PHYS 102 HOMEWORK VIII


 Augustine Maxwell
 1 years ago
 Views:
Transcription
1 PHYS 102 HOMEWORK VIII DUE DATE: 24/12/2010 FRIDAY 11:50 (end of class) Please Sign Below I pledge my honor that I have not copied the solutions from a solution manual or from a friend. I have neither given nor received assistance. NAME: SIGNATURE: UNSIGNED HOMEWORKS WILL NOT BE ACCEPTED!
2 Problem 1 [20 pts] Q = 50 cal and W = 20 cal, when a system is taken from state i to state f along path iaf. Along path ibf, Q = 36 cal. (a) What is W along path ibf? (b) If W = 13 cal for the return path fi, what is Q for this path? (c) If E int,i = 10 cal, what is E int,f? (d) If E int,b = 22 cal, what is Q for path ib and (e) path bf? Notice that W = 20 cal is the work done by the system. So the work done on the system is W on the system = 20 cal. (a) The change in internal energy ΔE int is the same for path iaf and path ibf. According to the first law of thermodynamics, ΔE int = Q + W on the system, where Q is the heat absorbed and W on the system is the work done on the system. Along iaf Along ibf, ΔE int = Q + W on the system = 50 cal 20 cal = 30 cal. W on the system = ΔE int Q= 30 cal 36 cal = 6.0 cal. (b) Since the curved path is traversed from f to i the change in internal energy is 30 cal and Q = ΔE int + W = 30 cal 13 cal = 43 cal. (c) Let ΔE int = E int, f E int, i. Then, E int, f = ΔE int + E int, i = 30 cal + 10 cal = 40 cal. (d) The work W bf for the path bf is zero, so Q bf = E int, f E int, b = 40 cal 22 cal = 18 cal. (e) For the path ibf, Q = 36 cal so Q ib = Q Q bf = 36 cal 18 cal = 18 cal.
3 Problem 2 [20 pts] An amount of gas within a chamber passes through the cycle shown in the figure. Determine the energy transferred by the system as heat during process CA if the energy added as heat Q AB during process AB is 20.0 J, no energy is transferred as heat during process BC, and the net work done during the cycle is 15.0 J. Since the process is a complete cycle (beginning and ending in the same thermodynamic state) the change in the internal energy is zero and the heat absorbed by the gas is equal to the work done by the gas: Q = W by the system. In terms of the contributions of the individual parts of the cycle Q AB + Q BC + Q CA = W by the system and Q CA = W by the system Q AB Q BC = 15.0 J 20.0 J 0 = 5.0 J. This means 5.0 J of energy leaves the gas in the form of heat.
4 Problem 3 [20 pts] The cross section of a wall are made of three layers. The thicknesses of the layers are L 1, L 2 = 0.700L 1, and L 3 = 0.350L 1. The thermal conductivities are k 1, k 2 = 0.900k 1, and k 3 = 0.800k 1. The temperatures at the left and right sides of the wall are T H = 30.0 o C and T C = o C, respectively. Thermal conduction is steady. (a) What is the temperature difference ΔT 2 across layer 2 (between the left and right sides of the layer)? If k 2 were, instead, equal to l.1k 1, (b) would the rate at which energy is conducted through the wall be greater than, less than, or the same as previously, and (c) what would be the value of ΔT 2? (a) We take the rate of conductive heat transfer through each layer to be the same. Thus, the rate of heat transfer across the entire wall P w is equal to the rate across layer 2 (P 2 ). Using the equation for P and canceling out the common factor of area A, we obtain T H T c (L 1 /k 1 + L 2 /k 2 + L 3 /k 3 ) = ΔT 2 (L 2 /k 2 ) 45 C (1 + 7/9 + 35/80) = ΔT 2 (7/9) which leads to ΔT 2 = 15.8 C. (b) We expect (and this is supported by the result in the next part) that greater conductivity should mean a larger rate of conductive heat transfer. (c) Repeating the calculation above with the new value for k 2, we have 45 C (1 + 7/ /80) = ΔT 2 (7/11) which leads to ΔT 2 = 13.8 C. This is less than our part (a) result which implies that the temperature gradients across layers 1 and 3 (the ones where the parameters did not change) are greater than in part (a); those larger temperature gradients lead to larger conductive heat currents (which is basically a statement of Ohm s law as applied to heat conduction ).
