1 Line Integrals of Scalar Functions

Size: px
Start display at page:

Download "1 Line Integrals of Scalar Functions"

Transcription

1 MA Fll 2010 Worksheet VIII 13.2 nd Line Integrls of Sclr Functions There re (in some sense) four types of line integrls of sclr functions. The line integrls w.r.t. x, y nd z cn be plced under one umbrell, but they will be introduced seprtely t first nd I will record ll of them for sclr functions f of three vribles. Throughout, r(t) = x(t), y(t), z(t),, t b, is the vector eqution of smooth curve. This is equivlent to the curve given by prmetric equtions x = x(t), y = y(t),, z = z(t), t b. Remrk 1.1 (Friendly Reminder: The rc length element). One more friendly reminder bout the rc length element ds expressed in terms of the prmeteriztion: (dx ) 2 ( ) 2 ( ) 2 dy dz ds = r (t) dt = + + dt. dt dt dt Remrk 1.2. When the curve is plne curve, then there re no z terms in ny of the bove. The line integrls of sclr functions long curve re s follows. The line integrl of sclr function long w.r.t. rc length: b b f ds = f ( r(t)) r (t) dt = f (x(t), y(t), z(t)) r (t) dt. The line integrl of sclr function f long the curve w.r.t. x: f dx = b f ( r(t)) dx b dt dt = f (x(t), y(t), z(t)) dx dt dt. The line integrl of sclr function f long the curve w.r.t. y: f dy = b f ( r(t)) dy b dt dt = f (x(t), y(t), z(t)) dy dt dt. The line integrl of sclr function f long the curve w.r.t. z: f dz = b f ( r(t)) dy b dt dt = 1 f (x(t), y(t), z(t)) dz dt dt.

2 1.1 Problems 1. Let be the top hlf of the circle of rdius two in the xy-plne. A vector eqution for this curve is r(t) = 2 cos(t), 2 sin(t) with 0 t π. With this prmeteriztion, you trverse the curve counterclockwise from the point (2, 0) to the point ( 2, 0). () Evlute the line integrl with respect to rc length of the sclr function f(x, y) = xy 2 long the curve. Tht is, evlute xy 2 ds. (b) See the figure below nd interpret your nswer to 1.) geometriclly in terms of signed re. Explin why your nswer mkes sense. Figure 1: The plot of the curve (green) nd the grph of f(x, y) = xy 2 tht lies over the curve (blue) (i.e. the grph of the function restricted to the curve) in 2.) (c) Evlute the line integrl with respect to x of the sclr function f(x, y) = xy 2 long the curve. Tht is, evlute xy 2 dx. (d) Evlute the line integrl with respect to y of the sclr function f(x, y) = xy 2 long the curve. Tht is, evlute xy 2 dy. 2

3 Remrk 1.3. The integrtion in this problem ( 1d.) ) might be slightly tricky. 2. Let be the portion of the circle of rdius two tht lies in the first hlf of the xy-plne. A vector eqution for this curve is r(t) = 2 cos(t), 2 sin(t) with 0 t π. With this 2 prmeteriztion, you trverse the curve counterclockwise from the point (2, 0) to the point (0, 2). () Evlute the line integrl with respect to rc length of the sclr function f(x, y) = xy 2 long the curve. Tht is, evlute xy 2 ds. (b) See the figure below nd interpret your nswer to 2.) geometriclly in terms of signed re. Explin why your nswer mkes sense. Figure 2: The plot of the curve (green) nd the grph of f(x, y) = xy 2 tht lies over the curve (blue) (i.e. the grph of the function restricted to the curve) in 2.) 3. Let be the portion of the helix given by the vector eqution r(t) = 4t, 3 cos(t), 3 sin(t) with 0 t π. The initil point for this prmeteriztion is r(0) = 0, 3, 0. The terminl point for this prmeteriztion is r(π) = 4π, 3, 0. () Evlute the line integrl (w.r.t. rc length) ds. Interpret your nswer geometriclly. (Hint: Think of chpter 10 or think of wht the infinitesiml pieces being dded together re.) 3

4 (b) Evlute the line integrl with respect to rc length of the sclr function f(x, y, z) = yz cos(x) long the curve. Tht is, evlute yz cos(x) ds. 4. Evlute the line integrl xy z dx, where is the curve given by the vector eqution r(t) = t 3, t 2, t 4, with 0 t Evlute the line integrl xy dx + y 2 dy + yz dz, where is the line segment from (1, 0, -1) to (3, 4, 2). Note tht vector eqution for this curve is r(t) = (1 t) 1, 0, 1 + t 3, 4, 2 = 1 + 2t, 4t, 3t 1, with 0 t 1. 4

