Graph Matching. LabPro & Computer OBJECTIVES MATERIALS

Size: px
Start display at page:

Download "Graph Matching. LabPro & Computer OBJECTIVES MATERIALS"

Transcription

1 Graph Matching LabPro & Computer 1 One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine in what direction an object is going, how fast it is moving, how far it traveled, and whether it is speeding up or slowing down. In this experiment, you will use a Motion Detector to determine this information by plotting a real time graph of your motion as you move across the classroom. The Motion Detector measures the time it takes for a high frequency sound pulse to travel from the detector to an object and back. Using this round-trip time and the speed of sound, you can determine the position of the object. Logger Pro will perform this calculation for you. It can then use the change in position to calculate the object s velocity and acceleration. All of this information can be displayed either as a table or a graph. A qualitative analysis of the graphs of your motion will help you develop an understanding of the concepts of kinematics. walk back and forth in front of Motion Detector OBJECTIVES Analyze the motion of a student walking across the room. Predict, sketch, and test position vs. time kinematics graphs. Predict, sketch, and test velocity vs. time kinematics graphs. MATERIALS computer Vernier computer interface (LabPro) Logger Pro Vernier Motion Detector meter stick masking tape Physics with Vernier 1-1

2 LabPro & Computer 1 PRELIMINARY QUESTIONS 1. Use a coordinate system with the origin at far left and positive positions increasing to the right. Sketch the position vs. time graph for each of the following situations: a. An object at rest b. An object moving in the positive direction (away from the origin) with a constant speed c. An object moving in the negative direction (towards the origin) with a constant speed d. An object that is accelerating in the positive direction, starting from rest 2. Sketch the velocity vs. time graph for each of the situations described above. PROCEDURE Part l Preliminary Experiments 1. Connect the Motion Detector to the DIG/SONIC 1 channel of the interface. If the Motion Detector has a sensitivity switch, set it to Normal. 2. Place the Motion Detector so that it points toward an open space at least 4 m long. Use short strips of masking tape on the floor to mark the 1 m, 2 m, 3 m, and 4 m positions from the Motion Detector. 3. Open the file 01a Graph Matching from the Physics with Vernier folder. 4. Using Logger Pro, produce a position vs. time and velocity vs time graph of your motion when you walk away from the detector with a slow constant velocity. To do this, stand about 1 m from the Motion Detector and have your lab partner click. Walk slowly away from the Motion Detector when you hear it begin to click. 5. Sketch what the graphs will look like if you walk faster. Check your prediction with the Motion Detector. 6. Test your predictions in the Preliminary Questions section by walking in front of the Motion Detector. If your predictions of graph shapes were incorrect, draw the correct shape over your prediction in a different color. Part Il Position vs. Time Graph Matching 7. Open the experiment file 01b Graph Matching. A position vs. time graph will appear. 8. Describe how you would walk to produce this target graph. 9. To test your prediction, choose a starting position and stand at that point. Have your partner start data collection by clicking. When you hear the Motion Detector begin to click, walk in such a way that the graph of your motion matches the target graph on the computer screen. 10. If you were not successful, repeat the process until your motion closely matches the graph on the screen. Print the graph with your best attempt. 11. Open the experiment file 01c Graph Matching and repeat Steps 8 10, using a new target graph. 12. Answer the Analysis questions for Part II before proceeding to Part III. 1-2 Physics with Vernier

