Objectives of Pavement Design

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Objectives of Pavement Design"

Transcription

1 Design Methods Highway Pavements AASHTO The Asphalt Institute Portland Cement Association Airfield Pavements FAA The Asphalt Institute Portland Cement Association U.S. Army Corps of Engineers Objectives of Pavement Design To provide a surface that is: Strong Surface strength Moisture control Smooth Safe Friction Drainage Economical Initial construction cost Recurring maintenance cost

2 Pavements are Designed to Fail!! Pavement Design Methodologies Experience Empirical Statistical models from road tests Mechanistic-Empirical Calculation of pavement stresses/strains/deformations Empirical pavement performance models Mechanistic Calculation of pavement stresses/strains/deformations Mechanics-based pavement performance models

3 Empirical vs.. Mechanistic Design P d Wood Floor Joist L Mechanistic: Empirical Rule of 2 : d in inches= (L in feet / 2) + 2 PL σ bending = σ 4S allowable 1993 Version

4 AASHTO Pavement Design Guide Empirical design methodology Several versions: 1961 (Interim Guide) Refined material characterization Version included in Huang (1993) 1993 More on rehabilitation More consistency between flexible, rigid designs Current version 2002 Under development Will be based on mechanistic-empirical approach AASHO Road Test (late 1950 s) (AASHO, 1961)

5 One Rainfall Zone... (AASHO, 1961) One Temperature Zone... (AASHO, 1961)

6 One Subgrade... A-6 / A-7-6 (Clay) Poor Drainage (AASHO, 1961) Limited Set of Materials... One asphalt concrete 3/4 surface course 1 binder course One Portland cement concrete ( days) Four base materials Well-graded crushed limestone (main experiment) Well-graded uncrushed gravel (special studies) Bituminous-treated base (special studies) Cement-treated base (special studies) One uniform sand/gravel subbase

7 1950 s Construction Methods... (AASHO, 1961) (AASHO, 1961) 1950 s Vehicle Loads...

8 Limited Traffic Volumes... Axle Loads (Thousands) 1.1M Axles 2 Years Time (Months) (AASHO, 1961) 1950 s Data Analysis... (AASHO, 1961)

9 Some Failures... (Some pavements too!) (AASHO, 1961) AASHTO Design Based on Serviceability Decrease

10 What is Serviceability? Based upon Present Serviceability Rating (PSR) Subjective rating by individual/panel Initial/post-construction Various times after construction 0 < PSR < 5 PSR < ~2.5: Unacceptable (AASHO, 1961) Present Serviceability Index (PSI) PSR correlated to physical pavement measures via Present Serviceability Index (PSI): PSI = log(1 + SV ) 1.38RD 0.01( C + P) 2 1/2 SV = slope variance (measure of roughness) Empirical! RD = average rut depth (inches) C + P = PSI PSR area of cracking and patching per 1000 ft 2

11 AASHTO Design Guide (1993) Part I: Pavement Design and Management Principles Introduction and Background Design Related to Project Level Pavement Management Economic Evaluation of Alternative Design Strategies Reliability AASHTO Design Guide (1993) Part II: Pavement Design Procedures for New Construction or Reconstruction Design Requirements Highway Pavement Structural Design Low-Volume Road Design

12 AASHTO Design Guide (1993) Part III: Pavement Design Procedures for Rehabilitation of Existing Pavements Rehabilitation Concepts Guides for Field Data Collection Rehabilitation Methods Other Than Overlay Rehabilitation Methods With Overlays Design Scenarios Included in AASHTO Guide

13 AASHTO Design Based on Serviceability Decrease Flexible Pavements

14 Design Equation ( W ) Z S ( SN ) log = log R o 10 Structural Number PSI log log10 ( M R ) ( SN + 1) W 18 = design traffic (18-kip ESALs) Z R = standard normal deviate S o = combined standard error of traffic and performance prediction PSI = difference between initial and terminal serviceability index M R = resilient modulus (psi) SN = structural number 5.19

15 Traffic vs.. Analysis Period Analysis Period (Also basis for life-cycle cost analysis)

16 Design Traffic (18K ESALs) Design Traffic (18K ESALs) D D = 0.5 typically D L :

17 Reliability Recommended Values for Standard Error S o Rigid Pavements: Flexible Pavements:

18 Standard Normal Deviate Z R Recommended Reliability Levels

19 Serviceability PSI = p p PSI = Pavement Serviceability Index, 1 < PSI < 5 p o = Initial Serviceability Index Rigid pavements: 4.5 Flexible pavements: 4.2 p t = Terminal Serviceability Index o t Adjustment of Roadbed (Subgrade) M R for Seasonal Variations

20 Structural Number n = 1 1+ i= 2 SN a D a D m i i i SN = structural number = f (structural capacity) a i = i th layer coefficient D i = i th layer thickness (inches) m i = i th layer drainage coefficient n = number of layers (3, typically) No Unique Solution!

21 Layer Coefficient a 1 : Asphalt Concrete Layer Coefficient a 2 : Granular Base 2 10 ( E ) a log base E base in psi

22 Layer Coefficient a 2 : Cement Treated Base Layer Coefficient a 2 : Bituminous Treated Base

23 Layer Coefficient a 3 : Granular Subbase a = 0.227(log E ) subbase E subbase in psi Quality of Drainage

24 Drainage Coefficient m i m i increases/decreases the effective value for a i Next Slide

25 Traffic vs.. Analysis Period

26 Effect of Frost on Performance PSI = Pavement Servicability Index 1 < PSI < 5 Failure : PSI < 2+ Frost Heave Rate φ φ = f (-0.02mm)

27 Maximum Serviceability Loss PSI max = f (frost depth, drainage) Effect of Swelling on Performance PSI = Pavement Servicability Index 1 < PSI < 5 Failure : PSI < 2+

28 Swell Rate Constant θ θ = f (moisture supply, soil fabric) Maximum Potential Heave V R V R = f (PI, compaction, thickness)

