs in Trusses that have Dissimilar Configurations Released April 25, 2006 Issue: Truss Design Drawings (TDD) that are prepared in accordance with ANSI/TPI 1, National Design Standard for Metal

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras. Module

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras. Module Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 2.2 Lecture - 08 Review of Basic Structural Analysis-2 Good morning to you.

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

Interaction between plate and column buckling

Interaction between plate and column buckling Delft, University of Technology Engineering office of Public works Rotterdam Interaction between plate and column buckling Master Thesis Name: Alex van Ham Student number: 1306138 Email: vanham.alex@gmail.com

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

Steel and composite bridges in Germany State of the Art

Steel and composite bridges in Germany State of the Art Steel and composite bridges in Germany State of the Art Univ.-Prof. Dr.-Ing. G. Hanswille Institute for Steel and Composite Structures University of Wuppertal Germany Univ.-Prof. em. Dr.-Ing. Dr. h.c.

More information

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION PART 8000 - PRECAST CONCRETE TABLE OF CONTENTS Item Number Page 8100 PRECAST CONCRETE CONSTRUCTION - GENERAL 8-3 8101 General

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

4.3.5 - Breakaway Walls

4.3.5 - Breakaway Walls 4.3.5 - Breakaway Walls Elevation of a structure on a properly designed foundation reduces the potential for water damage from flooding. When the space below the lowest elevated floor is maintained free

More information

Science In Action 7 Structures and Forces Section Quiz

Science In Action 7 Structures and Forces Section Quiz Section 2 External and Internal Forces Act on Structures 2.1 Measuring Forces 1. A force is a push or a pull that tends to cause an object to change its height or length B. movement or shape C. colour

More information

Glossary of Roof Truss Technical Terms

Glossary of Roof Truss Technical Terms Glossary of Roof Truss Technical Terms (with thanks to Wolf Systems Ltd) A APEX/PEAK The uppermost point of a TRUSS. ASYMMETRIC TRUSS A truss with two rafters meeting at the APEX, having a different pitch

More information

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

STRUCTURAL DESIGN 2 RIBBED (JOIST), HOLLOW POT & WAFFLE SLAB DESIGN TO BS 8110

STRUCTURAL DESIGN 2 RIBBED (JOIST), HOLLOW POT & WAFFLE SLAB DESIGN TO BS 8110 LECTURE 4: 1.0 RIBBED SLAB 1.0.1 INTRODUCTION 1.0.2 PRESENTATION OF RIBBED FLOOR PLAN 1.0.3 ADVANTAGES & DISADVANTAGES OF RIBBED SLAB 1.0.4 SIZING OF SLAB AND RIBS 1.0.5 DESIGN METHODOLOGY 1.0.6 SUMMARY

More information

FOOTING DESIGN EXAMPLE

FOOTING DESIGN EXAMPLE County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Truss. are both simple and A Matsuo Example continuous trusses. The

Truss. are both simple and A Matsuo Example continuous trusses. The Girder Bridge A girder bridge is perhaps the most common and most basic bridge. A log across a creek is an example of a girder bridge in its simplest form. In modern steel girder bridges, the two most

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Aluminium systems profile selection

Aluminium systems profile selection Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain

More information

Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001)

Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001) PDHonline Course S154 (4 PDH) Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001) Instructor: Jose-Miguel Albaine, M.S., P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT Troy Oliver 1, Mark Rea 2 ABSTRACT: This paper provides an overview of the work undertaken in the design of multiple buildings for one of

More information

Structural Failures Cost Lives and Time

Structural Failures Cost Lives and Time Structural Failures Cost Lives and Time Recent failures of storage bins, silos and other structures highlight the need to increase awareness of hazards associated with these structures. Since 2010, one

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

General Overview of Post-Tensioned Concrete Design

General Overview of Post-Tensioned Concrete Design PDHonline Course S127 (2 PDH) General Overview of Post-Tensioned Concrete Design Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates Drive

More information

1. When we deform a material and it recovers its original shape, we say that it is a) Rigid

1. When we deform a material and it recovers its original shape, we say that it is a) Rigid UNIT 05 TEST TECHNOLOGY 1º ESO GROUP: A DATE: / / 1. When we deform a material and it recovers its original shape, we say that it is 2. When we try to deform a material and it doesn t change its shape,

More information

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

WELDS- STATIC AND FATIGUE STRENGTH II

WELDS- STATIC AND FATIGUE STRENGTH II 31 WELDS- STATIC AND FATIGUE STRENGTH II 1.0 INTRODUCTION In the previous chapter, a detailed account of various welding processes, types of welds, advantages of welded connections etc. were presented.

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

A Beginner s Guide to Simple Plate Girder Design to EC3 Part 1-5

A Beginner s Guide to Simple Plate Girder Design to EC3 Part 1-5 Continental Steel Public Seminar on Impact of Structural Eurocodes on Steel and Concrete Structures A Beginner s Guide to Simple Plate Girder Design to EC3 Part 1-5 Associate Professor Lee Chi King School

More information

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management

More information

Chapter 6 ROOF-CEILING SYSTEMS

Chapter 6 ROOF-CEILING SYSTEMS Chapter 6 ROOF-CEILING SYSTEMS Woodframe roof-ceiling systems are the focus of this chapter. Cold-formed steel framing for a roof-ceiling system also is permitted by the IRC but will not be discussed;

More information

research report Residential Hip Roof Framing Using Cold-Formed Steel Members RESEARCH REPORT RP06-2 American Iron and Steel Institute

research report Residential Hip Roof Framing Using Cold-Formed Steel Members RESEARCH REPORT RP06-2 American Iron and Steel Institute research report Residential Hip Roof Framing Using Cold-Formed Steel Members RESEARCH REPORT RP06-2 2006 American Iron and Steel Institute Residential Hip Roof Framing Using Cold-Formed Steel Members i

More information

Introduction, Method of Sections

Introduction, Method of Sections Lecture #1 Introduction, Method of Sections Reading: 1:1-2 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding

More information

Scheme development: Purlin structure design

Scheme development: Purlin structure design Provides the information required for designing the purlin structure of a steel-frame building. Gives details on the interaction between purlins and roofing. Contents 1. Introduction function of purlins

More information

10. LIGHT-GAUGE STEEL FRAMING

10. LIGHT-GAUGE STEEL FRAMING COLLEGE OF ARCHITECTURE AND PLANNING Department of Architecture and Building Sciences ARCH 436 Contemporary Building Construction Methods 10. LIGHT-GAUGE STEEL FRAMING Dr. Mohammed Ghonim Lecture Objectives

More information

AMERICAN INSTITUTE OF TIMBER CONSTRUCTION

AMERICAN INSTITUTE OF TIMBER CONSTRUCTION AMERICAN INSTITUTE OF TIMBER CONSTRUCTION 7012 South Revere Parkway - Suite 140 - Englewood, Colorado 80112 - Telephone 303/792-9559 AITC 104-2003 TYPICAL CONSTRUCTION DETAILS Adopted as Recommendations

More information

Overhang Bracket Loading. Deck Issues: Design Perspective

Overhang Bracket Loading. Deck Issues: Design Perspective Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

US 51 Ohio River Bridge Engineering and Environmental Study

US 51 Ohio River Bridge Engineering and Environmental Study US 51 Ohio River Bridge Engineering and Environmental Study ITEM NOS. 1-100.00 & 1-1140.00 Prepared by: Michael Baker Jr., Inc. 9750 Ormsby Station Rd Louisville, KY 40223 August 16, 2013 Table of Contents

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information