Non-Markovian Logic-Probabilistic Modeling and Inference

Size: px
Start display at page:

Download "Non-Markovian Logic-Probabilistic Modeling and Inference"

Transcription

1 Non-Markovian Logic-Probabilistic Modeling and Inference Eduardo Menezes de Morais Glauber De Bona Marcelo Finger Department of Computer Science University of São Paulo São Paulo, Brazil WL4AI 2015

2 What we are trying to solve Part-of-speech Tagging PoS Tagging associates each word in a sentence to a part-of-speech tag Example The/D horse/n raced/vb-p past/p the/d barn/n Determiner (D), Nouns (N), Past tense verb (VB-P), Past participle verb (VB-PP), Preposition (P), Adjective (ADJ) To resolve ambiguity, current algorithms inspect adjacent tags Only a local context is used (usually 2 or 3 words) to avoid an exponential blowup

3 What we are trying to solve Part-of-speech Tagging Some ambiguities can only be solved with unbounded distance dependency Example The horse raced/vb-p past the barn The horse raced/vb-pp past the barn fell/vb-p Determiner (D), Nouns (N), Past tense verb (VB-P), Past participle verb (VB-PP), Preposition (P), Adjective (ADJ) We hope to find a way to treat these dependencies without exponential blowup with Probabilistic Logic

4 What we are trying to solve Part-of-speech Tagging Some ambiguities can only be solved with unbounded distance dependency Example The horse raced/vb-p past the barn The horse raced/vb-pp past the barn fell/vb-p The horse raced/vb-pp past the old red barn fell/vb-p Determiner (D), Nouns (N), Past tense verb (VB-P), Past participle verb (VB-PP), Preposition (P), Adjective (ADJ) We hope to find a way to treat these dependencies without exponential blowup with Probabilistic Logic

5 Talk outline Outline Motivation Probabilistic Logic Hidden Markov Models Encoding Hidden Markov Models with PSAT Non-markovian extension Conclusion

6 Next Topic Motivation What we are trying to solve Talk outline Probabilistic Logic Definition Properties Hidden Markov Models A algorithm for POS-Tagging Encoding Hidden Markov Models with PSAT The constraints Non-markovian extension Abandoning the Markov property Extra Constraints Conclusion

7 Definition The language Logical variables or atoms: P = {x 1,..., x n } Connectives:,,. Formulas (L P ) are inductively composed form atoms using connectives A probabilistic knowledge base is a finite set of probabilistic assignments Γ = {P(ϕ i ψ i ) = p i 1 i m} where ϕ i, ψ i L P and p i [0, 1]

8 Definition Semantics V is the set of all 2 n propositional valuations (possible worlds) v : P {0, 1} generalized for any propositional formula v : L P {0, 1} A probability distribution over propositional valuations π : V [0, 1] π(v i ) = 1 2 n i=1 Probability of a formula α according to π P π (α) = {π(v i ) v i (α) = 1}

9 Definition The PSAT Problem Probabilistic Satisfiability: are these restrictions consistent? Is there a probability distribution over the possible worlds that makes all the probabilistic assignments true?

10 Definition The PSAT Problem Probabilistic Satisfiability: are these restrictions consistent? Is there a probability distribution over the possible worlds that makes all the probabilistic assignments true? Given Γ = {P(ϕ i ψ i ) = p i 1 i m}. Is there a π such that P π (ϕ i ψ i ) = p i P π (ψ i ), for all 1 i m?

11 Definition The OPSAT Problem Similar problem: OPSAT A formula / Γ has a range of probabilities, one for each π Given Γ = {P(ϕ i ψ i ) = p i 1 i m}. Which π satisfies P π (ϕ i ψ i ) = p i P π (ψ i ), for all 1 i m and maximizes/minimizes the probability of some formula µ / Γ? Note the lack of assumptions of a priori statistical independence

12 Properties The PSAT Problem: An Algebraic Formalization Vector of probabilities p of dimension k 1 (given) Consider a large matrix A k 2 n = [a ij ] (computed) a ij = v j (α i ) {0, 1} π: probability distribution of exponential size PSAT: decide if there is vector π of dimension 2 n 1 such that Aπ = p πi = 1 π 0

