Civil Engineering. Strength of Materials. Comprehensive Theory with Solved Examples and Practice Questions. Publications


 Gerard Chase
 1 years ago
 Views:
Transcription
1 Civil Engineering Strength of Materials Comprehensive Theory with Solved Examples and Practice Questions Publications
2 Publications MADE EASY Publications Corporate Office: 44A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi Contact: , Visit us at: Strength of Materials Copyright, by MADE EASY Publications. All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book. First Edition: 2015 Second Edition (Revised and Updated): 2016 All rights reserved by MADE EASY PUBLICATIONS. No part of this book may be reproduced or utilized in any form without the written permission from the publisher.
3 Preface This book was motivated by the desire to further the evolution of a concise book on Strength of Materials. Keeping in focus the importance of this subject in GATE and ESE, we have done a proper study and thereafter developed the content of the book accordingly. This edition has an expanded discussion of all relevant topics in the subject. Initially, we compiled the perceptions of our students on their problems in GATE and ESE while dealing with the questions from this subject. We identified their various problems like lack of fundamentals of the subject, difficulty in solving simple solutions, shortage of a complete study package, etc. These strengthened our determination to present a complete edition of Strength of Materials textbook. The book addresses all the requirements of the students, i.e. comprehensive coverage of theory, fundamental concepts, objective type problems and conventional problems, articulated in a lucid language. The concise presentation will help the readers grasp the concepts with clarity and apply them with ease to solve problems quickly. The books not only covers the entire syllabus of GATE and ESE, but also addresses the need of many other competitive examinations. Topics like Properties of Metals, Simple Stress Strain Elastic Constant, Shear Force and Bending Moment, Centroids and Moments of Inertia, Bending Stresses in Beams, Shear Stress in Beams, Principal Stressstrain and Theories of Failure, Torsion of Shaft, Deflection of Beams, Pressure Vessels, Theory of Column, Theory of Springs, Shear Centre are given full coverage in line with our research on their importance in competitive examinations. We have put in our sincere efforts to present elaborate solutions for various problems, different problem solving methodology, some useful quick techniques to save time while attempting MCQs without compromising the accuracy of answers. A summary of important points to remember is added at the end of each topic. For the convenience of readers, points to remember are specifically highlighted in the form of a note both in theory as well as solved examples. At the end of each chapter, sets of practice question are given with their keys, that will allow the readers to evaluate their understanding of the topics and sharpen their problem solving skills. Our team has made their best efforts to remove all possible errors of any kind. Nonetheless, we would highly appreciate and acknowledge if you find and share with us any printing, calculation and conceptual error. It is impossible to thank all the individuals who helped us, but we would like to sincerely thank all the coauthors, editors and reviewers for putting in their efforts to publish this book. We also express our thanks to MADE EASY publications for completing and publishing the book on time. With Best Wishes B. Singh CMD, MADE EASY
4 Contents Strength of Materials Chapter 1 Properties of Metals Introduction Normal Stress Strain Tension Test for Mild Steel Specifications of Specimen Stress Strain Curve for Tension Actual Curve v/s Engg. Curve in Tension Compression Curve for Mild Steel Stressstrain Curve for other Stressstrain Curve for Various Materials Properties of Metals Ductility Brittleness Malleability Hardness Creep Stress Relaxation Elasticity Proof Stress ElastoPlastic Behaviour of Metals Types of Material Behaviour Toughness Fatigue Failure of Materials in Tension and Compression Ductile Metals in Tension Test Brittle Metals in Tension Test Ductile Metals in Compression Test Brittle Metals in Compression Test...10 Objective Brain Teasers...12 Chapter 2 Simple Stressstrain and Elastic Constants Stress Normal Stress Shear Stresses or Tangential Stresses Matrix Representation of Stress and Strain Stress Tensor (3D Stress Element) Matrix Representation of Strains Differential Form of Strains Allowable Stresses Saint Venant Principal Hooke s Law Assumption in Hooke s Law Elastic Constants Relationship between Elastic Constants Applications of Hooke s Law Volumetric Strain (s V ) Deflection of Axially Loaded Members Principle of Superposition Axial Deflection of Varying Cross Sectional Bar Statically Indeterminate Axial Loaded Structures Axial Deflection in Interconnected Members Temperature Stresses Temperature Stresses in Composite Bar Stresses in Bolts and Nuts Strain Energy Strain Energy Due to Shear Force Strain Energy in Terms of Principal Stresses (iv)