5 Problem 4 [20 pts] Ethyl alcohol has a boiling point of 78.0 o C, a freezing point of o C, a heat of vaporization of 879 kj/kg, a heat of fusion of 109 kj/kg, and a specific heat of 2.43 kj/kg.k. How much energy must be removed from kg of ethyl alcohol that is initially a gas at 78.0 o C so that it becomes a solid at 114 o C? To accomplish the phase change at 78 C, Q = L V m = (879 kj/kg) (0.510 kg) = kj must be removed. To cool the liquid to 114 C, Q = cm ΔT = (2.43 kj/ kg K ) (0.510 kg) (192 K) = kj, must be removed. Finally, to accomplish the phase change at 114 C, Q = L F m = (109 kj/kg) (0.510 kg) = kj must be removed. The grand total of heat removed is therefore ( ) kj = 742 kj.
6 Problem 5 [20 pts] (a) Two 50 g ice cubes are dropped into 200 g of water in a thermally insulated container. If the water is initially at 25 o C, and the ice comes directly from a freezer at 15 o C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? (a) We work in Celsius temperature, which poses no difficulty for the J/kg K values of specific heat capacity since a change of Kelvin temperature is numerically equal to the corresponding change on the Celsius scale. There are three possibilities: None of the ice melts and the waterice system reaches thermal equilibrium at a temperature that is at or below the melting point of ice. The system reaches thermal equilibrium at the melting point of ice, with some of the ice melted. All of the ice melts and the system reaches thermal equilibrium at a temperature at or above the melting point of ice. First, suppose that no ice melts. The temperature of the water decreases from T Wi = 25 C to some final temperature T f and the temperature of the ice increases from T Ii = 15 C to T f. If m W is the mass of the water and c W is its specific heat then the water rejects heat Q = c m ( T T ). W W Wi f If m I is the mass of the ice and c I is its specific heat then the ice absorbs heat Q= c m ( T T ). I I f Ii Since no energy is lost to the environment, these two heats (in absolute value) must be the same. Consequently, c m ( T T ) = c m ( T T ). W W Wi f I I f Ii The solution for the equilibrium temperature is
7 T f Chapter 20 [HOMEWORK 8] Return by Friday, December 24 c m T = c m + c m T + c m W W Wi I I Ii W W I I (4190J / kg K)(0.200kg)(25 C) + (2220J/kg K)(0.100kg)( 15 C) = (4190 J/kg K)(0.200 kg) + (2220 J/kg K)(0.100 kg) = 16.6 C. This is above the melting point of ice, which invalidates our assumption that no ice has melted. That is, the calculation just completed does not take into account the melting of the ice and is in error. Consequently, we start with a new assumption: that the water and ice reach thermal equilibrium at T f = 0 C, with mass m (< m I ) of the ice melted. The magnitude of the heat rejected by the water is Q = cwmwt Wi, and the heat absorbed by the ice is Q= c m (0 T ) + ml, I I Ii F where L F is the heat of fusion for water. The first term is the energy required to warm all the ice from its initial temperature to 0 C and the second term is the energy required to melt mass m of the ice. The two heats are equal, so cwmwtwi = c. ImT I Ii + mlf This equation can be solved for the mass m of ice melted: c m T + c m T m = L W W Wi I I Ii F (4190J / kg K)(0.200kg)(25 C) + (2220J / kg K)(0.100kg)( 15 C ) = = = kg 53g J / kg Since the total mass of ice present initially was 100 g, there is enough ice to bring the water temperature down to 0 C. This is then the solution: the ice and water reach thermal equilibrium at a temperature of 0 C with 53 g of ice melted.
8 (b) Now there is less than 53 g of ice present initially. All the ice melts and the final temperature is above the melting point of ice. The heat rejected by the water is Q = c m ( T T ) W W Wi f and the heat absorbed by the ice and the water it becomes when it melts is Q= c m (0 T ) + c m ( T 0) + m L. I I Ii W I f I F The first term is the energy required to raise the temperature of the ice to 0 C, the second term is the energy required to raise the temperature of the melted ice from 0 C to T f, and the third term is the energy required to melt all the ice. Since the two heats are equal, c m ( T T ) = c m ( T ) + c mt + m L. W W Wi f I I Ii W I f I F The solution for T f is T f = c m T + c mt m L W W Wi I I Ii I F c ( m + m ) W W I. Inserting the given values, we obtain T f = 2.5 C.