29 Rigid Pavements Design Equation ( W ) = ZRSo + ( D+ ) PCC Thickness log 7.35log log PSI SC ( D 1.132) 10 ' c d ( pt ) log x J D 0.25 ( D + 1 ) ( Ec / k ) W 18 = design traffic (18-kip ESALs) Z R = standard normal deviate S o = combined standard error of traffic and performance prediction D = thickness (inches) of pavement slab PSI = difference between initial and terminal serviceability indices p t = terminal serviceability value S c = modulus of rupture (psi) for Portland cement concrete J = load transfer coefficient C d = drainage coefficient E c = modulus of elasticity (psi) for Portland cement concrete k = modulus of subgrade reaction (pci)

30

31 Design Inputs W 18 = design traffic (18-kip ESALs) Z R = standard normal deviate S o = combined standard error of traffic and performance prediction PSI = difference between initial and terminal serviceability indices p t = terminal serviceability index (implicit in flexible design) All consistent with flexible pavements! Additional Design Inputs S c = modulus of rupture for concrete J = joint load transfer coefficient C d = drainage coefficient (similar in concept to flexible pavement terms) E c = modulus of elasticity for concrete k = modulus of subgrade reaction Additional inputs reflect differences in materials and structural behavior.

32 Modulus of Rupture S c Joint Load Transfer Coefficient J Pavement Type (no tied shoulders) JCP/JRCP w/ load transfer devices JCP/JRCP w/out load transfer devices J CRCP 2.9

33 Joint Load Transfer Coefficient J Additional benefits of tied shoulders: Drainage Coefficient C d Two effects: Subbase and subgrade strength/stiffness Joint load transfer effectiveness

34 PCC Modulus of Elasticity E c Measure directly per ASTM C469 Correlation w/ compressive strength: E c = 57,000 (f c ) 0.5 E c = elastic modulus (psi) f c = compressive strength (psi) per AASHTO T22, T140, or ASTM C39 Effective Subgrade Modulus k Depends on: Roadbed (subgrade) resilient modulus, M R Subbase resilient modulus, E SB Both vary by season

35 Determining Effective k (See Table 3.2) Identify: Subbase types Subbase thicknesses Loss of support, LS (erosion potential of subbase) Depth to rigid foundation (feet) Assign roadbed soil resilient modulus (M R ) for each season Assign subbase resilient modulus (E SB ) for each season 15,000 psi (spring thaw) < E SB < 50,000 psi (winter freeze) E SB < 4(M R )

36 Determining Effective k (cont d) Determine composite k for each season For D SB = 0: k = M R /19.4 For D SB > 0: Use Figure 3.3 If depth to rigid foundation < 10 feet, correct k for effect of rigid foundation near the surface (Figure 3.4) Estimate required thickness of slab (Figure 3.5) and determine relative damage u r for each season Use average u r to determine effective k (Figure 3.5) Correct k for potential loss of support LS (Figure 3.6) Composite Modulus of Subgrade Reaction k = f (M R, E SB, D SB )

37 Rigid Foundation Correction Relative Damage u r = f ( k, D)

38 Loss of Support, LS Subbase/subgrade erosion at joints causes Loss of Support, impairs load transfer.

39 Loss of Support

40 Next Slide Consistent with flexible pavement approach! Traffic vs.. Analysis Period

41 Joint Design Joint Types Contraction Expansion Construction Longitudinal Joint Geometry Spacing Layout (e.g., regular, skewed, randomized) Dimensions Joint Sealant Dimensions Types of Joints Contraction Transverse For relief of tensile stresses Expansion Transverse For relief of compressive stresses Used primarily between pavement and structures (e.g., bridge) Construction Longitudinal For relief of curling and warping stresses

42 Typical Contraction Joint Details (Huang, 1993) Typical Expansion Joint Detail (Huang, 1993)

43 Typical Construction Joint Detail (Huang, 1993) Typical Longitudinal Joint Detail Full Width Construction (Huang, 1993)

44 Typical Longitudinal Joint Detail Lane-at-a-Time Construction (Huang, 1993) Joint Spacing Local experience is best guide Rules of thumb: JCP joint spacing (feet) < 2D (inches) W/L < 1.25

45 Joint Dimensions Width controlled by joint sealant extension Depths: Contraction joints: D/4 Longitudinal joints: D/3 Joints may be formed by: Sawing Inserts Forming Joint Sealant Dimension Governed by expected joint movement, sealant resilience

46 Design Inputs Z α c Reinforcement Design (JRCP) Purpose of reinforcement is not to prevent cracking, but to hold tightly closed any cracks that may form Physical mechanisms: Thermal/moisture contraction Friction resistance from underlying material Design based on friction stress analysis (Huang, 1993)

47 Dowel Bars: Transverse Joint Load Transfer size and spacing should be determined by the local agency s procedures and/or experience. Guidelines: Dowel bar diameter = D/8 (inches) Dowel spacing: 12 inches Dowel length: 18 inches Friction Stresses Induces tensile stresses in concrete Causes opening of transverse joints (Huang, 1993)

48 Applies to both longitudinal and transverse steel reinforcement (Generally, P s =0 for L< ~15 feet) Friction Factor

49 Steel Working Stress Based on preventing fracture and limiting permanent deformation. Transverse Tie Bars

50 Transverse Tie Bars

The AASHO Road Test site (which eventually became part of I-80) at Ottawa, Illinois, was typical of northern climates (see Table 1).