5 Strain Energy Stored Due to Bending Moment Strain Energy Stored Due to Torque...70 Objective Brain Teasers...78 Conventional Practice Questions...85 Chapter 3 Shear Force and Bending Moment Types of Loading Types of Supports D Supports D Supports Types of Beam Stability in 2D Structures Procedure of Analysis Shear Force Sign Convention for Shear Force Bending Moment Sign Convention for BM Important Points about SFD and BMD Curve Tracing for SFD and BMD Maximum Bending Moment Shear Force and Bending Moment Diagrams SFD and BMD by Integration Effect of Concentrated Moment on SFD and BMD Shear Force and Bending Moment Diagrams for Frames Loading Diagram and BMD from SFD Loading Diagram from BMD Objective Brain Teasers Conventional Practice Questions Chapter 4 Centroids and Moments of Inertia Centroid Moment of Inertia Product of Inertia Parallel Axis Theorem Perpendicular Axis Theorem Properties of Plane Areas Principal Axes and Principal Moments of Inertia Rotation of Axes Chapter 5 Objective Brain Teasers Conventional Practice Questions Bending Stress in Beams Effect of Bending Simply Bending or Pure Bending Assumptions in Theory of Pure Bending Neutral Axis Equation of Pure Bending Limitations of Equation of Pure Bending Nature of Bending Stress Sectional Modulus (Z) Moment of Resistance (MOR) Bending Stresses in Axially Loaded Beams Force on a Partial Area of a Section Bending Stress Distribution in Composite Beam Equivalent Section Flitched Beam Top and Bottom Flitched Beam 5.10 Beam of Uniform Strength Biaxial Bending Chapter 6 Objective Brain Teasers Conventional Practice Questions Shear Stress in Beams Shear Stress Distribution in Beams Shear Stress Distribution in Rectangular Section Shear Stress Distribution in Triangular Section Shear Stress Distribution in Circular Sections Shear Stress Distribution in Isection Shear Stress Distribution in Some Other Sections Shear Stresses in Composite Sections Conventional Practice Questions (v)
6 Chapter 7 Principal Stressstrain and Theories of Failure Principal Plane Principal Stresses Analytical Method Principal Stress in Beams Graphical Method (Mohr s Circle Method) Properties of Mohr s Circle Construction of Mohr s Circle Analysis of Strain Analytical Method Graphical Method (Mohr s Circle Method) Properties of Strain Mohr s Circle Total strain energy in terms of principal stress Strain Rosette Theories of Elastic Failure Chapter Maximum Principal Stress Theory (Rankine s Theory) Maximum Principal Strain Theory (St. Venant s Theory) Maximum Shear Stress Theory (Guest & Tresca s) Maximum Strain Energy Theory (Haigh and Beltrami) Maximum Shear Strain Energy Theory or Distortion Energy Theory (MisesHenky Theory) Octahedral Shear Stress Theory Objective Brain Teasers Conventional Practice Questions Torsion of Shafts Introduction Difference between Bending Moment and Twisting Moment Assumptions Involved in the Theory of Pure Torsion Sign Convention of Torque Effects of Torsion Polar Section Modulus Shear Stress Distribution in Circular Section Design of Shaft Power Transmitted by Shaft Series Combination of Shaft Parallel Combination of Shaft Strain Energy in Torsion Torsion in Thin Walled Tubes Angle of Twist in Thin Walled Tube Torsion of Noncircular Section Indeterminate Shaft Shaft Subjected to Combined Bending Moment and Twisting Moment Equivalent Bending Moment Equivalent Torque Shaft Subjected to Combined Axial Force and Torsional Moment Theories of Failure for Shaft Design Objective Brain Teasers Conventional Practice Questions Chapter 9 Deflection of Beams Introduction Methods for Determining Slope and Deflection Double Integration Method Use of Discontinuity Function : Macaulay s Method Area Moment Method: (Mohr s Method) Conjugate Beam Method Strain Energy Method Method of Superposition Application of Maxwell s Reciprocal Theorem Objective Brain Teasers Conventional Practice Questions (vi)
