v 1. v n R n we have for each 1 j n that v j v n max 1 j n v j. i=1

Size: px
Start display at page:

Download "v 1. v n R n we have for each 1 j n that v j v n max 1 j n v j. i=1"

Transcription

1 1. Limits and Continuity It is often the case that a non-linear function of n-variables x = (x 1,..., x n ) is not really defined on all of R n. For instance f(x 1, x 2 ) = x 1x 2 is not defined when x x 2 1 = ±x 2. However, 1 x2 2 I will adopt a convention from the vector calculus notes of Jones and write F : R n R m regardless, meaning only that the source of F is some subset of R n. While a bit imprecise, this will not cause any big problems and will simplify many statements. I will often distinguish between functions f : R n R that are scalar-valued and functions F : R n R m, m 2 that are vector-valued, using lower-case letters to denote the former and upper case letters to denote the latter. Note that any vector-valued function F : R n R m may be written F = (F 1,..., F m ) where F j : R n R are scalar-valued functions called the components of F. For example, F : R 2 R 2 given by F (x 1, x 2 ) = (x 1 x 2, x 1 + x 2 ) is a vector valued function with components F 1 (x 1, x 2 ) = x 1 x 2 and F 2 (x 1, x 2 ) = x 1 + x 2. Definition 1.1. Let a R n be a point and r > 0 be a positive real number. The open ball of radius r about a is the set B(a, r) := {x R n : x a < r}. I will also use B (a, r) to denote the set of all x B(a, r) except x = a. Proposition 1.2. Let a, b R n be points and r, s > 0 be real numbers. Then B(a, r) B(b, s) if and only if a b s r. B(a, r) B(b, s) = if and only if a b s + r. Proof. Exercise. Both parts depend on the triangle inequality. Extending my above convention, I will say that a function F : R n R m is defined near a point a R n if there exists r > 0 such that F (x) is defined for all points x B(a, r), except possibly the center x = a. Below I will need the following inequality relating the magnitude of a vector to the sizes of its coordinates. Proposition 1.3. For any vector v = v 1. v n R n we have for each 1 j n that v j v n max 1 j n v j. Proof. Suppose that v J is the coordinate of v with largest absolute value. Then for any index j, we have n vj 2 vi 2 nvj. 2 Taking square roots throughout gives the inequalities in the statement of the lemma. Now we come to the main point. The idea of a limit is one of the most important in all of mathematics. In differential calculus, it is the key to relating non-linear (i.e. hard) functions to linear (i.e. easier) functions. 1

2 2 Definition 1.4. Suppose that F : R n R m is a function defined near a point a R n. We say that F (x) has limit b R m as x approaches a, i.e. lim F (x) = b x a Rm, if for each ɛ > 0 there exists δ > 0 such that 0 < x a < δ implies F (x) b < ɛ. Notice that the final phrase in this definition can be written in terms of balls instead of magnitudes: for any ɛ > 0 there exists δ > 0 such that x B (a, δ) implies F (x) B(b, ɛ). A function might or might not have a limit as x approaches some given point a, but it never has more than one. Proposition 1.5 (uniqueness of limits). If F : R n R m is defined near a R n, then there is at most one point b R m such that lim x a F (x) = b. Proof. Suppose, in order to reach a contradiction, that F (x) converges to two different points b, b R m as x approaches a. Then the quantity ɛ := 1 2 b b is positive. So by the definition of limit, there exists a number δ 1 > 0 such that 0 < x a < δ 1 implies F (x) b < ɛ. Likewise, there exists a number δ 2 > 0 such that 0 < x a < δ 2 implies F (x) b < ɛ. So if I let δ = min{δ 1, δ 2 } be the smaller bound, then 0 < x a < δ implies that b b = (F (x) b) (F (x) b) F (x) b + F (x) b < ɛ + ɛ b b. Note that the in this estimate follows from the triangle inequality, and the < follows from my choice of ɛ. At any rate, no real number is smaller than itself, so I have reached a contradiction and conclude that F cannot have two different limits at a. Definition 1.6. We say that a function F : R n R m is continuous at a R n if F is defined near and at a and lim F (x) = F (a). x a If F is continuous at all points in its domain, we say simply that F is continuous. Now let us verify that many familiar scalar-valued functions are continuous. Proposition 1.7. The following are continuous functions. (a) The constant function f : R n R, given by f(x) = c for some fixed c R and all x R n. (b) The magnitude function f : R n R given by f(x) = x. (c) The addition function f : R 2 R given by f(x 1, x 2 ) = x 1 + x 2. (d) The multiplication function f : R 2 R given by f(x 1, x 2 ) = x 1 x 2. (e) The reciprocal function f : R R given by f(x) = 1/x. Proof. (a) Fix a point a R n. Given ɛ > 0, let δ > 0 be any positive number, e.g. δ = 1 (it won t matter). Then if x a < δ it follows that f(x) f(a) = c c = 0 < ɛ. So the constant function f(x) = c is continuous at any point a R n.