The AASHO Road Test site (which eventually became part of I-80) at Ottawa, Illinois, was typical of northern climates (see Table 1). Página 1 de 12 AASHO Road Test The AASHO Road Test, a $27 million (1960 dollars) investment and the largest road experiment of its time, was conceived and sponsored by the American Association of State

More information

Municipal Pavement Design with StreetPave Software

Municipal Pavement Design with StreetPave Software Municipal Pavement Design with StreetPave Software March 5, 2009 Scott Haislip Senior VP Pavement Engineering Presentation Overview Background / history of the design procedure Concrete pavement design

More information

GUIDELINES FOR 1993 AASHTO PAVEMENT DESIGN

GUIDELINES FOR 1993 AASHTO PAVEMENT DESIGN VIRGINIA DEPARMENT OF TRANSPORTATION MATERIALS DIVISION PAVEMENT DESIGN AND EVALUATION SECTION GUIDELINES FOR 1993 AASHTO PAVEMENT DESIGN FIRST PRINTING MAY 2000 REVISED OCTOBER 2001 REVISED JANUARY 2003

More information

Final Report Evaluation of I-Pave Low Volume Road Design Software

Final Report Evaluation of I-Pave Low Volume Road Design Software Final Report Evaluation of I-Pave Low Volume Road Design Software May 2015 Michael I Darter, William R. Vavrik, Dinesh Ayyala 2015 2014 Applied Research Associates, Inc. 1 Objectives 1. Obtain all documentation

More information

La Nueva AASHTO Guia de Diseno de Pavimentos Hormigon

La Nueva AASHTO Guia de Diseno de Pavimentos Hormigon La Nueva AASHTO Guia de Diseno de Pavimentos Hormigon Michael I. Darter Emeritus Prof. Civil Engineering, University of Illinois & Applied Research Associates, Inc. USA October 2012 Cordoba, Argentina

More information

Construction Specifications for Keyhole Pavement Coring and Reinstatement

Construction Specifications for Keyhole Pavement Coring and Reinstatement F I N A L Construction Specifications for Keyhole Pavement Coring and Reinstatement Gas Technology Institute 1700 S. Mount Prospect Rd. Des Plaines, Illinois 60018 www.gastechnology.org Version 13 October

More information

INTRODUCTION TO CONCRETE PAVEMENTS

INTRODUCTION TO CONCRETE PAVEMENTS INTRODUCTION TO CONCRETE PAVEMENTS Abstract Arvo Tinni Tinni Management Consulting February 2013 This paper describes the experiences and design methodologies for concrete pavements in Australia. It is

More information

Lecture Notes CT 4860 Structural Pavement Design. Design of Flexible Pavements

Lecture Notes CT 4860 Structural Pavement Design. Design of Flexible Pavements Lecture Notes CT 4860 Structural Pavement Design Design of Flexible Pavements Prof.dr.ir. A.A.A. Molenaar Delft, March 2007 Table of contents Preface 3 1. Introduction 4 2. Major defect types in flexible

More information

Modern Techniques for Concrete Pavement Design

Modern Techniques for Concrete Pavement Design Modern Techniques for Concrete Pavement Design Robert Rodden, P.E. Director of Technical Services & Product Development American Concrete Pavement Association km of Paved Roadway by Country 5.000.000 4.500.000

More information

NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS 17 TH ANNUAL PUBLIC WORKS ROUNDUP JUNE 8, 2016. Concrete Street Insanity

NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS 17 TH ANNUAL PUBLIC WORKS ROUNDUP JUNE 8, 2016. Concrete Street Insanity NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS 17 TH ANNUAL PUBLIC WORKS ROUNDUP JUNE 8, 2016 Concrete Street Insanity Jerry Murawski, P.E. With Special Thanks to Jan Prusinski, P.E. Cement Council of Texas

More information

CHAPTER 13 REINFORCED CONCRETE PAVEMENTS

CHAPTER 13 REINFORCED CONCRETE PAVEMENTS TM 5-822-5/AFM 88-7, Chap. 1 CHAPTER 13 REINFORCED CONCRETE PAVEMENTS 13-1. Application competitive with plain concrete pavements of equal Under certain conditions, concrete pavement slabs load-carrying

More information

Expected Service Life and Performance Characteristics of HMA Pavements in LTPP

Expected Service Life and Performance Characteristics of HMA Pavements in LTPP Expected Service Life and Performance Characteristics of HMA Pavements in LTPP Expected Service Life and Performance Characteristics of HMA Pavements in LTPP Submitted to: Asphalt Pavement Alliance Prepared

More information

Pavement Rehabilitation Using Hot Mix Asphalt. - National Perspective -

Pavement Rehabilitation Using Hot Mix Asphalt. - National Perspective - Pavement Rehabilitation Using Hot Mix Asphalt - National Perspective - Rehabilitation Process Evaluate Existing Pavement and Conditions Evaluate Options Construct Project Monitor Performance Evaluate Existing

More information

RMS Guide for design of concrete pavements in areas of settlement. Version 1.0. Roads and Maritime Services www.rms.nsw.gov.au

RMS Guide for design of concrete pavements in areas of settlement. Version 1.0. Roads and Maritime Services www.rms.nsw.gov.au Guide for design of concrete pavements in areas of settlement Version 1.0 RMS Guide for design of concrete pavements in areas of settlement Version 1.0 Roads and Maritime Services www.rms.nsw.gov.au Title:

More information

What is design ESALs?