7 Chapter 10 Pressure Vessels Thin Cylindrical Shell Stresses in the Thin Cylindrical Shell Analysis of Thin Cylindrical Shell with Closed Flat Ends Hoop Stress or Circumferential Stress Longitudinal Stress (s L ) Radial Stress (s R ) Strains in Cylindrical Shell Hoop Strain (Major Principal Strain) Longitudinal Strain Volumetric Strain in Cylinder Maximum Shear Stress Analysis of Thin Spheres Strains in Sphere Stresses in Riveted Cylindrical Shell Thin Cylinders with Hemispherical Ends Thickness of Cylinder for Same Hoop Stress Thickness of Cylinder for No Distortion at Junction Pressure Vessels Subjected to Axial Force Thick Cylinder Analysis of Thick Cylinder Stresses in Thick Cylinder Analysis of Stresses Determination of A and B Variation of Radial and Hoop Stresses Analysis of Thick Sphere Hoop and Longitudinal Stresses Radial Stress Design of Pressure Vessels Strengthening of Cylinder Chapter 11 Objective Brain Teasers Conventional Practice Questions Theory of Columns Compression Member Types of Equilibrium Elastic Instability and Critical Load Euler s Theory for Buckling Failure Assumptions of Euler s Theory Effective Length of Column Critical Stress Limitations of Euler s Theory Graph between s and l Maximum Lateral Deflection of Column Rankine s Gorden Theory Column with Eccentric Loading Condition for No Tension Middle Third Rule Middle Fourth Rule Eccentric Loading about both xaxis and yaxis Objective Brain Teasers Conventional Practice Questions Chapter 12 Theoy of Springs Springs Types of Springs Bending Springs Torsional Spring Helical Spring Springs in Series and Parallel Objective Brain Teasers Conventional Practice Questions Chapter 13 Shear Centre Introduction Location of Shear Centre Shear Flow Shear Centres of Thinwalled Open Sections Thin Walled Semicircular Crosssection Shear Centres of Some Important Sections Objective Brain Teasers Conventional Practice Questions (vii)
8
9
10
Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t
Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a loadcarrying
More informationDesign Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
More informationIntroduction, Method of Sections
Lecture #1 Introduction, Method of Sections Reading: 1:12 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding
More informationTorsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
More informationObjectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
More informationTorsion Testing. Objectives
Laboratory 4 Torsion Testing Objectives Students are required to understand the principles of torsion testing, practice their testing skills and interpreting the experimental results of the provided materials
More information8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationLecture 4: Basic Review of Stress and Strain, Mechanics of Beams
MECH 466 Microelectromechanical Sstems Universit of Victoria Dept. of Mechanical Engineering Lecture 4: Basic Review of Stress and Strain, Mechanics of Beams 1 Overview Compliant Mechanisms Basics of Mechanics
More informationSection 16: Neutral Axis and Parallel Axis Theorem 161
Section 16: Neutral Axis and Parallel Axis Theorem 161 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about yaxis All parts
More informationAnalysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
More informationStack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
More informationIntroduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams
Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
More informationStructural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
More informationIntroduction to Mechanical Behavior of Biological Materials
Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127151 Chapter 8, pages 173194 Outline Modes of loading Internal forces and moments Stiffness of a structure
More informationMCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
More informationAdam Zaborski handouts for Afghans
Tensile test Adam Zaborski handouts for Afghans Outline Tensile test purpose Universal testing machines and test specimens Stressstrain diagram Mild steel : proportional stage, elastic limit, yielding
More informationB.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) TermEnd Examination December, 2011 BAS010 : MACHINE DESIGN
No. of Printed Pages : 7 BAS01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O TermEnd Examination December, 2011 BAS010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS
ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,
More informationCH 6: Fatigue Failure Resulting from Variable Loading
CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).