13 Properties The PSAT Problem: An Algebraic Formalization Vector of probabilities p of dimension k 1 (given) Consider a large matrix A k 2 n = [a ij ] (computed) a ij = v j (α i ) {0, 1} π: probability distribution of exponential size OPSAT: decide if there is vector π of dimension 2 n 1 such that max/min Aπ = p πi = 1 π 0 P(µ)

14 Properties PSAT is NP-complete PSAT is NP-complete: [Georgakopoulos & Kavvadias & Papadimitriou 1988] A PSAT problem has a solution, then there is a solution π with at most k + 1 elements π i > 0 Carathéodory s Lemma So PSAT has a polynomial size witness 1 1 π 1 0/1 0/ π 2. 0/1 0/1 π k+1 = 1 p 1. p k

15 Next Topic Motivation What we are trying to solve Talk outline Probabilistic Logic Definition Properties Hidden Markov Models A algorithm for POS-Tagging Encoding Hidden Markov Models with PSAT The constraints Non-markovian extension Abandoning the Markov property Extra Constraints Conclusion

16 A algorithm for POS-Tagging Hidden Markov Models HMMs have been successfully used on language processing tasks as early as the 1970s Stochastic process whose states cannot be observed directly A sequence of symbols produced by another stochastic process is observed The sequence of symbols produced dependent only on the current hidden state

17 A algorithm for POS-Tagging Markov Chains Sunny Rainy Cloudy 0.5

18 A algorithm for POS-Tagging Hidden Markov Model Sunny Rainy Cloudy Walk Shop Play

19 A algorithm for POS-Tagging Inference on HMMs On a POS-tagging context, the words are the observations and the tags are the states We want to discover the sequence of states that most likely have produced a sequence of observations (decoding). max T P(W H, T ) Efficiently solved using the Viterbi algorithm Good performance, but uses a very limited context

20 Next Topic Motivation What we are trying to solve Talk outline Probabilistic Logic Definition Properties Hidden Markov Models A algorithm for POS-Tagging Encoding Hidden Markov Models with PSAT The constraints Non-markovian extension Abandoning the Markov property Extra Constraints Conclusion

21 Encoding Hidden Markov Models with PSAT To remove some of the restrictions of HMMs, first lets model it as a PSAT problem Given a sentence o 1,..., o k, define proposition variables tij true iff word i has tag j wi true iff word i is o i

22 The constraints Attributes of an HMM Given a HMM H = (A, B, q) 1. Probability of transition between states A = [a ij ], a ij = P(t k = s j t k 1 = s i ) 2. Probability of the first state q = [q i ], q i = P(t 1 = s i ) 3. Probability of producing observations B = [b ih ], b ih = P(w k = o h t k = s i )

23 The constraints Probabilistic constraints 0. Only one state per word, m states total m P(t i,j t i,k ) = 0 P( t i,j ) = 1 1. Probability of transition between states P(t i,j t i 1,k ) = a k,j 2. Probability of the first state P(t 1,j ) = q j 3. Probability of producing observations P(w i t i,j ) = b j,w(i) j=1

24 The constraints Properties of an HMM A HMM H = (A, B, q) has the following properties: 4. Markov property ( lack of memory ) P(t k t k 1 ) = P(t k t k 1,..., t 1 ) 5. Independence property (the observations depend only on the current state) P(w k t k ) = P(w k t M,..., t 1, w k 1,..., w 1 )

25 The constraints Probabilistic constraints 4. Markov property ( lack of memory ) P(t i,hi t i 1,hi 1 t 1,h1 ) = P(t i,hi t i 1,hi 1 ), for any T. 5. Independence property (the observations depend only on the current state) P(W t 1,h1 t M,hM ) = M b hi,w(i), for any T. Expressing those two properties requires an exponential number of formulas i=1

26 The constraints Using constraints 0-5 we create a PSAT instance Γ H such that if π is satisfies Γ H : P π (T W ) has a unique probability measure for any π This probability measure is the same probability as the HMM entails