What is design ESALs? TEXAS DEPARTMENT OF TRANSPORTATION What is ESAL? ESAL is the acronym for equivalent single axle load. ESAL is a concept developed from data collected at the American Association of State Highway Officials

More information

REGIONAL TRANSPORTATION COMMISSION OF WASHOE COUNTY

REGIONAL TRANSPORTATION COMMISSION OF WASHOE COUNTY REGIONAL TRANSPORTATION COMMISSION OF WASHOE COUNTY FLEXIBLE PAVEMENT DESIGN MANUAL February 2007 PREPARED BY: SIERRA TRANSPORTATION ENGINEERS, INC 1005 TERMINAL WAY, SUITE 125 RENO, NV 89502 EXECUTIVE

More information

July 2005 Technical Memorandum: UCPRC-TM-2005-12. Authors: D. Jones and J. Harvey PREPARED FOR: PREPARED BY:

July 2005 Technical Memorandum: UCPRC-TM-2005-12. Authors: D. Jones and J. Harvey PREPARED FOR: PREPARED BY: July 2005 Technical Memorandum: UCPRCTM200512 Relationship Between DCP, Stiffness, Shear Strength and RValue Authors: D. Jones and J. Harvey Partnered Pavement Research Program (PPRC) Contract Strategic

More information

Joint Rehabilitation. Driving Forces for Concrete Pavement Joint Repairs

Joint Rehabilitation. Driving Forces for Concrete Pavement Joint Repairs Long Life Concrete Pavement Joint Performance Joint Rehabilitation Gary Fick, Trinity Construction Management Services, Inc. Representing the National CP Tech Center Driving Forces for Concrete Pavement

More information

Roller-Compacted Concrete: Highway/Street Applications

Roller-Compacted Concrete: Highway/Street Applications Roller-Compacted Concrete: Highway/Street Applications 2009 Louisiana Transportation Conference Tim McConnell Portland Cement Association Definition Roller-Compacted Concrete (RCC) is a no-slump concrete

More information

Rehabilitation Strategies for Highway Pavements

Rehabilitation Strategies for Highway Pavements NCHRP Web Document 35 (Project C1-38): Contractor s Final Report Rehabilitation Strategies for Highway Pavements Prepared for: National Cooperative Highway Research Program Transportation Research Board

More information

Technical Presentation: Follow up on HVS testing of Roller Compacted Concrete and Ultra-thin reinforced concrete test sections

Technical Presentation: Follow up on HVS testing of Roller Compacted Concrete and Ultra-thin reinforced concrete test sections Technical Presentation: Follow up on HVS testing of Roller Compacted Concrete and Ultra-thin reinforced concrete test sections Louw du Plessis 12 Febuary 2015 Objectives UTRCP Previous round of HVS testing

More information

Slab on Grade Reinforcing Design

Slab on Grade Reinforcing Design PDHonline Course S132 (1 PDH) Slab on Grade Reinforcing Design Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658

More information

APPENDIX B. I. Background Information

APPENDIX B. I. Background Information APPENDIX B GUIDELINES FOR IDENTIFYING AND REPAIRING LOCALIZED AREAS OF DISTRESS IN AC PAVEMENTS PRIOR TO CAPITAL PREVENTIVE MAINTENANCE OR REHABILITATION REPAIRS I. Background Information A. AC Pavement

More information

PAVEMENT STRUCTURE DESIGN GUIDELINES

PAVEMENT STRUCTURE DESIGN GUIDELINES PAVEMENT STRUCTURE DESIGN GUIDELINES Technical Circular T- 01/15 (Replaces Technical Circular T-01/04) Final Update: Jan. 26, 2015 Geotechnical, Materials and Pavement Engineering TABLE OF CONTENTS 1.0

More information

Chapter 7: Pavement Rehabilitation 7-1 Asphalt Pavement Overlays 7-1 Surface Preparation Methods 7-2 Concrete Pavement Preparation 7-3 Recycling

Chapter 7: Pavement Rehabilitation 7-1 Asphalt Pavement Overlays 7-1 Surface Preparation Methods 7-2 Concrete Pavement Preparation 7-3 Recycling 7-1 Asphalt Pavement Overlays 7-1 Surface Preparation Methods 7-2 Concrete Pavement Preparation 7-3 Recycling Asphalt Pavements 7-7 Chapter 7 Pavement Rehabilitation Pavement rehabilitation can be accomplished

More information

Validation of Pavement Performance Curves for the Mechanistic-Empirical Pavement Design Guide

Validation of Pavement Performance Curves for the Mechanistic-Empirical Pavement Design Guide MEPDG Work Plan Task No. 8: Validation of Pavement Performance Curves for the Mechanistic-Empirical Pavement Design Guide Final Report February 2009 Sponsored by Iowa Department of Transportation (CTRE

More information

Transportation Infrastructure Asset Management

Transportation Infrastructure Asset Management 2015 NW Region TTAP& BIA Symposium Transportation Infrastructure Asset Management March, 2015 Happy Longfellow, PE hlongfellow@parametrix.com (206) 394-3649 ASSET MANAGEMENT OVERVIEW What? Why? How? Inventory

More information

C. Section 014510 TESTING LABORATORY SERVICE.

C. Section 014510 TESTING LABORATORY SERVICE. SECTION 014500 QUALITY CONTROL PART 1 GENERAL 1.01 RELATED REQUIREMENTS A. Drawings and General Provisions of Contract, including General and Special Conditions and other Division 1 Specification Sections,

More information

Impacts of Increased Loading Due to Heavy Construction Traffic on Thin Pavements

Impacts of Increased Loading Due to Heavy Construction Traffic on Thin Pavements Impacts of Increased Loading Due to Heavy Construction Traffic on Thin Pavements Author: Harry Sturm, P. Eng. Stantec Consulting Ltd. 16-77 Mississauga Road Mississauga, ON L5N 7G2 Phone: (95) 817-296

More information

Pavement Design for Rural Low Volume Roads Using Cement and Lime Treatment Base

Pavement Design for Rural Low Volume Roads Using Cement and Lime Treatment Base Pavement Design for Rural Low Volume Roads Using Cement and Lime Treatment Base General Manager, Pavement, Material and Geotechnical Division, Intercontinental Consultants and Technocrats Private Limited,

More information

GUIDELINE ON IN SITU RECYCLING WITH CEMENT GUIDELINE ON IN SITU RECYCLING WITH CEMENT GUIDELINE ON IN SITU RECYCLING WITH CEMENT INTRODUCTION