3 Part IIl Velocity vs. Time Graph Matching Graph Matching 13. Open the experiment file 01d Graph Matching. A velocity vs. time graph will appear. 14. Describe how you would walk to produce this target graph. 15. To test your prediction, choose a starting position and stand at that point. Have your partner start by clicking. When you hear the Motion Detector begin to click, walk in such a way that the graph of your motion matches the target graph on the screen. It will be more difficult to match the velocity graph than it was for the position graph. If you were not successful, repeat the process until your motion closely matches the graph on the screen. Print the graph with your best attempt. 16. If you were not successful, repeat the process until your motion closely matches the graph on the screen. Print the graph with your best attempt. 17. Open the experiment file 01e Graph Matching. Repeat Steps to match this graph. Remove the masking tape strips from the floor. ANALYSIS (answer on a separate sheet of paper) Part II Position vs. Time Graph Matching 1. Describe how you walked for each of the graphs that you matched. 2. Explain the significance of the slope of a position vs. time graph. Include a discussion of positive and negative slope. 3. What type of motion is occurring when the slope of a position vs. time graph is zero? 4. What type of motion is occurring when the slope of a position vs. time graph is constant? 5. What type of motion is occurring when the slope of a position vs. time graph is changing? Test your answer to this question using the Motion Detector. 6. Return to the procedure and complete Part III. Part III Velocity vs. Time Graph Matching 7. Describe how you walked for each of the graphs that you matched. 8. What type of motion is occurring when the slope of a velocity vs. time graph is zero? 9. What type of motion is occurring when the slope of a velocity vs. time graph is not zero? Test your answer using the Motion Detector. Physics with Vernier 1-3

4 LabPro & Computer 1 EXTENSIONS 1. Create a graph-matching challenge. Sketch a position vs. time graph using the prediction feature of Logger Pro: Choose Draw Prediction from the Analyze menu, and use the mouse to draw a new target graph. Challenge another student in the class to match your graph. Have the other student challenge you in the same way. 2. Create a velocity vs. time challenge in a similar manner. 3. Create a position vs. time graph by walking in front of the Motion Detector. Store the graph by choosing Store Latest Run from the Experiment menu. Have another student match your run. 4. Create a velocity vs. time graph by walking in front of the Motion Detector. Store the graph by choosing Store Latest Run from the Experiment menu. Have another student match your run. 5. Use the automatic graph-match feature of Logger Pro to generate additional exercises. Open the experiment file "01f Graph Matching" for position matches and "01g Graph Matching" for velocity matches. Click the Generate Graph Match button in the toolbar to get a new match exercise. 1-4 Physics with Vernier

5 Graph Matching (LabPro & Computer) Data Sheet Prelinimary Questions a. Sketch the graphs for an object at rest b. Sketch the graphs for an object moving in the positive direction (away from the origin) with a constant speed

6 c. Sketch the graphs for an object moving in the negative direction (towards the origin) with a constant speed d. Sketch the graphs for an object that is accelerating in the positive direction, starting from rest

7 Part l Preliminary Experiments Sketch position vs time and velocity vs time graphs of walking away from the wall with a slow constant velocity in one color and a fast constant velocity in another color. Part Il Position vs. Time Graph Matching Position Match 1. Write down your prediction of how you would walk to reproduce the target graph in 01b Graph Matching. Position Match 2. Write down your prediction of how you would walk to reproduce the target graph in 01c Graph Matching. Part III Velocity vs. Time Graph Matching Velocity Match 1. Write down your prediction of how you would walk to reproduce the target graph in 01d Graph Matching. Velocity Match 2. Write down your prediction of how you would walk to reproduce the target graph in 01e Graph Matching.

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension 14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface. Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

More information

Quick Reference Manual

Quick Reference Manual Quick Reference Manual ii TABLE OF CONTENTS This guide first leads you through the basics of Logger Pro, including software installation procedures. You will learn how to collect data, manually enter data,

More information

LAB 06: Impulse, Momentum and Conservation

LAB 06: Impulse, Momentum and Conservation LAB 06: Impulse, Momentum and Conservation PURPOSE Investigate the relation between applied force and the change in momentum Investigate how the momentum of objects change during collisions BACKGROUND

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY ACCELERATION DUE TO GRAVITY Objective: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: Computer with Logger Pro, green Vernier interface box, picket fence

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever.

Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever. Lift the Load! Computer 28 The Greek philosopher Archimedes said, "Give me a lever long enough, and a place to stand and I can move the world." What did he mean by this? In this activity, you will get

More information

Exploring Magnetism. DataQuest

Exploring Magnetism. DataQuest Exploring Magnetism Magnetism is the force of attraction or repulsion between a magnet and something else. Magnets attract materials made of iron, nickel, or cobalt. Can you think of five things to which

More information

Experiment: Series and Parallel Circuits

Experiment: Series and Parallel Circuits Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

More information

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

More information

Experiment 2: Conservation of Momentum

Experiment 2: Conservation of Momentum Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations

More information

The fairy tale Hansel and Gretel tells the story of a brother and sister who

The fairy tale Hansel and Gretel tells the story of a brother and sister who Piecewise Functions Developing the Graph of a Piecewise Function Learning Goals In this lesson, you will: Develop the graph of a piecewise function from a contet with or without a table of values. Represent

More information

Dynamics Track. Mechanical Force, Impulse and Momentum

Dynamics Track. Mechanical Force, Impulse and Momentum Dynamics Track Mechanical Force, Impulse and Momentum An object subjected to unbalanced forces undergoes acceleration, which changes the velocity of the object in question. This change in motion can be

More information

Solar Homes and Heat Sinks. Evaluation copy. empty bottle with screw-on cap

Solar Homes and Heat Sinks. Evaluation copy. empty bottle with screw-on cap Solar Homes and Heat Sinks Computer 15 Alternative energy sources are energy sources other than the nonrenewable fossil fuels coal, petroleum, and natural gas. Solar energy, or energy from the sun, is

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction

More information

Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A

Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

Pulleys, Work, and Energy

Pulleys, Work, and Energy Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triple-pulley assemblies apparatus from

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer. Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

More information

The Bullet-Block Mystery

The Bullet-Block Mystery LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the

More information

Video in Logger Pro. There are many ways to create and use video clips and still images in Logger Pro.

Video in Logger Pro. There are many ways to create and use video clips and still images in Logger Pro. Video in Logger Pro There are many ways to create and use video clips and still images in Logger Pro. Insert an existing video clip into a Logger Pro experiment. Supported file formats include.avi and.mov.

More information

Appendix C. Vernier Tutorial

Appendix C. Vernier Tutorial C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

Project 4.2.1: Heart Rate

Project 4.2.1: Heart Rate Project 4.2.1: Heart Rate Introduction Even before you were born, one of the first things your doctor did when you went for an office visit was listen to your heart. Your heart rate, the number of times

More information

Tutorial for Tracker and Supporting Software By David Chandler

Tutorial for Tracker and Supporting Software By David Chandler Tutorial for Tracker and Supporting Software By David Chandler I use a number of free, open source programs to do video analysis. 1. Avidemux, to exerpt the video clip, read the video properties, and save

More information

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe

More information

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq)

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq) Endothermic and Exothermic Reactions Computer 1 Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions absorb energy and

More information

Find the Relationship: An Exercise in Graphing Analysis

Find the Relationship: An Exercise in Graphing Analysis Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.

More information

Power Point 2003 Table of Contents

Power Point 2003 Table of Contents Power Point 2003 Table of Contents Creating a Presentation... 2 Selecting Background and Format for Slide... 3 Creating the Title Slide... 4 Adding a New Slide... 5 Types of Text for a Slide: Taken from

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

LAB 4: MOMENTUM AND COLLISIONS

LAB 4: MOMENTUM AND COLLISIONS 1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine action-reaction force pairs To examine collisions and relate the law of conservation

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

MARS STUDENT IMAGING PROJECT

MARS STUDENT IMAGING PROJECT MARS STUDENT IMAGING PROJECT Data Analysis Practice Guide Mars Education Program Arizona State University Data Analysis Practice Guide This set of activities is designed to help you organize data you collect

More information

Mixing Warm and Cold Water

Mixing Warm and Cold Water Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students

More information

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

Evaluation copy. Analyzing the Heart with EKG. Computer

Evaluation copy. Analyzing the Heart with EKG. Computer Analyzing the Heart with EKG Computer An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

Shimadzu UV-VIS User s Guide

Shimadzu UV-VIS User s Guide Shimadzu UV-VIS User s Guide 1) Push the F4 button on the UV-VIS instrument keypad. This will enable PC control. Push the F4 Button 2) Log into the UV-VIS software with your username and password. 3) After

More information

In this example, Mrs. Smith is looking to create graphs that represent the ethnic diversity of the 24 students in her 4 th grade class.

