Determining Deflections of Hinge-Connected Beams Using Singularity Functions: Right and Wrong Ways

Size: px
Start display at page:

Download "Determining Deflections of Hinge-Connected Beams Using Singularity Functions: Right and Wrong Ways"

Transcription

1 Determining Deflections of Hinge-Connected Beams Using Singularit Functions: Right and Wrong Was Ing-Chang Jong Universit of rkansas bstract When the method of double integration is used to determine deflections, as well as staticall indeterminate reactions at supports, of a beam in echanics of aterials, one has the option of using singularit functions to account for all loads on the entire beam in formulating the solution. This option is an effective wa and a right wa to solve the problem if the beam is a single piece of elastic bod. However, this option becomes a wrong wa to do it if one fails to heed the existence of discontinuit in the slope of the beam under loading. Beginners tend to have a misconception that singularit functions are a powerful mathematical tool, which can allow one to blaze the loads on the entire beam without the need to divide it into segments. It is pointed out in this paper that hinge-connected beams are a pitfall for unsuspecting beginners. The paper reviews the sign conventions for beams and definitions of singularit functions, and it includes illustrations of both right and wrong was in solving a problem involving a hinge-connected beam. It is aimed at contributing to the better teaching and learning of mechanics of materials. I. Introduction There are several established methods for determining deflections of beams in mechanics of materials. The include the following: -9 (a) method of double integration (with or without the use of singularit functions), (b) method of superposition, (c) method using moment-area theorems, (d) method using Castigliano s theorem, (e) conjugate beam method, and (f) method using general formulas. Naturall, there are advantages and disadvantages in using an of the above methods. B and large, the method of double integration is the commonl used method in determining slopes and deflections, as well as staticall indeterminate reactions at supports, of beams. Without using singularit functions, the method of double integration has a disadvantage, because it requires division of a beam into segments for individual studies, where the division is dictated b the presence of concentrated forces or moments, or b different flexural rigidities in different segments. Readers, who are familiar with mechanics of materials, ma skip the refresher on the rudiments included in the earl part of this paper. Sign Convention. In the analsis of beams, it is important to adhere to the generall agreed positive and negative signs for loads, shear forces, bending moments, slopes, and deflections of beams. segment of beam ab having a constant flexural rigidit EI is shown in Fig.. Note that we adopt the positive directions of the shear forces, moments, and distributed loads as indicated. "Proceedings of the 006 idwest Section Conference of the merican Societ for

2 Fig. Positive directions of shear forces, moments, and loads s in most textbooks for mechanics of materials, notice in Fig. the following conventions: -6 (a) positive shear force is one that tends to rotate the beam segment clockwise (e.g., V a at the left end a, and V b at the right end b). (b) positive moment is one that tends to cause compression in the top fiber of the beam (e.g., a at the left end a, b at the right end b, and the applied moment K tending to cause compression in the top fiber of the beam just to the right of the position where the moment K acts). (c) positive concentrated force applied to the beam is one that is directed downward (e.g., the applied force P). (d) a positive distributed load is one that is directed downward (e.g., the uniforml distributed load with intensit, and the linearl varing distributed load with highest intensit w ). w0 Fig. Positive deflections and positive slopes of beam ab The positive directions of deflections and slopes of the beam are defined as illustrated in Fig.. s in most textbooks for mechanics of materials, notice in Fig. the following conventions: -6 (i) positive deflection is an upward displacement (e.g., a at position a, and b at position b). (ii) positive slope is a counterclockwise rotation (e.g., θ a at position a, and θ b at position b). Singularit functions. Note that the argument of a singularit function is usuall enclosed b angle brackets (i.e., < >), while the argument of a regular function is enclosed b rounded parentheses [i.e., ( )]. The relations between these two functions are defined as follows: 7, 8 n n < x a > ( x a) if x a 0 and n 0 n < x a > 0 if x a< 0 or n< 0 () () "Proceedings of the 006 idwest Section Conference of the merican Societ for