GUIDELINE ON IN SITU RECYCLING WITH CEMENT GUIDELINE ON IN SITU RECYCLING WITH CEMENT GUIDELINE ON IN SITU RECYCLING WITH CEMENT INTRODUCTION International Seminar on Recycling Warsaw, 10-11 October 2002 GUIDELINE ON IN SITU RECYCLING WITH CEMENT Carlos Jofré IECA, Spain GUIDELINE ON IN SITU RECYCLING WITH CEMENT Working group Australia Austria

More information

OHIO ASPHALT PAVING CONFERENCE

OHIO ASPHALT PAVING CONFERENCE OHIO ASPHALT PAVING CONFERENCE 38 th Annual Conference Wednesday, 2/6/2013 Fawcett Center Campus of The Ohio State University 2400 Olentangy River Road Columbus, Ohio 43210 REHAB STRATEGIES FOR LOCAL

More information

Rehabilitation Strategies for Bonded Concrete Overlays of Asphalt Pavements

Rehabilitation Strategies for Bonded Concrete Overlays of Asphalt Pavements University of Pittsburgh Rehabilitation Strategies for Bonded Concrete Overlays of Asphalt Pavements Authors: J. M Vandenbossche S. Sachs August 2013 1. Introduction Bonded concrete overlays of asphalt

More information

SELECTING REHABILITATION STRATEGIES FOR FLEXIBLE PAVEMENTS IN TEXAS. Andrew J. Wimsatt, Ph.D., P.E. Fort Worth District Pavement Engineer

SELECTING REHABILITATION STRATEGIES FOR FLEXIBLE PAVEMENTS IN TEXAS. Andrew J. Wimsatt, Ph.D., P.E. Fort Worth District Pavement Engineer SELECTING REHABILITATION STRATEGIES FOR FLEXIBLE PAVEMENTS IN TEXAS Andrew J. Wimsatt, Ph.D., P.E. Fort Worth District Pavement Engineer Texas Department of Transportation P.O. Box 6868 Fort Worth, TX

More information

Pavement Design. Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION. 1005 Terminal Way, Suite 125 Reno, Nevada 89502

Pavement Design. Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION. 1005 Terminal Way, Suite 125 Reno, Nevada 89502 Pavement Design Guest Lecturer Dr. Sirous Alavi, P.E. SIERRA TRANSPORTATION ENGINEERS,, INC. I 1005 Terminal Way, Suite 125 Reno, Nevada 89502 Topics Introduction Design Factors Pavement Types Fundamentals

More information

Software Development (PAKPAVE) for Flexible Pavement Design

Software Development (PAKPAVE) for Flexible Pavement Design Software Development (PAKPAVE) for Flexible Pavement Design Rafi Ullah Khan, Muhammad Imran Khan and Afed Ullah Khan Abstract In today s world, the road and surface failure of the flexible pavement has

More information

Guide for Design and Construction of New Jointed Plain Concrete Pavements (JPCPs)

Guide for Design and Construction of New Jointed Plain Concrete Pavements (JPCPs) DIVISION OF DESIGN Office of Pavement Design Pavement Design & Analysis Branch Guide for Design and Construction of New Jointed Plain Concrete Pavements (JPCPs) January 9, 2008 i TABLE OF CONTENTS 1.0

More information

Quality Assurance Concepts. Outline

Quality Assurance Concepts. Outline Quality Assurance Concepts Peter C. Taylor Outline What is quality? Who cares? How do we get it? What is the important stuff? 1 Defining Quality Simple Definition (Philip Crosby) Quality: Conformance to

More information

Application of the Endurance Limit Premise in Mechanistic-Empirical Based Pavement Design Procedures

Application of the Endurance Limit Premise in Mechanistic-Empirical Based Pavement Design Procedures Application of the Endurance Limit Premise in Mechanistic-Empirical Based Pavement Design Procedures Text Word Count: 5,409 Tables & Figures: 3,250 Total Word Count: 8,659 By: 102 Northwest Drive, Suite

More information

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia Roller-Compacted Concrete Pavement: Design and Construction Pavement Thickness esign and RCC-Pave Software Gregory E. Halsted, P.E. Pavements Engineer Portland Cement Association October 24, 2006 Atlanta,

More information

CONCRETE REPAIR GUIDELINES. Concrete repairs can be broken down into four basic types, plus special repairs and planing.

CONCRETE REPAIR GUIDELINES. Concrete repairs can be broken down into four basic types, plus special repairs and planing. CONCRETE REPAIR GUIDELINES Concrete repairs can be broken down into four basic types, plus special repairs and planing. Note: It is recommended that investigation into soundness of pavement be performed

More information

SECTION III-06 Surfacing Page 1 Revised 3/2/10. See the DESIGN GUIDELINES in Section I-06 for requirements for cross slope of the roadway.

SECTION III-06 Surfacing Page 1 Revised 3/2/10. See the DESIGN GUIDELINES in Section I-06 for requirements for cross slope of the roadway. Page 1 Revised 3/2/10 See the DESIGN GUIDELINES in Section I-06 for requirements for cross slope of the roadway. For New/Reconstruction projects: The cross slope of the driving lanes range from 1.5% to

More information

CHAPTERS 600 670 PAVEMENT ENGINEERING CHAPTER 600 GENERAL ASPECTS

CHAPTERS 600 670 PAVEMENT ENGINEERING CHAPTER 600 GENERAL ASPECTS HIGHWAY DESIGN MANUAL 600-1 May 7, 2012 CHAPTERS 600 670 PAVEMENT ENGINEERING CHAPTER 600 GENERAL ASPECTS Topic 601 - Introduction Pavement engineering involves the determination of the type and thickness

More information

Reinforced Concrete Design SHEAR IN BEAMS

Reinforced Concrete Design SHEAR IN BEAMS CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.