5 2 Line Integrls of Vector Fields Remrk 2.1. I m going to stte the generl formuls for the line integrl of vector field F(x, y, z) = P (x, y, z), Q(x, y, z), R(x, y, z) = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k on R 3 long curve. The curve is given the sme mnner s from the top of pge 1. The definitions on R 2 re nlogous (eliminte ll z components) The line integrl of vector field F(x, y, z) long curve cn be expressed in ny of the following forms (you should pick your fvorite, they re ll equl). If you try nd memorize ll of these, it will lmost certinly end in disster. F T ds = F d r = = b F ( r(t)) r (t) dt = = = b b b = F (x(t), y(t), z(t)) r (t) dt P (x(t), y(t), z(t)), Q(x(t), y(t), z(t)), R(x(t), y(t), z(t)) dx dt, dy dt, dz dt dt P (x(t), y(t), z(t)) dx dy dz dt + Q (x(t), y(t), z(t)) dt + R (x(t), y(t), z(t)) dt dt dt dt P (x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz 5

6 1. Let F(x, y) = x 2 y 3, y x nd let be the curve given by the prmetric equtions x = t 2, y = t 3, 0 t 1. () Evlute the line integrl of the vector field F long the curve. (b) See the figure below nd explin why the sign of your nswer mkes sense (either geometric interprettion or physicl interprettion). Figure 3: The plot of the vector field F (blue) nd the curve (red) in problem 1. Be creful, direction of trvel long the curve mtters. 2. Let F be vector field on R 2 defined by F(x, y) = ln(1 + y 2 ), ln(1 + x 2 ). Let be the portion of the circle of rdius 4 in the second qudrnt given by the prmetric equtions 3π x = 4 sin(t), y = 4 cos(t), 2 t 2π. Note tht with this prmetiztion you re trversing the circle in the clockwise direction from the initil point (-4, 0) to the terminl point (0, 4). () Evlute the line integrl of F long the curve (Hint: You should use Mple or your grphing clcultor to evlute the definite integrl once everything is in terms of t.) (b) See the figure below nd explin why the sign of your nswer mkes sense (either geometric interprettion or physicl interprettion). 6

7 Figure 4: The plot of the vector field F (blue) nd the curve (red) in problem 2. Be creful, direction of trvel long the curve mtters. (c) Wht is the vlue of the line integrl of F(x, y) long the sme curve if the curve is trversed in the opposite direction? (Tht is, if insted one trvels from (0,4) to (-4, 0)). Explin this geometriclly (or physiclly). You should not need to integrte. 3. Let F(x, y, z) = yx, zy, xz nd let be the curve given by the vector eqution r(t) = t 3, t 2, t, with 0 t 1. Evlute the line integrl of the vector field F(x, y, z) long the curve. 4. Find the work done by the force field F(x, y, z) = y + z, x + z, x + y on prticle tht moves long the line segment from (1, 0, 0) to (3, 4, 2). Note tht the prmetric equtions of this curve re x = 1 + 2t, y = 4t, z = 2t, 0 t 1. Hint: Think of our physicl motivtion for the definition of the line integrl of vector field (Or just think bout the line integrl of vector field!). 3 Fundmentl Theorem for Line Integrls Remrk 3.1. All problems from this section depend on the mteril from 13.3 in your text. You need to know the fundmentl theorem for line integrls, the definition of conservtive vector field, the definition of potentil function, nd the reltionships between the three. The mjority of the problems in this section will tke little work if done efficiently. 7

8 1. Let f(x, y) = y 3 x 2 + x 2 y + 2. omplete ech of the following. () Wht is the grdient of f(x, y)? (b) Is the vector field in the previous prt conservtive? If yes, wht is the potentil function? (c) Evlute the line integrl of the vector field f(x, y) long the curve given by the vector eqution r(t) = t, t 2 + 2t 3, 0 t 2. (d) How much did the given curve in the preceding prt mtter in obtining your finl nswer? (e) Evlute the line integrl of the vector field f(x, y) long the unit circle, where the unit circle is given the prmeteriztion x = cos(t), y = sin(t), 0 t 2π. Note tht this curve is one trip round the unit circle in counter-clockwise direction. (f) Evlute the line integrl of the vector field f(x, y) long curve from the point (1,1) to (2, 2). 2. (To hmmer home the point...) Let f(x, y) = cos(y)e sin(x) + sin(y) cos(x). omplete ech of the following. () Wht is the grdient of f(x, y)? (b) Is the vector field in the previous prt conservtive? If yes, wht is the potentil function? (c) Evlute the line integrl of the vector field f(x, y) long the curve given by the vector eqution r(t) = t, t 2 + 2t 3, 0 t 2. (d) How much did the given curve in the preceding prt mtter in obtining your finl nswer? (e) Evlute the line integrl of the vector field f(x, y) long the unit circle, where the unit circle is given the prmeteriztion x = cos(t), y = sin(t), 0 t 2π. Note tht this curve is one trip round the unit circle in counterclockwise direction. (f) Evlute the line integrl of the vector field f(x, y) long curve from the point (0, 0) to ( π 2, 2π). 8