3 x n n+ < x a > dx x a if n 0 n + < > () x x a n dx x a n+ < > < > n< if 0 Based on the sign conventions and the singularit functions defined above, we ma write the loading function q, the shear force V, and the bending moment for the beam ab in Fig. as (4) follows:, q V < x> + < x> P< x x > + K< x x > a a P K w w < x x > < x x > 0 0 w w L xw V V < x> + < x> P< x x > + K< x x > 0 0 a a P K w w < x x > < x x > 0 w w ( L xw) V < x> + < x> P< x x > + K< x x > 0 0 a a P K w < w x x > x x ( ) < > 0 w w 6 L xw (5) (6) (7) II. nalsis of a Hinge-Connected Beam: Right and Wrong Was ost textbooks for mechanics of materials or mechanical design do not sufficientl warn their readers that singularit functions can be elegantl used to overcome discontinuities in the various loads acting on the entire beam [such as those shown in Eqs. (5), (6), and (7) for the loads shown in Fig. ], but the cannot blaze the various loads for the entire beam when the beam has one or more discontinuities in its slope when the loads are applied to act on it. In fact, singularit functions cannot be above the rules of mathematics that require a function to have continuous slopes in a domain if it is to be integrated or differentiated in that domain. Here, the beam is the domain. If a beam is composed of two or more segments that are connected b hinges (e.g., a Gerber beam), then the beam has discontinuous slopes at the hinge connections when loads are applied to act on it. In such a case, the deflections and an staticall indeterminate reactions must be analzed b dividing the beam into segments, each of which must have no discontinuit in slope. Otherwise, erroneous results will be reached. Example. combined beam (Gerber beam) having a constant flexural rigidit EI is loaded and supported as shown in Fig.. Show a wrong wa to use singularit functions to attempt a solution for the vertical reaction force and the reaction moment at. Fig. Fixed-ended beam with a hinge connector "Proceedings of the 006 idwest Section Conference of the merican Societ for

4 4 Wrong wa. For illustrative purpose, let us first show how a wrong wa ma be used b an unsuspecting person in tring to solve the problem and reaching wrong results as follows: Fig. 4 Free-bod diagram with assumption of positive reaction forces and moments Since this person would use singularit functions to blaze the loading for the entire beam, the loading function q, the shear force V, and the bending moment for the entire beam would be as follows: q < x > + < x > P< x L> Double integration of the last equation ields V < x > + < x > P< x L> 0 0 EI < x> + < x> P< x L> 0 EI < x> + < x> P< x L> + C EI < x> + < x> P< x L>+ C x+ C 6 6 Imposition of boundar conditions ields (0) 0: 0 C (a) (0) 0: 0 C (b) ( L) 0: ( L ) 0: 0 ( ) (9 ) L + L +C (c) L + L + C L + C (d) (9 ) (7 ) ( ) Solution of simultaneous Eqs. (a) through (d) ields C 0 C 0 7 P 9 7 Consistent with the defined sign conventions, this unsuspecting person would report 7 P 9 7 Note that these two answers are wrong because we can refer to Fig. 4 and show that the do not satisf the fact that the magnitude of moment B 0 at the hinge at B; i.e., 7 B + L + P ( L ) "Proceedings of the 006 idwest Section Conference of the merican Societ for

5 5 Example. combined beam (Gerber beam) having a constant flexural rigidit EI is loaded and supported as shown in Fig.. Show the right wa to use singularit functions to determine for this beam (a) the vertical reaction force and the reaction moment at, (b) the deflection B of the hinge at B, (c) the slopes θ BL and θ BR just to the left and just to the right of the hinge at B, respectivel, and (d) the slope θ C and the deflection at C. C Fig. Fixed-ended beam with a hinge connector (repeated) Right wa. This beam is staticall indeterminate to the first degree. Nevertheless, because of the discontinuit in slope at the hinge connection B, this beam needs to be divided into two segments B and for analsis in the solution, where no discontinuit in slope exists within each segment. Fig. 5 Free-bod diagram for segment B and its deflections The loading function qb, the shear force VB, and the bending moment as shown in Fig. 5, are q < x > + < x > Double integration of the last equation ields B B V < x > + < x > B B 0 EI < x> + < x> 0 EI < x> + < x> + C B EIB < x> + < x> + C x+ C 6 B for the segment B, Fig. 6 Free-bod diagram for segment and its deflections "Proceedings of the 006 idwest Section Conference of the merican Societ for