More information

TAC Primer Pavement Asset Design and Management

TAC Primer Pavement Asset Design and Management Transportation Association of Canada TAC Primer Pavement Asset Design and Management Introduction Transportation infrastructure plays an important role in the social and economic development of a country,

More information

Performance of Edge Drains in Concrete Pavements in California

Performance of Edge Drains in Concrete Pavements in California Performance of Edge Drains in Concrete Pavements in California Biplab B. Bhattacharya, 1 Michael P. Zola, 2 Shreenath Rao, 3 Karl Smith, 4 Craig Hannenian 5 ABSTRACT The California Department of Transportation

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

LIFE-CYCLE COST COMPARISON FOR MUNICIPAL ROAD PAVEMENTS

LIFE-CYCLE COST COMPARISON FOR MUNICIPAL ROAD PAVEMENTS LIFE-CYCLE COST COMPARISON FOR MUNICIPAL ROAD PAVEMENTS HEIN, David K., P.Eng. Applied Research Associates, Inc., 5401 Eglinton Avenue West, Suite 105, Toronto, ON, CANA- DA, M9C 5K6. Tel: 416-621-9555

More information

AGREGADOS RECICLADOS MITOS Y REALIDADES

AGREGADOS RECICLADOS MITOS Y REALIDADES The Production and Use of Recycled Concrete in the USA Thomas Van Dam, Ph.D., P.E., FACI Principal Engineer CTL Group Introduction In the United States, concrete is the most commonly used recycled material

More information

Transportation Demographics

Transportation Demographics Transportation Demographics F Roads Marine Highway Airports E = Emulsion Stabilization F = Foamed Asphalt Stabilization C = Portland Cement Stabilization 9/25/2012 Integrity Excellence Respect 2 Integrity

More information

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering Geotechnical Bulletin GB 1 PLAN SUBGRADES Geotechnical Bulletin GB1 was jointly developed by the Offices

More information

738-B-297 POLYMERIC CONCRETE BRIDGE DECK OVERLAY. (Adopted 02-20-14)

738-B-297 POLYMERIC CONCRETE BRIDGE DECK OVERLAY. (Adopted 02-20-14) POLYMERIC CONCRETE BRIDGE DECK OVERLAY (Adopted 02-20-14) Description The polymeric concrete bridge deck overlay shall consist of an epoxy polymer that acts together with special aggregate to form an overlay

More information

Permeable Interlocking Concrete Pavements. The Stormwater Problem

Permeable Interlocking Concrete Pavements. The Stormwater Problem Permeable Interlocking Concrete Pavements The Stormwater Problem 1 Stormwater Management Objectives Water Quantity Accommodate water volumes & peak flows Water Quality Control pollutant levels A Low Impact

More information

Reinforcement HUESKER. HaTelit. Engineering with geosynthetics

Reinforcement HUESKER. HaTelit. Engineering with geosynthetics HUESKER Engineering with geosynthetics rhuesker HUESKER HUESKER HUESKER HUESKER HUESKERr SKER HUESKER HUESKER Asphalt HUESKER HUESKER HUESKERHUES Reinforcement - the answer to reflective cracking in asphalt

More information

SECTION VALVE BOXES AND METER VAULTS

SECTION VALVE BOXES AND METER VAULTS SECTION 03 48 20 VALVE BOXES AND METER VAULTS PART 1: GENERAL 1.01 SECTION INCLUDES A. Valve boxes for water and cleanout boxes for wastewater service. B. Meter boxes for water service. C. Meter vaults

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

September 1, 2003 CONCRETE MANUAL 5-694.900 CONCRETE PAVEMENT REHABILITATION 5-694.900

September 1, 2003 CONCRETE MANUAL 5-694.900 CONCRETE PAVEMENT REHABILITATION 5-694.900 September 1, 2003 CONCRETE MANUAL 5-694.900 5-694.901 GENERAL CONCRETE PAVEMENT REHABILITATION 5-694.900 Concrete Pavement Rehabilitation is an extremely valuable tool of the Minnesota Department of Transportation

More information

SECTION 3.3 - PAVEMENT DESIGN

SECTION 3.3 - PAVEMENT DESIGN SECTION 3.3-3.3.1 GENERAL 3.3.2 SUBSURFACE DRAINAGE 3.3.3 DETERMINATION OF DESIGN TRAFFIC 3.3.4 SUBGRADE EVALUATION 3.3.5 PAVEMENT THICKNESS 3.3.5.1 GRANULAR PAVEMENTS WITH THIN BITUMINOUS SURFACING 3.3.5.2

More information

Pavement Rehabilitation Selection Rehabilitation Techniques

Pavement Rehabilitation Selection Rehabilitation Techniques Pavement Rehabilitation Selection Rehabilitation Techniques Bituminous Pavement Rehabilitation Techniques Overlays Bituminous Concrete Pre-overlay Treatments Mill and Overlay Mill and Inlay Recycling Options

More information

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS December 2014 CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS 1. DESCRIPTION... 1 1.1 General... 1 1.2 Definitions... 1 1.3 Referenced Standard Construction Specifications...

More information

FOAMULAR LT40, 400 and 600 insulations with minimum compressive strengths of

FOAMULAR LT40, 400 and 600 insulations with minimum compressive strengths of Technical Guide FOAMULAR Extruded Polystyrene Insulation For Cold Storage Applications FOAMULAR extruded polystyrene insulation is suitable for virtually all cold storage insulating needs, including floors,

More information

Soil Cement Roads Richland County MT

Soil Cement Roads Richland County MT Soil Cement Roads Richland County MT 20 th Annual NRRA Pavement Conference St. Paul, MN February 18 th, 2016 For Current Report, Google soil cement montana Russell Huotari, Richland Co Public Works Director

More information

FLEXIBLE PAVEMENT DESIGN Examples of design with different systems.

FLEXIBLE PAVEMENT DESIGN Examples of design with different systems. FLEXIBLE PAVEMENT DESIGN Examples of design with different systems. Design three types of highways, all main roads but with different traffic loads. The roads shall all be designed on the same subgrade.