3 (b) Fix a point a R n. Given ɛ > 0, let δ = ɛ. Then if x a < δ, it follows that f(x) f(a) = x a x a < δ = ɛ. The < here follows from Problem (on Homework 1) in Shifrin. Hence f(x) = x is continuous at any point a R n. (c) Fix a point a = (a 1, a 2 ) R 2. Given ɛ > 0, let δ = ɛ/2. Then if x a < δ, it follows that f(x) f(a) = x 1 + x 2 a 1 a 2 x 1 a 1 + x 2 a 2 < δ + δ = ɛ. Hence f(x 1, x 2 ) = x 1 + x 2 is continuous at any point (a 1, a 2 ) R 2. (d) Fix a point a = (a 1, a 2 ) R 2. Given ɛ > 0, let δ = min{1, ɛ(1 + a 1 + a 2 ) 1 }. Then if x a < δ, it follows that f(x) f(a) = x 1 x 2 a 1 a 2 = (x 1 x 2 x 1 a 2 ) + (x 1 a 2 a 1 a 2 ) x 1 x 2 x 1 a 2 + x 1 a 2 a 1 a 2 = x 1 x 2 a 2 + a 2 x 1 a 1 < δ( x 1 + a 2 ) < δ( a a 2 ) ɛ. Notice that the final < follows from the fact that x 1 a 1 < δ 1. Hence f(x 1, x 2 ) = x 1 x 2 is continuous at any point a = (a 1, a 2 ) R 2. 3 (e) Homework exercise. Theorem 1.8. Linear transformations T : R n R m are continuous. This one requires a little warm-up. If A is an m n matrix, let us define the magnitude of A to be the quantity m n A := a 2 ij. That is, we are measuring the size of A as if it were a vector in R mn. Be aware that elsewhere in mathematics (including Shifrin), there are other notions of the magnitude of a matrix. Lemma 1.9. Given any matrix A M m n and any vector x R n, we have Ax A x. Proof. Let row i denote the ith row of A. Then on the one hand, we have m n m A 2 = a 2 ij = row i 2. j=1 But on the other hand, the ith entry of Ax is row i x. Hence from the Cauchy-Schwartz inequality, we obtain m m m Ax 2 = (row i x) 2 row i 2 x 2 = x 2 row i 2 = A 2 x 2. j=1

4 4 Proof of Theorem 1.8. Let A M m n be the standard matrix of the linear transformation T : R n R m and a R n be any point. Given ɛ > 0, I choose δ = ɛ. Then if x a < δ, A it follows that T (x) T (a) = T (x a) = A(x a) A x a < A δ = ɛ. Hence T is continuous at any point a R n Questions about limits of vector-valued functions can always be reduced to questions about scalar-valued functions. Proposition Suppose that F : R n R m is a vector-valued function F = (F 1,..., F m ) defined near a R n. Then the following are equivalent. (a) lim x a F (x) = b R m. (b) lim x a F (x) b = 0. (c) lim x a F j (x) = b j for 1 j m. Proof of Proposition (a) = (b) Suppose that lim x a F (x) = b and set f(x) := F (x) b. Given ɛ > 0, the definition of limit gives me δ > 0 such that 0 < x a < δ implies that F (x) b < ɛ. But this last inequality can be rewritten f(x) 0 < ɛ. Thus lim x a f(x) = 0, i.e. (b) holds. (b) = (a) Similar. (a) = (c) Suppose again that lim x a F (x) = b. Fix an index j between 1 and m and let ɛ > 0 be given. Since lim x a F (x) = b, there exists δ > 0 such that 0 < x a < δ implies that F (x) b < ɛ. Then by Proposition 1.3, I also have that So lim x a F j (x) = b j. F j (x) b j F (x) b < ɛ. (c) = (a) Suppose that lim x a F j (x) = b j for each 1 j m. Then given any ɛ > 0, there exist real numbers δ j > 0 such that 0 < x a < δ j implies that F j (x) b j < ɛ m. Taking δ = min{δ 1,..., δ m }, I infer that 0 < x a < δ implies F j (x) b j < ɛ m for all indices j. Thus by the lemma, F (x) b < m ɛ = ɛ. m So lim x a F (x) = b. The following theorem is sometimes paraphrased by saying that limits commute with continuous functions. Theorem 1.11 (composite limits). Let F : R n R m and G : R m R p be functions and a R n, b R m be points such that lim x a F (x) = b and G is continuous at b. Then lim G F (x) = G(lim F (x)) = G(b). x a x a Proof. Let ɛ > 0 be given. By continuity of G at b, there exists a number ɛ > 0 such that y b < ɛ implies G(y) G(b) < ɛ. Likewise, since lim x a F (x) = b, there exists δ > 0 such that 0 < x a < δ implies that F (x) b < ɛ. Putting these two