6 6 The loading function q, the shear force V, and the bending moment, as shown in Fig. 6, are q B < x > P< x L> for the segment Double integration of the last equation ields V B < x > P< x L> 0 0 EI B < x> P< x L> EI B< x> P< x L> + C EI B < x> P< x L> + C x+ C 6 6 Imposition of boundar conditions ields 4 (0) 0 : B 0 C (a) (0) 0 : 0 C (b) B ( L) (0) : B ( ) 0 : L ( ) 0 : L L + L C4 (c) 6 0 B (4 ) L + C (d) B L + C L + C (e) (8 ) ( ) 4 Imposition of equations of static equilibrium for segment B ields + Σ B 0 : 0 L (f) + Σ 0: B 0 (g) F Solution of simultaneous Eqs. (a) through (g) ields C 0 C 0 5P 8 B 5P 8 C 8 Consistent with the defined sign conventions, we report that C P Substituting the above solutions into foregoing equations for EI, EI B, and EI, respectivel, we write "Proceedings of the 006 idwest Section Conference of the merican Societ for

7 7 EI (0) 5 B EI C θ EI BL EIB ( L) L L C B 5 54EI 5 θ BL 6EI EIθ EI (0) C BR 8 θ BR 8EI 6EI C ( ) + θ C EIθ EI L B L C EI C ( ) C EI EI L B L C L C EI Based on the preceding solutions, the deflections of the combined beam D ma be illustrated as shown in Fig. 7. Fig. 7 Deflections of the beam D Concluding Remarks This paper provides a refresher on the sign conventions for beams and definitions of singularit functions. Beginners in mechanics of materials are usuall not sufficientl warned about the limitations of what singularit functions can do. Students tend to have a misconception that singularit functions are a powerful mathematical tool, which can allow them to blaze the loads on the entire beam without the need to divide it into segments for analsis. It is pointed out in this paper that hinge-connected beams are a pitfall for unsuspecting beginners. The paper includes two illustrative examples to demonstrate both wrong and right was in using singularit functions to solve a problem involving a hinge-connected beam. It is emphasized that singularit functions cannot be above the rules of mathematics that require a function to have continuous slopes in a domain if it is to be integrated or differentiated in that domain. In mechanics of materials, the beam is the domain. If a beam is composed of two or more segments that are connected b hinges (e.g., a Gerber beam), then the beam has discontinuous slopes at the hinge connections when loads are applied to act on it. In general, the deflections and an staticall indeterminate reactions must be analzed b dividing the beam into segments, as needed, each of "Proceedings of the 006 idwest Section Conference of the merican Societ for