More informationNew approaches in Eurocode 3 efficient global structural design
New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beamcolumn FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural
More informationDESIGN OF BEAMCOLUMNS  I
13 DESIGN OF BEACOLUNS  I INTRODUCTION Columns in practice rarely experience concentric axial compression alone. Since columns are usually parts of a frame, they experience both bending moment and axial
More informationFinite Element Formulation for Beams  Handout 2 
Finite Element Formulation for Beams  Handout 2  Dr Fehmi Cirak (fc286@) Completed Version Review of EulerBernoulli Beam Physical beam model midline Beam domain in threedimensions Midline, also called
More informationStress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
More informationR&DE (Engineers), DRDO. Theories of Failure. rd_mech@yahoo.co.in. Ramadas Chennamsetti
heories of Failure ummary Maximum rincial stress theory Maximum rincial strain theory Maximum strain energy theory Distortion energy theory Maximum shear stress theory Octahedral stress theory Introduction
More informationChapter Outline. Mechanical Properties of Metals How do metals respond to external loads?
Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility
More informationW2L3. Stresses in Engineering Components (problems 14, 15, 16) (Courseware pg 4346) τda
Stresses in Engineering Components (problems 14, 15, 16) (combining elastic moduli with geometry elastic behaviour) W2L3 (Courseware pg 4346) Free Body Analysis: common technique to develop stress equations
More informationDeflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
More informationMechanical Properties  Stresses & Strains
Mechanical Properties  Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =
More informationBending Stress in Beams
93673600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
More informationThe Mathematics of Simple Beam Deflection
The Mathematics of Simple Beam Laing O Rourke Civil Engineering INTRODUCTION Laing O Rourke plc is the largest privately owned construction firm in the UK. It has offices in the UK, Germany, India, Australia
More informationReinforced Concrete Design SHEAR IN BEAMS
CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.
More informationENGI 8673 Subsea Pipeline Engineering Faculty of Engineering and Applied Science
GUIDANCE NOTE LECTURE 12 THERMAL EXPANSION ANALYSIS OVERVIEW The calculation procedure for determining the longitudinal pipeline response can be formulated on the basis of strain. The longitudinal strain
More informationInteraction between plate and column buckling
Delft, University of Technology Engineering office of Public works Rotterdam Interaction between plate and column buckling Master Thesis Name: Alex van Ham Student number: 1306138 Email: vanham.alex@gmail.com
More informationsuperimposing the stresses and strains cause by each load acting separately
COMBINED LOADS In many structures the members are required to resist more than one kind of loading (combined loading). These can often be analyzed by superimposing the stresses and strains cause by each
More informationShaft Design. Shaft Design. Shaft Design Procedure. Chapter 12
Shaft Design Chapter 1 Material taken from Mott, 003, Machine Elements in Mechanical Design Shaft Design A shaft is the component of a mechanical device that transmits rotational motion and power. It is
More informationModule 3. Limit State of Collapse  Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur
Module 3 Limit State of Collapse  Flexure (Theories and Examples) Lesson 4 Computation of Parameters of Governing Equations Instructional Objectives: At the end of this lesson, the student should be able
More informationThin Walled Pressure Vessels
3 Thin Walled Pressure Vessels 3 1 Lecture 3: THIN WALLED PRESSURE VESSELS TABLE OF CONTENTS Page 3.1. Introduction 3 3 3.2. Pressure Vessels 3 3 3.3. Assumptions 3 4 3.4. Cylindrical Vessels 3 4 3.4.1.