27 Next Topic Motivation What we are trying to solve Talk outline Probabilistic Logic Definition Properties Hidden Markov Models A algorithm for POS-Tagging Encoding Hidden Markov Models with PSAT The constraints Non-markovian extension Abandoning the Markov property Extra Constraints Conclusion

28 Abandoning the Markov property Extending Markov Models The objective of representing HMMs as a PSAT instance is to modify HMMs removing some of its limitations Since our objective is to treat long distance dependencies, we can remove the Markov property Removing the Independence Property leads to bad performance (other probabilities become irrelevant) To avoid an exponential number of probabilistic assignments, we also restrict the Independence Property

29 Abandoning the Markov property Restricting the Independence Property We limit the Independence to a l-sized window 6. P(w i w i+l 1 t i,hi t i+l 1,hi+l 1 ) = = = i+l 1 j=i i+l 1 j=i P(w j t j,hj ), for any T k and 1 i n l + 1 b hj,w(j), for any T k and 1 i n l + 1.

30 Abandoning the Markov property Choosing the right model P π (T W ) now is not a single value, but an interval To choose the best π, we maximize P π (W ) OPSAT problem OPSAT solution is a distribution over possible worlds, each world encodes a tagging Tagging: choose world with the maximum probability

31 Abandoning the Markov property Algorithm 5.1 Performing inference in a relaxed HMM Input: A HMM H and a list of observed words (w 1,..., w m ) Output: A tag sequence T with maximum a posteriori probability. 1: Γ H { probability assignments in (0)-(3) } 2: Γ l Γ H { probability assignments in (6)} 3: (π, P W ) OPSAT (Γ l, P π (W )) 4: T argmax T {P π (T W )} 5: return T

32 Extra Constraints Adding more information We can quantify the influence of a tag on all subsequent tags, independent of distance 7. P(t i,hi t j,hj ) = r hi,h j,i j With these new constraints the problem may become unsatisfiable

33 Extra Constraints Adding more information We can quantify the influence of a tag on all subsequent tags, independent of distance 7. P(t i,hi j<i t j,k ) = r h i,k With these new constraints the problem may become unsatisfiable

34 Extra Constraints Measuring Inconsistency Since the knowledge base may be inconsistent, we can try to minimize the inconsistency Error variables ε i = P π (ϕ i ψ i ) p i P π (ψ i ) Minimize p-norm of errors ε p = m p ε i p i=1 Tratable (linear program) if p = 0 or p =

35 Extra Constraints Algorithm 5.2 Inconsistency-tolerant inference Input: A HMM H, list of observed words (w 1,..., w m ) and a set of extra constraints Ψ. Output: A tag sequence T with maximum a posteriori probability. { probability assignments in (0)-(3) } 1: Γ H 2: Γ l Γ H { probability assignments in (6) } 3: Γ + l Γ l Ψ //Ψ has the form of (7) 4: (π ε, E) OPSAT ε (Γ + l, ε p) 5: Γ ++ l Γ + l { ε p = E} 6: (π, P W ) OPSAT ε (Γ ++ l, P π (W )) 7: T argmax T {P π (T W )} 8: return T

36 Next Topic Motivation What we are trying to solve Talk outline Probabilistic Logic Definition Properties Hidden Markov Models A algorithm for POS-Tagging Encoding Hidden Markov Models with PSAT The constraints Non-markovian extension Abandoning the Markov property Extra Constraints Conclusion

37 Non-local phenomena can be modeled by Probabilistic Propositional Logic theories avoiding exponential explosion With the extra flexibility comes inconsistent theories and worse complexity Implementation is under way Future work will deal with combining local and non-local dependencies

Tagging with Hidden Markov Models

Tagging with Hidden Markov Models Tagging with Hidden Markov Models Michael Collins 1 Tagging Problems In many NLP problems, we would like to model pairs of sequences. Part-of-speech (POS) tagging is perhaps the earliest, and most famous,

More information

CS510 Software Engineering

CS510 Software Engineering CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

More information

Logic in general. Inference rules and theorem proving

Logic in general. Inference rules and theorem proving Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent

More information

Grammars and introduction to machine learning. Computers Playing Jeopardy! Course Stony Brook University

Grammars and introduction to machine learning. Computers Playing Jeopardy! Course Stony Brook University Grammars and introduction to machine learning Computers Playing Jeopardy! Course Stony Brook University Last class: grammars and parsing in Prolog Noun -> roller Verb thrills VP Verb NP S NP VP NP S VP

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

POS Tagsets and POS Tagging. Definition. Tokenization. Tagset Design. Automatic POS Tagging Bigram tagging. Maximum Likelihood Estimation 1 / 23

POS Tagsets and POS Tagging. Definition. Tokenization. Tagset Design. Automatic POS Tagging Bigram tagging. Maximum Likelihood Estimation 1 / 23 POS Def. Part of Speech POS POS L645 POS = Assigning word class information to words Dept. of Linguistics, Indiana University Fall 2009 ex: the man bought a book determiner noun verb determiner noun 1

More information

A linear algebraic method for pricing temporary life annuities

A linear algebraic method for pricing temporary life annuities A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Near Optimal Solutions

Near Optimal Solutions Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

More information

Development of dynamically evolving and self-adaptive software. 1. Background

Development of dynamically evolving and self-adaptive software. 1. Background Development of dynamically evolving and self-adaptive software 1. Background LASER 2013 Isola d Elba, September 2013 Carlo Ghezzi Politecnico di Milano Deep-SE Group @ DEIB 1 Requirements Functional requirements

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding

More information

How To Understand The Relation Between Simplicity And Probability In Computer Science

How To Understand The Relation Between Simplicity And Probability In Computer Science Chapter 6 Computation 6.1 Introduction In the last two chapters we saw that both the logical and the cognitive models of scientific discovery include a condition to prefer simple or minimal explanations.

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Improving Data Driven Part-of-Speech Tagging by Morphologic Knowledge Induction

Improving Data Driven Part-of-Speech Tagging by Morphologic Knowledge Induction Improving Data Driven Part-of-Speech Tagging by Morphologic Knowledge Induction Uwe D. Reichel Department of Phonetics and Speech Communication University of Munich reichelu@phonetik.uni-muenchen.de Abstract

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Removing Partial Inconsistency in Valuation- Based Systems*

Removing Partial Inconsistency in Valuation- Based Systems* Removing Partial Inconsistency in Valuation- Based Systems* Luis M. de Campos and Serafín Moral Departamento de Ciencias de la Computación e I.A., Universidad de Granada, 18071 Granada, Spain This paper

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Hidden Markov Models in Bioinformatics. By Máthé Zoltán Kőrösi Zoltán 2006

Hidden Markov Models in Bioinformatics. By Máthé Zoltán Kőrösi Zoltán 2006 Hidden Markov Models in Bioinformatics By Máthé Zoltán Kőrösi Zoltán 2006 Outline Markov Chain HMM (Hidden Markov Model) Hidden Markov Models in Bioinformatics Gene Finding Gene Finding Model Viterbi algorithm

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machine Translation Some of the content of this lecture is taken from previous lectures and presentations given by Philipp Koehn and Andy Way. Dr. Jennifer Foster National Centre for Language

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Hardware Implementation of Probabilistic State Machine for Word Recognition

Hardware Implementation of Probabilistic State Machine for Word Recognition IJECT Vo l. 4, Is s u e Sp l - 5, Ju l y - Se p t 2013 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Hardware Implementation of Probabilistic State Machine for Word Recognition 1 Soorya Asokan, 2

More information

Training and evaluation of POS taggers on the French MULTITAG corpus

Training and evaluation of POS taggers on the French MULTITAG corpus Training and evaluation of POS taggers on the French MULTITAG corpus A. Allauzen, H. Bonneau-Maynard LIMSI/CNRS; Univ Paris-Sud, Orsay, F-91405 {allauzen,maynard}@limsi.fr Abstract The explicit introduction

More information

NP-Completeness and Cook s Theorem

NP-Completeness and Cook s Theorem NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:

More information

Bayesian Statistics: Indian Buffet Process

Bayesian Statistics: Indian Buffet Process Bayesian Statistics: Indian Buffet Process Ilker Yildirim Department of Brain and Cognitive Sciences University of Rochester Rochester, NY 14627 August 2012 Reference: Most of the material in this note

More information

Natural Language Database Interface for the Community Based Monitoring System *

Natural Language Database Interface for the Community Based Monitoring System * Natural Language Database Interface for the Community Based Monitoring System * Krissanne Kaye Garcia, Ma. Angelica Lumain, Jose Antonio Wong, Jhovee Gerard Yap, Charibeth Cheng De La Salle University

More information

Symbiosis of Evolutionary Techniques and Statistical Natural Language Processing

Symbiosis of Evolutionary Techniques and Statistical Natural Language Processing 1 Symbiosis of Evolutionary Techniques and Statistical Natural Language Processing Lourdes Araujo Dpto. Sistemas Informáticos y Programación, Univ. Complutense, Madrid 28040, SPAIN (email: lurdes@sip.ucm.es)

More information

Conditional Random Fields: An Introduction

Conditional Random Fields: An Introduction Conditional Random Fields: An Introduction Hanna M. Wallach February 24, 2004 1 Labeling Sequential Data The task of assigning label sequences to a set of observation sequences arises in many fields, including

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

Cell Phone based Activity Detection using Markov Logic Network

Cell Phone based Activity Detection using Markov Logic Network Cell Phone based Activity Detection using Markov Logic Network Somdeb Sarkhel sxs104721@utdallas.edu 1 Introduction Mobile devices are becoming increasingly sophisticated and the latest generation of smart

More information

Software Modeling and Verification

Software Modeling and Verification Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system

More information

Introduction to Algorithmic Trading Strategies Lecture 2

Introduction to Algorithmic Trading Strategies Lecture 2 Introduction to Algorithmic Trading Strategies Lecture 2 Hidden Markov Trading Model Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Carry trade Momentum Valuation CAPM Markov chain

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information

On the Unique Games Conjecture

On the Unique Games Conjecture On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary

More information

Ling 201 Syntax 1. Jirka Hana April 10, 2006

Ling 201 Syntax 1. Jirka Hana April 10, 2006 Overview of topics What is Syntax? Word Classes What to remember and understand: Ling 201 Syntax 1 Jirka Hana April 10, 2006 Syntax, difference between syntax and semantics, open/closed class words, all

More information

Monitoring Metric First-order Temporal Properties

Monitoring Metric First-order Temporal Properties Monitoring Metric First-order Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at

More information

Matrix-Chain Multiplication

Matrix-Chain Multiplication Matrix-Chain Multiplication Let A be an n by m matrix, let B be an m by p matrix, then C = AB is an n by p matrix. C = AB can be computed in O(nmp) time, using traditional matrix multiplication. Suppose

More information

IBM Research Report. A Pricing Problem under Monge Property

IBM Research Report. A Pricing Problem under Monge Property RC23823 (W0512-010) December 2, 2005 Mathematics IBM Research Report A Pricing Problem under Monge Property Oktay Günlük IBM Research Division Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights,

More information

Chapter 5. Phrase-based models. Statistical Machine Translation

Chapter 5. Phrase-based models. Statistical Machine Translation Chapter 5 Phrase-based models Statistical Machine Translation Motivation Word-Based Models translate words as atomic units Phrase-Based Models translate phrases as atomic units Advantages: many-to-many

More information

Reliable and Cost-Effective PoS-Tagging

Reliable and Cost-Effective PoS-Tagging Reliable and Cost-Effective PoS-Tagging Yu-Fang Tsai Keh-Jiann Chen Institute of Information Science, Academia Sinica Nanang, Taipei, Taiwan 5 eddie,chen@iis.sinica.edu.tw Abstract In order to achieve

More information

Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley)

Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) Machine Learning 1 Attribution Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) 2 Outline Inductive learning Decision

More information

Chapter 6. Decoding. Statistical Machine Translation

Chapter 6. Decoding. Statistical Machine Translation Chapter 6 Decoding Statistical Machine Translation Decoding We have a mathematical model for translation p(e f) Task of decoding: find the translation e best with highest probability Two types of error