8 8 which must have no discontinuit in slope. Otherwise, erroneous results will be reached. This paper is aimed at contributing to the better teaching and learning of mechanics of materials. References. Westergaard, H.., Deflections of Beams b the Conjugate Beam ethod, Journal of the Western Societ of Engineers, Volume XXVI, Number, 9, pp Timoshenko, S., and G. H. accullough, Elements of Strength of aterials, Third Edition, D. Van Nostrand Compan, Inc., New York, NY, 949, pp Singer, F. L., and. Ptel, Strength of aterials, Fourth Edition, Harper & Row, Publishers, Inc., New York, NY, 987, pp Beer, F. P., E. R. Johnston, Jr., and J. T. DeWolf, echanics of aterials, Fourth Edition, The cgraw-hill Companies, Inc., New York, NY, Ptel,., and J. Kiusalaas, echanics of aterials, Brooks/Cole, Pacific Grove, C, Gere, J.., echanics of aterials, Sixth Edition, Brooks/Cole, Pacific Grove, C, Shigle, J. E., echanical Engineering Design, Fourth Edition, cgraw-hill Compan, New York, NY, 98, pp Crandall, S. H., C. D. Norman, and T. J. Lardner, n Introduction to the echanics of Solids, Second Edition, cgraw-hill Compan, New York, NY, 97, pp Jong, I. C., J. J. Rencis, and H. T. Grandin, New approach to nalzing Reactions and Deflections of Beams: Formulation and Examples, IECE006-90, Proceedings of 006 SE International echanical Engineering Congress and Exposition, November 5-0, 006, Chicago, IL, U.S.. ING-CHNG JONG Ing-Chang Jong serves as Professor of echanical Engineering at the Universit of rkansas. He received a BSCE in 96 from the National Taiwan Universit, an SCE in 96 from South Dakota School of ines and Technolog, and a Ph.D. in Theoretical and pplied echanics in 965 from Northwestern Universit. He was Chair of the echanics Division, SEE, in His research interests are in mechanics and engineering education. "Proceedings of the 006 idwest Section Conference of the merican Societ for

Teaching Deflections of Beams: Advantages of Method of Model Formulas versus Method of Integration

Teaching Deflections of Beams: Advantages of Method of Model Formulas versus Method of Integration Teaching Deflections of eams: dvantages of Method of Model Formulas versus Method of Integration Ing-hang Jong, William T. Springer, Rick J. ouvillion Universit of rkansas, Faetteville, R 77 bstract The

More information

Chapter 5: Indeterminate Structures Slope-Deflection Method

Chapter 5: Indeterminate Structures Slope-Deflection Method Chapter 5: Indeterminate Structures Slope-Deflection Method 1. Introduction Slope-deflection method is the second of the two classical methods presented in this course. This method considers the deflection

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

Beam Deflections: 4th Order Method and Additional Topics

Beam Deflections: 4th Order Method and Additional Topics 11 eam Deflections: 4th Order Method and dditional Topics 11 1 ecture 11: EM DEFECTIONS: 4TH ORDER METHOD ND DDITION TOICS TE OF CONTENTS age 11.1. Fourth Order Method Description 11 3 11.1.1. Example

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams 2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,

More information

Mechanics of Materials. Chapter 4 Shear and Moment In Beams

Mechanics of Materials. Chapter 4 Shear and Moment In Beams Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.

More information

Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams

Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing

More information

Rigid and Braced Frames

Rigid and Braced Frames Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

Shear Forces and Bending Moments

Shear Forces and Bending Moments Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Finite Element Simulation of Simple Bending Problem and Code Development in C++

Finite Element Simulation of Simple Bending Problem and Code Development in C++ EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL) LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics

More information

GC 2009-267: TEACHING VON MISES STRESS: FROM PRINCIPAL AXES TO NONPRINCIPAL AXES

GC 2009-267: TEACHING VON MISES STRESS: FROM PRINCIPAL AXES TO NONPRINCIPAL AXES GC 009-67: TEACHING VON MISES STRESS: FROM PRINCIPAL AXES TO NONPRINCIPAL AXES Ing-Chang Jong, Universit of Arkansas Ing-Chang Jong serves as Professor of Mechanical Engineering at the Universit of Arkansas.

More information

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

More information

Beam Deflections: Second-Order Method

Beam Deflections: Second-Order Method 10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3

More information

ME 343: Mechanical Design-3

ME 343: Mechanical Design-3 ME 343: Mechanical Design-3 Design of Shaft (continue) Dr. Aly Mousaad Aly Department of Mechanical Engineering Faculty of Engineering, Alexandria University Objectives At the end of this lesson, we should

More information

Use of Computers in Mechanics Education at Ohio State University*

Use of Computers in Mechanics Education at Ohio State University* Int. J. Engng Ed. Vol. 16, No. 5, pp. 394±400, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. Use of Computers in Mechanics Education at Ohio State University* GEORGE