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges
7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience
More informationMECHANICS OF MATERIALS
T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading  Contents Stress & Strain: xial oading
More informationPlaneShear Measurement with Strain Gages
MicroMeasuremeNTs Strain Gages and Instruments e TN5 Introduction Loading a specimen as shown in Figure a produces shear stresses in the material. An initially square element of the material, having
More informationINTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
More informationProblem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
More informationHOW TO DESIGN CONCRETE STRUCTURES Beams
HOW TO DESIGN CONCRETE STRUCTURES Beams Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and ERMCO
More informationDraft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 31814
Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 31814 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318
More informationBUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 240610219
BUCKLING OF BARS, PLATES, AND SHELLS ROBERT M. JONES Science and Mechanics Professor Emeritus of Engineering Virginia Polytechnic Institute and State University Biacksburg, Virginia 240610219 Bull Ridge
More informationLab for Deflection and Moment of Inertia
Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (1112) Part # 2 of 3 Lesson #
More informationSolid Mechanics. Stress. What you ll learn: Motivation
Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain
More information2. Axial Force, Shear Force, Torque and Bending Moment Diagrams
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS  BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge
More informationMETU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B306) INTRODUCTION TENSION TEST Mechanical testing
More informationType of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ )
Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 200105 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /
More informationStatics and Mechanics of Materials
Statics and Mechanics of Materials Chapter 41 Internal force, normal and shearing Stress Outlines Internal Forces  cutting plane Result of mutual attraction (or repulsion) between molecules on both
More informationSolutions Manual. Failure, Fracture, Fatigue. An Introduction
Solutions Manual to problems in Failure, Fracture, Fatigue An Introduction by Tore Dahlberg Anders Ekberg Studentlitteratur, Lund 2002, ISBN 9144020961. This manual contains solutions to problems in
More informationMechanics of Materials Summary
Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its crosssectional shape is constant and has area. Figure 1.1: rod with a normal
More informationMATERIALS AND MECHANICS OF BENDING
HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL
More informationARCH 331 Structural Glossary S2014abn. Structural Glossary
Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross
More informationOptimising plate girder design
Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree
More informationIII. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)
ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:
More informationLecture 12: Fundamental Concepts in Structural Plasticity
Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled
More informationجامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
More informationSECTIONS
STEEL BUILDINGS, INC. Purlin Load Tables ZEE SECTIONS WWW.WHIRLWINDSTEEL.COM This page intentionally left blank. Copyright Whirlwind Steel Buildings, Inc. All Rights Reserved. Descriptions and specifications
More informationGraduate Courses in Mechanical Engineering
Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation
More informationDESIGN AND DEVELOPMENT OF AN ECONOMICAL TORSION TESTING MACHINE
DESIGN AND DEVELOPMENT OF AN ECONOMICAL TORSION TESTING MACHINE by GLENN E. VALLEE ASSISTANT PROFESSOR MECHANICAL ENGINEERING and ROBERT SHORT WESTERN NEW ENGLAND COLLEGE SPRINGFIELD MASSACHUSSETS Session
More informationThe elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
More informationETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA
ETABS Integrated Building Design Software Concrete Frame Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all associated
More informationAnalysis of Stress CHAPTER 1 1.1 INTRODUCTION
CHAPTER 1 Analysis of Stress 1.1 INTRODUCTION The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its various subdivisions: molecules, atoms, and subatomic
More informationAverage Stresses & Component Design
2 Average Stresses & Component Design 2 1 Lecture 2: AVERAGE STRESSES & COMONENT DESIGN TABLE OF CONTENTS age 2.1 Introduction..................... 2 3 2.2 Average Stress And Its Uses............... 2
More informationNumerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
More informationProperties of Materials
CHAPTER 1 Properties of Materials INTRODUCTION Materials are the driving force behind the technological revolutions and are the key ingredients for manufacturing. Materials are everywhere around us, and
More informationANALYSIS OF STRUCTURAL MEMBER SYSTEMS JEROME J. CONNOR NEW YORK : ':,:':,;:::::,,:
ANALYSIS OF JEROME J. CONNOR, Sc.D., Massachusetts Institute of Technology, is Professor of Civil Engineering at Massachusetts Institute of Technology. He has been active in STRUCTURAL MEMBER teaching
More informationQuestion 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm
14:440:407 Ch6 Question 6.3: A specimen of aluminum having a rectangular cross section 10 mm 12.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationCOMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN
COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject
More informationDesign of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column
Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend
More informationFinite Element Formulation for Plates  Handout 3 
Finite Element Formulation for Plates  Handout 3  Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the
More informationRetrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables
Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management
More informationStresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
More informationTechnical Notes 3B  Brick Masonry Section Properties May 1993
Technical Notes 3B  Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 40292) and Specifications
More informationSpon Press PRESTRESSED CONCRETE DESIGN EUROCODES. University of Glasgow. Department of Civil Engineering. Prabhakara Bhatt LONDON AND NEW YORK
PRESTRESSED CONCRETE DESIGN TO EUROCODES Prabhakara Bhatt Department of Civil Engineering University of Glasgow Spon Press an imprint of Taytor & Francfe LONDON AND NEW YORK CONTENTS Preface xix Basic
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More informationLap Fillet Weld Calculations and FEA Techniques
Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright
More informationSheet metal operations  Bending and related processes
Sheet metal operations  Bending and related processes R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur613 401 Table of Contents 1.QuizKey... Error! Bookmark not defined. 1.Bending
More informationMECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN
MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential prerequisite knowledge
More information3 Concepts of Stress Analysis
3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.