9 3. Let F(x, y) = y, x. () Evlute the line integrl of the vector field F(x, y) long the unit circle, where the unit circle is given prmeteriztion x = cos(t), y = sin(t), 0 t 2π. Note tht this curve is one trip round the unit circle in counterclockwise direction. Explin the geometry (or physics) of your nswer in 3.) (b) Explin wht your nswer from the previous prt tells you bout the vector field F(x, y). Figure 5: The plot of the vector field F blue nd the curve in problem 3. (c) If you hve concluded tht the vector field F is not conservtive, then given second justifiction for this. If you hve concluded tht the vector field F is conservtive, then find sclr potentil for F. 4. The vector field F(x, y) = 2xy, x 2 is conservtive. () Find sclr potentil for F(x, y). (b) Use the sclr potentil from the previous prt to evlute the line integrl of F(x, y) long the curve given by the prmetric equtions x = e t cos(t), y = sin(t), 0 t π The vector field F(x, y) = (1 + xy)e xy, e y + x 2 e xy is conservtive. 9

10 () Find sclr potentil for F(x, y). (b) Use the sclr potentil from the previous prt to evlute the line integrl of F(x, y) long the curve given by the prmetric equtions x = t 2 + 1, y = t 3, 0 t The vector field F(x, y, z) = y + z, x + z, x + y is conservtive. () Find sclr potentil for F(x, y, z). (b) Use the sclr potentil from the previous prt to evlute the line integrl of F(x, y, z) long the curve given by the prmetric equtions x = t 2 + 1, y = t 3, z = e t, 0 t 1. 10

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism. Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

SUBSTITUTION I.. f(ax + b)

SUBSTITUTION I.. f(ax + b) Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 g.s.mcdonld@slford.c.uk

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Basically, logarithmic transformations ask, a number, to what power equals another number?

Basically, logarithmic transformations ask, a number, to what power equals another number? Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I Exm Stuy Guie Mth 2020 - Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

3 The Utility Maximization Problem

3 The Utility Maximization Problem 3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best

More information

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1)

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1) Volumes s integrls of cross-sections (ect. 6.1) Te volume of simple regions in spce Volumes integrting cross-sections: Te generl cse. Certin regions wit oles. Volumes s integrls of cross-sections (ect.

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow. Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin

4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin 4.2. LINE INTEGRALS 1 4.2 Line Integrals MATH 294 FALL 1982 FINAL # 7 294FA82FQ7.tex 4.2.1 Consider the curve given parametrically by x = cos t t ; y = sin 2 2 ; z = t a) Determine the work done by the

More information

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply? Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

More information

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems

Euler Euler Everywhere Using the Euler-Lagrange Equation to Solve Calculus of Variation Problems Euler Euler Everywhere Using the Euler-Lgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES Solution to exm in: FYS30, Quntum mechnics Dy of exm: Nov. 30. 05 Permitted mteril: Approved clcultor, D.J. Griffiths: Introduction to Quntum

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution

QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits

More information

6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus

6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus Lecture_06_05.n 1 6.5 - Ares of Surfces of Revolution n the Theorems of Pppus Introuction Suppose we rotte some curve out line to otin surfce, we cn use efinite integrl to clculte the re of the surfce.

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Line and surface integrals: Solutions

Line and surface integrals: Solutions hapter 5 Line and surface integrals: olutions Example 5.1 Find the work done by the force F(x, y) x 2 i xyj in moving a particle along the curve which runs from (1, ) to (, 1) along the unit circle and

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2.

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2. Physics 6010, Fll 2010 Symmetries nd Conservtion Lws: Energy, Momentum nd Angulr Momentum Relevnt Sections in Text: 2.6, 2.7 Symmetries nd Conservtion Lws By conservtion lw we men quntity constructed from

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by

2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by Teoretisk Fysik KTH Advnced QM SI2380), Exercise 8 12 1. 3 Consider prticle in one dimensions whose Hmiltonin is given by Ĥ = ˆP 2 2m + V ˆX) 1) with [ ˆP, ˆX] = i. By clculting [ ˆX, [ ˆX, Ĥ]] prove tht

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

APPLICATION OF INTEGRALS

APPLICATION OF INTEGRALS APPLICATION OF INTEGRALS 59 Chpter 8 APPLICATION OF INTEGRALS One should study Mthemtics ecuse it is only through Mthemtics tht nture cn e conceived in hrmonious form. BIRKHOFF 8. Introduction In geometry,

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam 1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211 - Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I hd lerned to do integrls by vrious methods shown in book tht my high school physics techer Mr. Bder hd given me. [It] showed how to differentite prmeters

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information