More information

Introduction to Online Learning Theory

Introduction to Online Learning Theory Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Diablo Valley College Catalog 2014-2015

Diablo Valley College Catalog 2014-2015 Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Version Spaces. riedmiller@informatik.uni-freiburg.de

Version Spaces. riedmiller@informatik.uni-freiburg.de . Machine Learning Version Spaces Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Error Log Processing for Accurate Failure Prediction. Humboldt-Universität zu Berlin

Error Log Processing for Accurate Failure Prediction. Humboldt-Universität zu Berlin Error Log Processing for Accurate Failure Prediction Felix Salfner ICSI Berkeley Steffen Tschirpke Humboldt-Universität zu Berlin Introduction Context of work: Error-based online failure prediction: error

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Markov Decision Processes for Ad Network Optimization

Markov Decision Processes for Ad Network Optimization Markov Decision Processes for Ad Network Optimization Flávio Sales Truzzi 1, Valdinei Freire da Silva 2, Anna Helena Reali Costa 1, Fabio Gagliardi Cozman 3 1 Laboratório de Técnicas Inteligentes (LTI)

More information

Fixed-Point Logics and Computation

Fixed-Point Logics and Computation 1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of

More information

A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method

More information

Coding and decoding with convolutional codes. The Viterbi Algor

Coding and decoding with convolutional codes. The Viterbi Algor Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

English. Universidad Virtual. Curso de sensibilización a la PAEP (Prueba de Admisión a Estudios de Posgrado) Parts of Speech. Nouns.

English. Universidad Virtual. Curso de sensibilización a la PAEP (Prueba de Admisión a Estudios de Posgrado) Parts of Speech. Nouns. English Parts of speech Parts of Speech There are eight parts of speech. Here are some of their highlights. Nouns Pronouns Adjectives Articles Verbs Adverbs Prepositions Conjunctions Click on any of the

More information

Big Ideas in Mathematics

Big Ideas in Mathematics Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

More information

Hidden Markov Models

Hidden Markov Models 8.47 Introduction to omputational Molecular Biology Lecture 7: November 4, 2004 Scribe: Han-Pang hiu Lecturer: Ross Lippert Editor: Russ ox Hidden Markov Models The G island phenomenon The nucleotide frequencies

More information

Activity recognition in ADL settings. Ben Kröse b.j.a.krose@uva.nl

Activity recognition in ADL settings. Ben Kröse b.j.a.krose@uva.nl Activity recognition in ADL settings Ben Kröse b.j.a.krose@uva.nl Content Why sensor monitoring for health and wellbeing? Activity monitoring from simple sensors Cameras Co-design and privacy issues Necessity

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Inferring Probabilistic Models of cis-regulatory Modules. BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2015 Colin Dewey cdewey@biostat.wisc.

Inferring Probabilistic Models of cis-regulatory Modules. BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2015 Colin Dewey cdewey@biostat.wisc. Inferring Probabilistic Models of cis-regulatory Modules MI/S 776 www.biostat.wisc.edu/bmi776/ Spring 2015 olin Dewey cdewey@biostat.wisc.edu Goals for Lecture the key concepts to understand are the following

More information

Search and Data Mining: Techniques. Text Mining Anya Yarygina Boris Novikov

Search and Data Mining: Techniques. Text Mining Anya Yarygina Boris Novikov Search and Data Mining: Techniques Text Mining Anya Yarygina Boris Novikov Introduction Generally used to denote any system that analyzes large quantities of natural language text and detects lexical or

More information

Similarity Search and Mining in Uncertain Spatial and Spatio Temporal Databases. Andreas Züfle

Similarity Search and Mining in Uncertain Spatial and Spatio Temporal Databases. Andreas Züfle Similarity Search and Mining in Uncertain Spatial and Spatio Temporal Databases Andreas Züfle Geo Spatial Data Huge flood of geo spatial data Modern technology New user mentality Great research potential