Answer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This printout should have 0 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making
More informationFinal Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms
16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final
More informationThermodynamics is the study of heat. It s what comes into play when you drop an ice cube
Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent
More informationTemperature Scales. temperature scales Celsius Fahrenheit Kelvin
Ch. 1011 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature
More informationThe First Law of Thermodynamics
The First aw of Thermodynamics Q and W are process (path)dependent. (Q W) = E int is independent of the process. E int = E int,f E int,i = Q W (first law) Q: + heat into the system; heat lost from the
More informationc. Applying the first law of thermodynamics from Equation 15.1, we find that c h c h.
Week 11 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationChapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity
More informationThe student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used.
TEKS 5.5B The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to: (B) identify the boiling
More informationType: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12
Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their
More informationREASONING AND SOLUTION
39. REASONING AND SOLUTION The heat released by the blood is given by Q cm T, in which the specific heat capacity c of the blood (water) is given in Table 12.2. Then Therefore, T Q cm 2000 J 0.8 C [4186
More informationCHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank
CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 71 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency
More informationPSS 17.1: The Bermuda Triangle
Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant
More informationProblem # 2 Determine the kinds of intermolecular forces present in each element or compound:
Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have
More informationThermodynamics Heat & Work The First Law of Thermodynamics
Thermodynamics Heat & Work The First Law of Thermodynamics Lana Sheridan De Anza College April 20, 2016 Last time applying the ideal gas equation thermal energy heat capacity phase changes Overview latent
More informationPhys222 W11 Quiz 1: Chapters 1921 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
More informationEnergy Matters Heat. Changes of State
Energy Matters Heat Changes of State Fusion If we supply heat to a lid, such as a piece of copper, the energy supplied is given to the molecules. These start to vibrate more rapidly and with larger vibrations
More informationHeat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature
Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature
More informationL A T E N T H E A T O F F U S I O N
Class Date Name Partner(s) L A T E N T H E A T O F F U S I O N Materials LoggerPro Software and Real Time Physics Thermodynamics Experiment Files Stainless Steel Temperature Probes (2) Styrofoam Cup Film
More informationExpansion and Compression of a Gas
Physics 6B  Winter 2011 Homework 4 Solutions Expansion and Compression of a Gas In an adiabatic process, there is no heat transferred to or from the system i.e. dq = 0. The first law of thermodynamics
More informationEntropy Changes & Processes
Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th edition Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas
More informationEnergy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.
Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you
More informationTest 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will
Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below
More information3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2
1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the
More informationPhysics 2101 Section 3 April 26th: Chap. 18 : Chap Ann n ce n e t nnt : Exam #4, April Exam #4,
Physics 2101 Section 3 April 26 th : Chap. 181919 Announcements: n nt Exam #4, April 28 th (Ch. 13.618.8) 18.8) Final Exam: May 11 th (Tuesday), 7:30 AM Make up Final: May 15 th (Saturday) 7:30 AM Class
More informationThe final numerical answer given is correct but the math shown does not give that answer.
Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but
More informationEsystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
More informationPARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101  INTRODUCTION TO PHYSICS LABORATORY. Calorimetry
PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101  INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,
More informationThermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
More informationName: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.
Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling
More informationHeat Transfer. Phys101 Lectures 35, 36. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation
Phys101 Lectures 35, 36 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation Ref: 161,3,4,10. Page 1 191 Heat as Energy Transfer We often speak
More informationThe Equipartition Theorem
The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics
More informationNote: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy
1/7 2009/11/14 上 午 11:10 Manage this Assignment: Chapter 16 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy
More informationKinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to
Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero  Zero degrees on the 1. Highly 2. Low 3. Fills
More informationFXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ
UNIT G484 Module 3 4.3.3 Thermal Properties of Materials 1 Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ The MASS (m) of
More informationTHERMOCHEMISTRY & DEFINITIONS
THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the
More informationThermodynamics  Example Problems Problems and Solutions
Thermodynamics  Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow
More informationCHAPTER 14 THE CLAUSIUSCLAPEYRON EQUATION
CHAPTER 4 THE CAUIUCAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to reread ections 9. and 9.3 of Chapter 9. The ClausiusClapeyron equation relates the latent heat
More informationCalorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen  Chemistry I Acc
Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen  Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice
More information3.3 Phase Changes Charactaristics of Phase Changes phase change
When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from
More informationSpecific Heat Capacity and Latent Heat Questions A2 Physics
1. An electrical heater is used to heat a 1.0 kg block of metal, which is well lagged. The table shows how the temperature of the block increased with time. temp/ C 20.1 23.0 26.9 30.0 33.1 36.9 time/s
More information= T T V V T = V. By using the relation given in the problem, we can write this as: ( P + T ( P/ T)V ) = T
hermodynamics: Examples for chapter 3. 1. Show that C / = 0 for a an ideal gas, b a van der Waals gas and c a gas following P = nr. Assume that the following result nb holds: U = P P Hint: In b and c,
More informationThe First Law of Thermodynamics: Closed Systems. Heat Transfer
The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained
More informationChapter 3 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: _ Date: _ ID: A Chapter 3 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which state of matter has a definite volume but a variable
More information1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
More informationChapter 15: Thermodynamics
Chapter 15: Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat
More informationChapter 16 Temperature and Heat
The determination of temperature has long been recognized as a problem of the greatest importance in physical science. It has accordingly been made a subject of most careful attention, and, especially
More informationThermochemistry. r2 d:\files\courses\111020\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\111020\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
More informationChapter 10 Temperature and Heat
Chapter 10 Temperature and Heat GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it an
More informationLecture 4: 09.16.05 Temperature, heat, and entropy
3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME...2 State functions...2 Path dependent variables: heat and work...2 DEFINING TEMPERATURE...4
More informationChemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
More informationEntropy and The Second Law of Thermodynamics
The Second Law of Thermodynamics (SL) Entropy and The Second Law of Thermodynamics Explain and manipulate the second law State and illustrate by example the second law of thermodynamics Write both the
More informationName Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)
17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.
More informationProblem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003
LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C
More informationvap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K
Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor
More informationChapter 10 Temperature and Heat
Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its
More informationThermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself
Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?
More informationChapter 10: Temperature and Heat
Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving
More information2. Room temperature: C. Kelvin. 2. Room temperature:
Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational
More informationFUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
More informationPractice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C
COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass
More informationSecond Law of Thermodynamics Alternative Statements
Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical
More informationChapter 5. Measures of Humidity. Phases of Water. Atmospheric Moisture
Chapter 5 Atmospheric Moisture Measures of Humidity 1. Absolute humidity 2. Specific humidity 3. Actual vapor pressure 4. Saturation vapor pressure 5. Relative humidity 6. Dew point Phases of Water evaporation
More informationTHE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
More informationMeasuring Temperature
Measuring Temperature The standard metric unit of temperature is the degree Celsius ( C). Water freezes at 0 C. Water boils at 100 C. The Fahrenheit scale is used only in the United States. Why Do We Need
More informationThe First Law of Thermodynamics
Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot
More informationVaporization of Liquid Nitrogen
Vaporization of Liquid Nitrogen Goals and Introduction As a system exchanges thermal energy with its surroundings, the temperature of the system will usually increase or decrease, depending on the direction
More informationChapter 4 Practice Quiz
Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:
More informationBasic Concepts of Thermodynamics
Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible
More information39 kg of water at 10 C is mixed with 360 kg of ice at 7 C.
39 kg of water at 10 C is mixed with 360 kg of ice at 7 C. (The heat capacity of water is 4190 J/(kg C), that of ice is 2090 J/(kg C), and the heat of fusion of water is 3.34x10 5 J/kg. A. 320 J/K B.
More informationUse tongs and wear goggles when removing the samples from the pot of boiling water. Protect your eyes against accidental splashes!