More informationAnalysis of Reinforced Concrete Beams Strengthened with Composites. Subjected to Fatigue Loading
Analysis of Reinforced Concrete Beams Strengthened with Composites Subjected to Fatigue Loading By Christos G. Papakonstantinou, Perumalsamy. Balaguru and Michael F. Petrou Synopsis: Use of high strength
More informationBACHELOR OF SCIENCE DEGREE
BACHELOR OF SCIENCE DEGREE GENERAL EDUCATION CURRICULUM and Additional Degree Requirements Engineering Science Brett Coulter, Ph.D.  Director The Engineering Science degree is a wonderful way for liberal
More informationUnit 48: Structural Behaviour and Detailing for Construction. Chapter 13. Reinforced Concrete Beams
Chapter 13 Reinforced Concrete Beams Concrete is a material strong in its resistance to compression, but very weak indeed in tension. good concrete will safely take a stress upwards of 7 N/mm 2 in compression,
More informationFatigue Failure Due to Variable Loading
Fatigue Failure Due to Variable Loading Daniel Hendrickson Department of Computer Science, Physics, and Engineering University of Michigan Flint Advisor: Olanrewaju Aluko 1. Abstract Fatigue failure in
More informationTensile Testing. Objectives
Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able
More informationDISTRIBUTION OF LOADSON PILE GROUPS
C H A P T E R 7 DISTRIBUTION OF LOADSON PILE GROUPS Section I. DESIGN LOADS 71. Basic design. The load carried by an individual pile or group of piles in a foundation depends upon the structure concerned
More informationTorsion of Circular Sections
7 orsion of Circular Sections 7 1 Lecture 7: ORSION OF CIRCULR SECIONS BLE OF CONENS Page 7.1. Introduction 7 3 7.2. Problem Description 7 3 7.2.1. erminology, Notation, Coordinate Systems....... 7 3 7.2.2.
More informationSTRENGTH of MATERIALS. P.A.Hilton Ltd. Two Year Warranty UNIVERSAL MATERIAL TESTER HARDNESS TESTERS DEFLECTION/FATIGUE IMPACT TESTERS POLARISCOPE
P.A.Hilton Ltd STRENGTH of MATERIALS P.A.Hilton Ltd is a market leader in the manufacture and provision of teaching equipment for Universities and Technical Colleges worldwide for both degree and vocational
More informationSLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:
Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI31802 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems
More informationModeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method
Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yungang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,
More informationFUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS
FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT
More informationMETHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, MarchApril 2016, pp. 4566, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2
More informationOverview of Topics. StressStrain Behavior in Concrete. Elastic Behavior. NonLinear Inelastic Behavior. Stress Distribution.
StressStrain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling
More informationChapter 5 Bridge Deck Slabs. Bridge Engineering 1
Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks Insitu reinforced concrete deck (most common type) Precast concrete deck (minimize the use of local labor) Open steel grid
More information