In this example, Mrs. Smith is looking to create graphs that represent the ethnic diversity of the 24 students in her 4 th grade class. Creating a Pie Graph Step-by-step directions In this example, Mrs. Smith is looking to create graphs that represent the ethnic diversity of the 24 students in her 4 th grade class. 1. Enter Data A. Open

More information

App and Program Transfer Guidebook

App and Program Transfer Guidebook App and Program Transfer Guidebook Vernier Software & Technology 13979 SW Millikan Way Beaverton, Oregon 97005-2886 (503) 277-2299 FAX (503) 277-2440 www.vernier.com info@vernier.com Copyright 2006 by

More information

THE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion.

THE SIMPLE PENDULUM. Objective: To investigate the relationship between the length of a simple pendulum and the period of its motion. THE SIMPLE PENDULUM Objective: To investiate the relationship between the lenth of a simple pendulum and the period of its motion. Apparatus: Strin, pendulum bob, meter stick, computer with ULI interface,

More information

Experiment 4 ~ Newton s Second Law: The Atwood Machine

Experiment 4 ~ Newton s Second Law: The Atwood Machine xperiment 4 ~ Newton s Second Law: The twood Machine Purpose: To predict the acceleration of an twood Machine by applying Newton s 2 nd Law and use the predicted acceleration to verify the equations of

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Microsoft Excel Tutorial

Microsoft Excel Tutorial Microsoft Excel Tutorial by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright August, 2000 by James

More information

Experiment 6: Magnetic Force on a Current Carrying Wire

Experiment 6: Magnetic Force on a Current Carrying Wire Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of

More information

Creating a Poster in PowerPoint 2010. A. Set Up Your Poster

Creating a Poster in PowerPoint 2010. A. Set Up Your Poster View the Best Practices in Poster Design located at http://www.emich.edu/training/poster before you begin creating a poster. Then in PowerPoint: (A) set up the poster size and orientation, (B) add and

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

EXPERIMENT 2: FREE FALL and PROJECTILE MOTION

EXPERIMENT 2: FREE FALL and PROJECTILE MOTION TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 2: FREE FALL and PROJECTILE MOTION ONE AND TWO-DIMENSIONAL KINEMATICS WITH GRAVITY 117 Textbook Reference:

More information

Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

More information

One- and Two-dimensional Motion

One- and Two-dimensional Motion PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of

More information

Layout Tutorial. Chapter 10: Getting Started

Layout Tutorial. Chapter 10: Getting Started Chapter 10: Layout Tutorial In this tutorial we will create a layout template, send a few views to a layout page, then save this document in PDF format. In this tutorial you will learn about: Creating

More information

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid Chem 1B Saddleback College Dr. White 1 Experiment 8 Titration Curve for a Monoprotic Acid Objectives To learn the difference between titration curves involving a strong acid with a strong base and a weak

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Student Activity: To investigate an ESB bill

Student Activity: To investigate an ESB bill Student Activity: To investigate an ESB bill Use in connection with the interactive file, ESB Bill, on the Student s CD. 1. What are the 2 main costs that contribute to your ESB bill? 2. a. Complete the

More information

In this lab you will explore the Windows XP Firewall and configure some advanced settings.

In this lab you will explore the Windows XP Firewall and configure some advanced settings. 16.3.2 Lab: Configure Windows XP Firewall Print and complete this lab. In this lab you will explore the Windows XP Firewall and configure some advanced settings. Recommended Equipment Two computers directly

More information

Creating an Excel XY (Scatter) Plot

Creating an Excel XY (Scatter) Plot Creating an Excel XY (Scatter) Plot EXCEL REVIEW 21-22 1 What is an XY or Scatter Plot? An XY or scatter plot either shows the relationships among the numeric values in several data series or plots two

More information

What Does the Normal Distribution Sound Like?