More information

ON THE DEGREE OF MAXIMALITY OF DEFINITIONALLY COMPLETE LOGICS

ON THE DEGREE OF MAXIMALITY OF DEFINITIONALLY COMPLETE LOGICS Bulletin of the Section of Logic Volume 15/2 (1986), pp. 72 79 reedition 2005 [original edition, pp. 72 84] Ryszard Ladniak ON THE DEGREE OF MAXIMALITY OF DEFINITIONALLY COMPLETE LOGICS The following definition

More information

Perron vector Optimization applied to search engines

Perron vector Optimization applied to search engines Perron vector Optimization applied to search engines Olivier Fercoq INRIA Saclay and CMAP Ecole Polytechnique May 18, 2011 Web page ranking The core of search engines Semantic rankings (keywords) Hyperlink

More information

6.080/6.089 GITCS Feb 12, 2008. Lecture 3

6.080/6.089 GITCS Feb 12, 2008. Lecture 3 6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

Maximum Likelihood Graph Structure Estimation with Degree Distributions

Maximum Likelihood Graph Structure Estimation with Degree Distributions Maximum Likelihood Graph Structure Estimation with Distributions Bert Huang Computer Science Department Columbia University New York, NY 17 bert@cs.columbia.edu Tony Jebara Computer Science Department

More information

CHAPTER 2 Estimating Probabilities

CHAPTER 2 Estimating Probabilities CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a

More information

Algorithmic Software Verification

Algorithmic Software Verification Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal

More information

Computational Methods for Database Repair by Signed Formulae

Computational Methods for Database Repair by Signed Formulae Computational Methods for Database Repair by Signed Formulae Ofer Arieli (oarieli@mta.ac.il) Department of Computer Science, The Academic College of Tel-Aviv, 4 Antokolski street, Tel-Aviv 61161, Israel.

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

On the Modeling and Verification of Security-Aware and Process-Aware Information Systems

On the Modeling and Verification of Security-Aware and Process-Aware Information Systems On the Modeling and Verification of Security-Aware and Process-Aware Information Systems 29 August 2011 What are workflows to us? Plans or schedules that map users or resources to tasks Such mappings may

More information

Model Checking: An Introduction

Model Checking: An Introduction Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

DATA MINING IN FINANCE

DATA MINING IN FINANCE DATA MINING IN FINANCE Advances in Relational and Hybrid Methods by BORIS KOVALERCHUK Central Washington University, USA and EVGENII VITYAEV Institute of Mathematics Russian Academy of Sciences, Russia

More information

System BV is NP-complete

System BV is NP-complete System BV is NP-complete Ozan Kahramanoğulları 1,2 Computer Science Institute, University of Leipzig International Center for Computational Logic, TU Dresden Abstract System BV is an extension of multiplicative

More information

How To Find An Optimal Search Protocol For An Oblivious Cell

How To Find An Optimal Search Protocol For An Oblivious Cell The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

More information

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239 STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent

More information

Software Verification and Testing. Lecture Notes: Temporal Logics

Software Verification and Testing. Lecture Notes: Temporal Logics Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or non-terminating) can be modelled as relations are analysed wrt their input/output

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Universality in the theory of algorithms and computer science

Universality in the theory of algorithms and computer science Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)

More information

Principles of Data Mining by Hand&Mannila&Smyth

Principles of Data Mining by Hand&Mannila&Smyth Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences

More information

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.

More information

EXCEL SOLVER TUTORIAL

EXCEL SOLVER TUTORIAL ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plug-in, Solver, that we will be using

More information

PoS-tagging Italian texts with CORISTagger

PoS-tagging Italian texts with CORISTagger PoS-tagging Italian texts with CORISTagger Fabio Tamburini DSLO, University of Bologna, Italy fabio.tamburini@unibo.it Abstract. This paper presents an evolution of CORISTagger [1], an high-performance

More information

Pupil SPAG Card 1. Terminology for pupils. I Can Date Word

Pupil SPAG Card 1. Terminology for pupils. I Can Date Word Pupil SPAG Card 1 1 I know about regular plural noun endings s or es and what they mean (for example, dog, dogs; wish, wishes) 2 I know the regular endings that can be added to verbs (e.g. helping, helped,

More information

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

More information

Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

More information