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

Mechanics of Materials Summary

Mechanics of Materials Summary Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its cross-sectional shape is constant and has area. Figure 1.1: rod with a normal

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

Shear Force and Moment Diagrams

Shear Force and Moment Diagrams C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex

More information

Analysis of Statically Determinate Trusses

Analysis of Statically Determinate Trusses Analysis of Statically Determinate Trusses THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Common Types of Trusses A truss is one of the major types of engineering structures which provides a practical

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

Kirchhoff Plates: BCs and Variational Forms

Kirchhoff Plates: BCs and Variational Forms 21 Kirchhoff Plates: BCs and Variational Forms 21 1 Chapter 21: KIRCHHOFF PLATES: BCS AND VARIATIONAL FORS TABLE OF CONTENTS Page 21.1. Introduction 21 3 21.2. Boundary Conditions for Kirchhoff Plate 21

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

MATERIALS AND SCIENCE IN SPORTS. Edited by: EH. (Sam) Froes and S.J. Haake. Dynamics

MATERIALS AND SCIENCE IN SPORTS. Edited by: EH. (Sam) Froes and S.J. Haake. Dynamics MATERIALS AND SCIENCE IN SPORTS Edited by: EH. (Sam) Froes and S.J. Haake Dynamics Analysis of the Characteristics of Fishing Rods Based on the Large-Deformation Theory Atsumi Ohtsuki, Prof, Ph.D. Pgs.

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

Statics problem solving strategies, hints and tricks

Statics problem solving strategies, hints and tricks Statics problem solving strategies, hints and tricks Contents 1 Solving a problem in 7 steps 3 1.1 To read.............................................. 3 1.2 To draw..............................................

More information

CLASSICAL STRUCTURAL ANALYSIS

CLASSICAL STRUCTURAL ANALYSIS Table of Contents CASSCA STRUCTURA ANAYSS... Conjugate beam method... External work and internal work... 3 Method of virtual force (unit load method)... 5 Castigliano s second theorem... Method of consistent

More information

PLANE TRUSSES. Definitions

PLANE TRUSSES. Definitions Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of

More information

MODULE E: BEAM-COLUMNS

MODULE E: BEAM-COLUMNS MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members

More information

ENGINEERING MECHANICS STATIC

ENGINEERING MECHANICS STATIC EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Free-body diagram of the pin at B X = 0 500- BC sin

More information

STRUCTURAL ANALYSIS II (A60131)

STRUCTURAL ANALYSIS II (A60131) LECTURE NOTES ON STRUCTURAL ANALYSIS II (A60131) III B. Tech - II Semester (JNTUH-R13) Dr. Akshay S. K. Naidu Professor, Civil Engineering Department CIVIL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element

More information

Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines

Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines. Qualitative Influence Lines IL 32 Influence Lines - Muller-reslau Principle /5 In 886, Heinrich Müller-reslau develop a method for rapidly constructing the shape of an influence line. Heinrich Franz ernhard Müller was born in Wroclaw

More information

Recitation #5. Understanding Shear Force and Bending Moment Diagrams

Recitation #5. Understanding Shear Force and Bending Moment Diagrams Recitation #5 Understanding Shear Force and Bending Moment Diagrams Shear force and bending moment are examples of interanl forces that are induced in a structure when loads are applied to that structure.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

HØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/1-10

HØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/1-10 Løsningsforslag for kontinuasjonseksamen i 4/1-10 Oppgave 1 (T betyr tension, dvs. strekk, og C betyr compression, dvs. trykk.) Side 1 av 9 Leif Erik Storm Oppgave 2 Løsning (fra http://www.public.iastate.edu/~statics/examples/vmdiags/vmdiaga.html

More information

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02 Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

BACHELOR OF SCIENCE DEGREE

BACHELOR OF SCIENCE DEGREE BACHELOR OF SCIENCE DEGREE GENERAL EDUCATION CURRICULUM and Additional Degree Requirements Engineering Science Brett Coulter, Ph.D. - Director The Engineering Science degree is a wonderful way for liberal