Calorimetry Lab Purpose: Students will measure latent heat and specific heat. PLEASE READ the entire handout before starting. You won t know what to do unless you understand how it works! Introduction:
More informationBomb Calorimetry. Example 4. Energy and Enthalpy
Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example
More informationCalculating Heat Loss by Mark Crombie, Chromalox
Calculating Heat Loss by Mark Crombie, Chromalox Posted: January 30, 2006 This article deals with the basic principles of heat transfer and the calculations used for pipes and vessels. By understanding
More informationChapter 6 Energy Equation for a Control Volume
Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,
More informationa) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
More informationHeat and Temperature. Temperature Scales. Thermometers and Temperature Scales
Heat and Temperature Thermometers and Temperature Scales The mercurybased one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer
More informationChem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21
Chem 8 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.1, 5.15, 5.17, 5.21 5.2) The density of rhombic sulfur is 2.070 g cm  and that of monoclinic sulfur is 1.957 g cm . Can
More informationExperiment 12E LIQUIDVAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUIDVAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tallform beaker, 10 ml graduated cylinder, 10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
More informationCHAPTER 25 IDEAL GAS LAWS
EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume
More information5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
More informationMolar Mass Determination by Depression of the Freezing Point
Molar Mass Determination by Depression of the Freezing Point February 7, 2012 Adrienne Oxley Lab Partner: Everett Spell Title page includes the name of the experiment, the date, your name and your lab
More informationStates of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
More information1 Lab 14: Thermal Conductivity. 19942009, James J. DeHaven, Ph.D and 19971998, Sandra Ceraulo Ph.D. 1 T2
1 Lab 14: Thermal Conductivity 19942009, James J. DeHaven, Ph.D and 19971998, Sandra Ceraulo Ph.D. Suppose you have a sheet of some sort of structural material, and you want to find the rate at which
More informationWater to Vapor; Water to Ice The Process Is Amazing
Science Project Idea 8 th Grade Energy Water to Vapor; Water to Ice The Process Is Amazing Setting the Scene: Holding On To Heat If you leave a cup of cold water on a counter, it will warm up very quickly.
More informationES7A Thermodynamics HW 1: 230, 32, 52, 75, 121, 125; 318, 24, 29, 88 Spring 2003 Page 1 of 6
Spring 2003 Page 1 of 6 230 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3
More informationUnit 3: States of Matter Practice Exam
Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite
More informationSteady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
More informationIDEAL AND NONIDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NONIDEAL GASES PURPOSE: To measure how the pressure of a lowdensity gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
More informationUNIT 6a TEST REVIEW. 1. A weather instrument is shown below.
UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station
More informationENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.
ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,
More informationConcepTest 17.1Degrees
ConcepTest 17.1Degrees Which is the largest unit: one Celsius degree, one Kelvin degree, or one Fahrenheit degree? 1) one Celsius degree 2) one Kelvin degree 3) one Fahrenheit degree 4) both one Celsius
More informationThermodynamics. Chapter 13 Phase Diagrams. NC State University
Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function
More informationEnergy Flow in Marine Ecosystem
Energy Flow in Marine Ecosystem Introduction Marin ecosystem is a functional system and consists of living groups and the surrounding environment It is composed of some groups and subgroups 1. The physical
More informationTHERMODYNAMICS NOTES  BOOK 2 OF 2
THERMODYNAMICS & FLUIDS (Thermodynamics level 1\Thermo & Fluids Module Thermo Book 2ContentsDecember 07.doc) UFMEQU201 THERMODYNAMICS NOTES  BOOK 2 OF 2 Students must read through these notes and
More informationEsystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
More informationReversible & Irreversible Processes
Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change
More informationPhysics 5D  Nov 18, 2013
Physics 5D  Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A A A + 0 059.9 6064.9 6569.9 7074.9 7579.9 8084.9 Percent Range (%) The two problems with the fewest correct
More informationEntropy. Objectives. MAE 320  Chapter 7. Definition of Entropy. Definition of Entropy. Definition of Entropy. Definition of Entropy + Δ
MAE 320  Chapter 7 Entropy Objectives Defe a new property called entropy to quantify the secondlaw effects. Establish the crease of entropy prciple. Calculate the entropy changes that take place durg
More informationExperiment 1: Colligative Properties
Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown
More informationGas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
More informationdm 3. dm 3 ) b Find the buoyant force (noste) on the stone when immersed in water. B = r f Vg)
CHAPTER 9 1 Archimedes Law The magnitude of the buoyant force always equals the weight of the fluid displaced by the object Noste nesteessä on yhtä suuri kuin syrjäytetyn nestemäärän paino. Hpätee myös
More information