More information

Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance

Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance Using Accelerated Pavement Testing to Evaluate Permeable Interlocking Concrete Pavement Performance Rongzong Wu, David Jones, Hui Li and John Harvey University of California Pavement Research Center Prepared

More information

SD95-16-G2. SD Department of Transportation Office of Research. Rural Road Design, Maintenance, and Rehabilitation Guide

SD95-16-G2. SD Department of Transportation Office of Research. Rural Road Design, Maintenance, and Rehabilitation Guide SD95-16-G2 SD Department of Transportation Office of Research Rural Road Design, Maintenance, and Rehabilitation Guide Prepared by ERES Consultants, Inc. 505 West University Champaign, IL 61820-3915 September

More information

Introduction to Flexible Pavement Design

Introduction to Flexible Pavement Design Introduction to Flexible Pavement Design Course No: C02-015 Credit: 2 PDH J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point,

More information

Number E-C118 July 2007 Pavement Lessons Learned from the AASHO Road Test and Performance of the Interstate Highway System

Number E-C118 July 2007 Pavement Lessons Learned from the AASHO Road Test and Performance of the Interstate Highway System TRANSPORTATION RESEARCH Number E-C118 July 2007 Pavement Lessons Learned from the AASHO Road Test and Performance of the Interstate Highway System TRANSPORTATION RESEARCH BOARD 2007 EXECUTIVE COMMITTEE

More information

TYPES OF FOUNDATIONS

TYPES OF FOUNDATIONS TYPES OF FOUNDATIONS 1 Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread footings Wall footings Combined footings Cantilever or strap footings

More information

RECYCLED CRUSHED CONCRETE BASE COURSE

RECYCLED CRUSHED CONCRETE BASE COURSE Section 02713 PART 1 G E N E R A L 1.01 SECTION INCLUDES A. Recycled crushed concrete base (RCCB) course. 1.02 MEASUREMENT AND PAYMENT A. Unit Prices. 1. Payment for RCCB is on per ton basis furnished

More information

Airfield Pavement Rehabilitation Planning Choosing the right fix. Rob McLure, M.Eng., P.Eng. Senior Associate Hatch Mott MacDonald

Airfield Pavement Rehabilitation Planning Choosing the right fix. Rob McLure, M.Eng., P.Eng. Senior Associate Hatch Mott MacDonald Airfield Pavement Rehabilitation Planning Choosing the right fix Rob McLure, M.Eng., P.Eng. Senior Associate Hatch Mott MacDonald Presentation Objective ¾ Review the pavement rehabilitation strategy development

More information

Strength of Concrete

Strength of Concrete Strength of Concrete In concrete design and quality control, strength is the property generally specified. This is because, compared to most other properties, testing strength is relatively easy. Furthermore,

More information

SECTION 33 05 16.13 PRECAST CONCRETE UTILITY STRUCTURES

SECTION 33 05 16.13 PRECAST CONCRETE UTILITY STRUCTURES SECTION 33 05 16.13 PRECAST CONCRETE PART 1 - GENERAL 1.01 SECTION INCLUDES A. This item shall consist of the construction of both sanitary and storm sewer precast concrete manholes in accordance with

More information

Specification Guidelines: Allan Block Modular Retaining Wall Systems

Specification Guidelines: Allan Block Modular Retaining Wall Systems Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's

More information

DESIGN OF CONTAINER YARD AT PORT OF BALBOA. Houston, TX 77077; PH (281) 940-6420; email: carlos.ospina@abam.com

DESIGN OF CONTAINER YARD AT PORT OF BALBOA. Houston, TX 77077; PH (281) 940-6420; email: carlos.ospina@abam.com DESIGN OF CONTAINER YARD AT PORT OF BALBOA Carlos E. Ospina, PhD, PE, MASCE; 1 Viswanath K. Kumar, PE, MASCE; 2 and Jorge Puente, PE, MASCE 3 1 Senior Project Engineer, BergerABAM, 2000 South Dairy Ashford

More information

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS Section Page 36-1 GENERAL... 36.1 36-2 PIPEMAKING EQUIPMENT... 36.1 36-3 TRENCH EXCAVATION... 36.1 36-4 SPECIAL FOUNDATION TREATMENT...

More information

Design and Construction of Roller-Compacted Concrete Pavements for Container Terminals. David R. Luhr PhD PE *

Design and Construction of Roller-Compacted Concrete Pavements for Container Terminals. David R. Luhr PhD PE * Design and Construction of Roller-Compacted Concrete Pavements for Container Terminals David R. Luhr PhD PE * Program Manager, Portland Cement Association, PO Box 5895, Cary, NC 27511; PH 919-462-0840;

More information

State of the Art on Fiber Reinforced Concrete

State of the Art on Fiber Reinforced Concrete State of the Art on Fiber Reinforced Concrete Recent Advances on the use of FRC for Pavement Design Presented to: 015 Concrete Pavements Plus Seminar Michael Mahoney, P.Eng. Director of Admixture and Fiber

More information

Cementitious Stabilization

Cementitious Stabilization A2J01: Committee on Cementitious Stabilization Chairman: Roger K. Seals, Louisiana State University Cementitious Stabilization DALLAS N. LITTLE, Texas A&M University ERIC H. MALES, National Lime Association

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

Rehabilitation by cracking and seating of concrete pavement optimized by FWD analysis

Rehabilitation by cracking and seating of concrete pavement optimized by FWD analysis Rehabilitation by cracking and seating of concrete pavement optimized by FWD analysis H. C. Korsgaard & J. P. Pedersen Carl Bro Pavement Consultants, Kokbjerg 5, DK6000 Kolding M. Rasmussen Copenhagen

More information

SECTION 02845 GUARDRAILS

SECTION 02845 GUARDRAILS SECTION 02845 GUARDRAILS PART 1 - GENERAL 1.01 SCOPE OF WORK A. Furnish all labor, materials, equipment and incidentals necessary and repair, replace or install all types of guardrails as specified herein