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

DISTRIBUTION OF LOADSON PILE GROUPS

DISTRIBUTION OF LOADSON PILE GROUPS C H A P T E R 7 DISTRIBUTION OF LOADSON PILE GROUPS Section I. DESIGN LOADS 7-1. Basic design. The load carried by an individual pile or group of piles in a foundation depends upon the structure concerned

More information

Laterally Loaded Piles

Laterally Loaded Piles Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

More information

3 The boundary layer equations

3 The boundary layer equations 3 The boundar laer equations Having introduced the concept of the boundar laer (BL), we now turn to the task of deriving the equations that govern the flow inside it. We focus throughout on the case of

More information

Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials*

Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials* Int. J. Engng Ed. Vol. 19, No. 6, pp. 885±892, 2003 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2003 TEMPUS Publications. Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

Compression Members: Structural elements that are subjected to axial compressive forces

Compression Members: Structural elements that are subjected to axial compressive forces CHAPTER 3. COMPRESSION MEMBER DESIGN 3.1 INTRODUCTORY CONCEPTS Compression Members: Structural elements that are subjected to axial compressive forces onl are called columns. Columns are subjected to axial

More information

Chapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads.

Chapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads. hapter 8 Shear Force and ending Moment Diagrams for Uniformly Distributed Loads. 8.1 Introduction In Unit 4 we saw how to calculate moments for uniformly distributed loads. You might find it worthwhile

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Chapter 5: Distributed Forces; Centroids and Centers of Gravity

Chapter 5: Distributed Forces; Centroids and Centers of Gravity CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or

More information

The Relation between Two Present Value Formulae

The Relation between Two Present Value Formulae James Ciecka, Gary Skoog, and Gerald Martin. 009. The Relation between Two Present Value Formulae. Journal of Legal Economics 15(): pp. 61-74. The Relation between Two Present Value Formulae James E. Ciecka,

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Name Section Torque is the rotational analog of force. If you want something to move (translation), you apply a force; if you want something to rotate, you apply a torque.

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

Bedford, Fowler: Statics. Chapter 4: System of Forces and Moments, Examples via TK Solver

Bedford, Fowler: Statics. Chapter 4: System of Forces and Moments, Examples via TK Solver System of Forces and Moments Introduction The moment vector of a force vector,, with respect to a point has a magnitude equal to the product of the force magnitude, F, and the perpendicular distance from

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

Algebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background

Algebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background Piecewise linear functions Math Background Previousl, ou Related a table of values to its graph. Graphed linear functions given a table or an equation. In this unit ou will Determine when a situation requiring

More information

Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections. Fall '15.

Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections. Fall '15. Introduction to Engineering Analysis - ENGR1100 Course Description and Syllabus Monday / Thursday Sections Fall 2015 All course materials are available on the RPI Learning Management System (LMS) website.

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

Statically determinate structures

Statically determinate structures Statically determinate structures A statically determinate structure is the one in which reactions and internal forces can be determined solely from free-body diagrams and equations of equilibrium. These

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

Introduction to polarization of light

Introduction to polarization of light Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.

More information

Designing a Structural Steel Beam. Kristen M. Lechner

Designing a Structural Steel Beam. Kristen M. Lechner Designing a Structural Steel Beam Kristen M. Lechner November 3, 2009 1 Introduction Have you ever looked at a building under construction and wondered how the structure was designed? What assumptions

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS. Summary

CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS. Summary CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS Summary At any section in a beam carrying transverse loads the shearing force is defined as the algebraic sum of the forces taken on either side of

More information

Introduction to Railroad Track Structural Design

Introduction to Railroad Track Structural Design BCR2A 09 Railroad Track Design Including Asphalt Trackbeds Pre-Conference Workshop Introduction to Railroad Track Structural Design Don Uzarski, Ph.D., P.E. uzarski@illinois.edu Interaction, Vertical Load

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

Stress Analysis, Strain Analysis, and Shearing of Soils

Stress Analysis, Strain Analysis, and Shearing of Soils C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information