5 things together, I see that 0 < x a < δ further implies that G(F (x)) G(b) < ɛ. So lim x a G(F (x)) = G(b). Corollary Let F : R n R m and G : R m R p be continuous functions. Then G F is continuous. Proof. Note that G F is defined at a R n precisely when F is defined at a and G is defined at F (a). Then Since both functions are continuous wherever they are defined, we have lim G(F (x)) = G(lim F (x)) = G(F (a)). x a x a Hence G F is continuous at any point a R n where it is defined. Corollary Let f, g : R n R be functions with limits lim x a f(x) = b and lim x a g(x) = c at some point a R n. Then (a) lim x a f(x) = b. (b) lim x a f(x) + g(x) = b + c; (c) lim x a f(x)g(x) = bc; (d) lim x a 1 f(x) = 1 b, provided b 0. Hence a sum or product of continuous functions is continuous, as is the reciprocal of a continuous function. Actually, the corollary extends to dot products, magnitudes and sums of vector-valued functions F, G : R n R m, too. I ll let you write down the statements of these facts. Proof. I prove (c). The other parts are similar. Let F : R R 2 be given by F (x) := (f(x), g(x)) and m : R 2 R be the multiplication function m(y 1, y 2 ) := y 1 y 2. Recall that m is continuous (Proposition 1.7). Moreover, Proposition 1.10 and our hypotheses about f and g imply that lim x a F (x) = (b, c). Hence I infer from Theorem 1.11 that lim f(x)g(x) = lim m(f (x)) = m(lim F (x)) = m(b, c) = bc. x a x a x a When used with the fact that functions can t have more than one limit at a given point, Theorem 1.11 leads to a useful criterion for establishing that a limit doesn t exist. Definition A parametrized curve is a continuous function γ : R R n. Corollary Given a function F : R n R m defined near a point a R n, suppose that γ 1, γ 2 : R R n are parametrized curves such that γ 1 (t) = γ 2 (t) = a if and only if t = 0. If the limits lim t 0 F γ 1 (t) and lim t 0 F γ 2 (t) are not equal, then lim x a F (x) does not exist. Proof. I will prove the contrapositive statement: suppose that lim x a F (x) = b exists and γ 1, γ 2 : R R n are parametrized curves with initial points γ j (0) = a but γ j (t) a for t a. Then the limits lim x a F (x) and lim t 0 F γ j (t) do not concern the value of F at a. So I may assume with no loss of generality that F (a) = b, i.e. that F is actually continuous at a. Theorem 1.11 then tells me that lim t 0 F γ 1 (t) = F (lim t 0 γ 1 (t)) = F (γ 1 (0)) = F (a) = b. 5

6 6 The second equality holds because γ 1 is continuous. Likewise, lim t 0 F γ 2 (t) = b. In particular, the two limits are the same. I remark that if γ : R R n is a continuous curve and F : R n R m is a function, then the composite function F γ : R R m is sometimes called the restriction of F to γ. One last fact about limits that will prove useful for us is the following. Theorem 1.16 (The Squeeze Theorem). Suppose that F : R n R m and g : R n R are functions defined near a R n. Suppose there exists r > 0 such that F (x) g(x) for all x B (a, r); lim x a g(x) = 0. Then lim x a F (x) = 0. Proof. Exercise.

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

You know from calculus that functions play a fundamental role in mathematics.

You know from calculus that functions play a fundamental role in mathematics. CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

Chapter 7. Continuity

Chapter 7. Continuity Chapter 7 Continuity There are many processes and eects that depends on certain set of variables in such a way that a small change in these variables acts as small change in the process. Changes of this

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Lecture 4: AC 0 lower bounds and pseudorandomness

Lecture 4: AC 0 lower bounds and pseudorandomness Lecture 4: AC 0 lower bounds and pseudorandomness Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Jason Perry and Brian Garnett In this lecture,

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information