More information

SECTION 311 PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE

SECTION 311 PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE 311.1 DESCRIPTION: This item shall consist of a cement treated subgrade base course composed of a mixture of local soil, portland

More information

Fatigue :Failure under fluctuating / cyclic stress

Fatigue :Failure under fluctuating / cyclic stress Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue

More information

Evaluation of Cement Treated Base Courses

Evaluation of Cement Treated Base Courses Evaluation of Cement Treated Base Courses Technical Assistance Report Number 00-1TA by Kevin J. Gaspard, P.E. Louisiana Transportation Research Center Louisiana Department of Transportation and Development

More information

Structural/Hydrologic Design & Maintenance of Permeable Interlocking Concrete Pavement

Structural/Hydrologic Design & Maintenance of Permeable Interlocking Concrete Pavement Structural/Hydrologic Design & Maintenance of Permeable Interlocking Concrete Pavement David R. Smith, Technical Director Interlocking Concrete Pavement InsCtute, Herndon, Virginia USA William F. Hunt,

More information

Flexural Strength of Concrete (The Modulus of Rupture Test)

Flexural Strength of Concrete (The Modulus of Rupture Test) Revised 09-06-3, WKS Datasheet No. 7.6a & 7.6b MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY BUILDING AND CONSTRUCTION SCIENCES DEPARTMENT Flexural Strength of Concrete (The Modulus of Rupture Test) INTRODUCTION

More information

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone GEOSYNTHETIC SOIL REINFORCEMENT Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone DESIGN MANUAL & KEYWALL OPERATING GUIDE GEOSYNTHETIC SOIL REINFORCEMENT Keystone retaining walls

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

Grinding equipment that causes raveling, aggregate fractures or disturbance to the joints shall not be permitted.

Grinding equipment that causes raveling, aggregate fractures or disturbance to the joints shall not be permitted. Guide Specification: Diamond Grinding for City Streets Publication Date: May 24, 2010 SCOPE City streets are defined as roadways with a closed drainage system along with numerous structures such as manholes,

More information

Minimizing Reflective Cracking With Applications of the Rolling Dynamic Deflectometer and Overlay Tester

Minimizing Reflective Cracking With Applications of the Rolling Dynamic Deflectometer and Overlay Tester Minimizing Reflective Cracking With Applications of the Rolling Dynamic Deflectometer and Overlay Tester Dar-Hao Chen, 1 Moon Won, 2 Tom Scullion, 3 and John Bilyeu 4 ABSTRACT Since reflective cracking

More information

Technical Data. Application Recommendations Dimensioning Aids.

Technical Data. Application Recommendations Dimensioning Aids. Technical Data Application Recommendations Dimensioning Aids www.styrodur.com Application Recommendations 1. Application Recommendations Application type according to DIN 4108-10 or technical approval

More information

Installation PowerPoint for Grasscrete Formers

Installation PowerPoint for Grasscrete Formers Installation PowerPoint for Grasscrete Formers 1 This document describes the two single-use tools utilized to create the Grasscrete product. The original Former is a vacuum formed light gauge plastic mold

More information

THIN ASPHALT OVERLAYS FOR PAVEMENT PRESERVATION

THIN ASPHALT OVERLAYS FOR PAVEMENT PRESERVATION THIN ASPHALT OVERLAYS FOR PAVEMENT PRESERVATION Why Thin Asphalt Overlays? Shift from new construction to renewal and preservation Functional improvements for safety and smoothness are needed more than

More information

Binders Superpave and Polymers SMA, OGFC and Dense-Graded Superpave mix design Warm Mix Reclaimed Asphalt Pavement (RAP) Roofing Shingles

Binders Superpave and Polymers SMA, OGFC and Dense-Graded Superpave mix design Warm Mix Reclaimed Asphalt Pavement (RAP) Roofing Shingles Shift from new construction to renewal and preservation Functional improvements for safety and smoothness needed more than structural improvements Perpetual Pavements Material improvements Binders Superpave

More information

Chapter 3 Pre-Installation, Foundations and Piers

Chapter 3 Pre-Installation, Foundations and Piers Chapter 3 Pre-Installation, Foundations and Piers 3-1 Pre-Installation Establishes the minimum requirements for the siting, design, materials, access, and installation of manufactured dwellings, accessory

More information

Asphalt concrete mix design

Asphalt concrete mix design CEEN 3144 Construction Materials Asphalt concrete mix design Francisco Aguíñiga Assistant Professor Civil Engineering Program Texas A&M University Kingsville Page 1 Asphalt concrete Hot-mix asphalt Asphalt

More information

TITLE: DCP analysis and design of low volume roads by new TRL software UK DCP AUTHORS: Piouslin Samuel and Simon Done, TRL

TITLE: DCP analysis and design of low volume roads by new TRL software UK DCP AUTHORS: Piouslin Samuel and Simon Done, TRL SEMINAR: SUSTAINABLE ACCESS AND LOCAL RESOURCE SOLUTIONS Date : 28 30 November 2005 TITLE: DCP analysis and design of low volume roads by new TRL software UK DCP AUTHORS: Piouslin Samuel and Simon Done,

More information

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) 55-1 GENERAL The Contractor shall perform all work required by the plans for construction of pipe for storm drains, precast polymer trench drains

More information

AASHTO Subcomittee on Materials Biloxi, Mississippi August 4-10, 2012 Chris Abadie, P.E.

AASHTO Subcomittee on Materials Biloxi, Mississippi August 4-10, 2012 Chris Abadie, P.E. Louisiana Case Study: Implementation of CRM Binder in PG specification. AASHTO Subcomittee on Materials Biloxi, Mississippi August 4-10, 2012 Chris Abadie, P.E. My Story Background Approach Phase I Evaluation:

More information

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance Abstract Testing and appraisal of polymer effect as an additive on asphalt mixture performance Hamid Sabbagh mollahosseini*,golazin Yadollahi**, Ershad Amoosoltani*** *, ***Executive of Engineering and

More information