What Does the Normal Distribution Sound Like? What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation

More information

HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing

HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing In this activity, you will play the role of crime scene investigator. The remains of two individuals have recently been found trapped

More information

Speed, Velocity and Acceleration Lab

Speed, Velocity and Acceleration Lab Speed, Velocity and Acceleration Lab Name In this lab, you will compare and learn the differences between speed, velocity, and acceleration. You will have two days to complete the lab. There will be some

More information

Beer's Law: Colorimetry of Copper(II) Solutions

Beer's Law: Colorimetry of Copper(II) Solutions Exercise 11 Page 1 Illinois Central College CHEMISTRY 130 Name: Beer's Law: Colorimetry of Copper(II) Solutions Objectives In this experiment, we will use Beer's Law to determine the unknown concentrations

More information

RANGER S.A.S 3D (Survey Analysis Software)

RANGER S.A.S 3D (Survey Analysis Software) RANGER S.A.S 3D (Survey Analysis Software) QUICK START USER MANUAL INTRODUCTION This document is designed to provide a step by step guide showing how easy it is to import and manipulate raw survey data

More information

Excel -- Creating Charts

Excel -- Creating Charts Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2 Mechanics Translational motions of a mass point One-dimensional motions on the linear air track LD Physics Leaflets P1.3.3.8 Uniformly accelerated motion with reversal of direction Recording and evaluating

More information

Creating a multiple choice test in HyperStudio

Creating a multiple choice test in HyperStudio Creating a multiple choice test in HyperStudio We are going to create a card in HyperStudio that allows the user select an answer in a multiple choice test and then records their selections in the file

More information

Photosynthesis and Respiration

Photosynthesis and Respiration Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored

More information

10.3.1.10 Lab - Configure a Windows XP Firewall

10.3.1.10 Lab - Configure a Windows XP Firewall 5.0 10.3.1.10 Lab - Configure a Windows XP Firewall Print and complete this lab. In this lab, you will explore the Windows XP Firewall and configure some advanced settings. Recommended Equipment Step 1

More information

3. Locate the different selections of Styles from the Home Tab, Styles Group

3. Locate the different selections of Styles from the Home Tab, Styles Group Outlining in MS Word 2007 Microsoft Word 2007 provides users with an Outline View and Outlining toolbar, which allows us to create outlines. Outlines in Word are based on Styles. For instance if a line

More information

MET 306. Activity 8a. Mechanism Design Creo 2.0 Level 7 POINT A GROUND LINK LINK 1 LINK 2 LINK 3 POINT B 10/15/2010 1

MET 306. Activity 8a. Mechanism Design Creo 2.0 Level 7 POINT A GROUND LINK LINK 1 LINK 2 LINK 3 POINT B 10/15/2010 1 Mechanism Design Creo 2.0 Level 7 POINT A LINK 1 GROUND LINK LINK 2 LINK 3 POINT B 10/15/2010 1 Download parts ground, key, link_1, link_2, link_3 and pulley from the V:/MET_306/Activity_8_Creo drive.

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

Teacher Guide. Including Student Activities. Module 1: Tracing Energy Transformations

Teacher Guide. Including Student Activities. Module 1: Tracing Energy Transformations Teacher Guide Including Student Activities Module 1: Tracing Energy Transformations ACTIVITY GUIDE Module 1: Tracing Energy Transformations Summary: We use energy on a daily basis. We use it to make our

More information

Click on various options: Publications by Wizard Publications by Design Blank Publication

Click on various options: Publications by Wizard Publications by Design Blank Publication Click on various options: Publications by Wizard Publications by Design Blank Publication Select the Blank Publications Tab: Choose a blank full page Click on Create New Page Insert > Page Select the number

More information

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity - to inappropriately interchange quantities such as position, velocity, and

More information

AP PHYSICS 2012 SCORING GUIDELINES

AP PHYSICS 2012 SCORING GUIDELINES AP PHYSICS 2012 SCORING GUIDELINES General Notes About 2012 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of points

More information

Data Acquisition And Analysis

Data Acquisition And Analysis Data Acquisition And Analysis Objective: To gain familiarity with some of the measurement tools you will use in lab this semester. To learn how to measure distance with a motion sensor and force with a

More information