# Chapter 7 9 Review. Select the letter that corresponds to the best answer.

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 AP Statistics Chapter 7 9 Review MULTIPLE CHOICE Name: Per: Select the letter that corresponds to the best answer. 1. The correlation between X and Y is r = If we double each X value, increase each Y value by 0., and interchange the variables (put X on the Y-ais and vice versa), the new correlation A) is 0.35 B) is 0.50 C) is 0.70 D) is 0.90 E) cannot be determined 2. The residuals plot for a linear model is shown. Which is true? A) The linear model is okay because approimately the same number of points are above the line as below it. B) The linear model is okay because the association between the two variables is fairly strong. C) The linear model is no good because the correlation is near 0. D) The linear model is no good because some residuals are large. E) The linear model is no good because of the curve in the residuals. 3. All but one of the statements below contains a mistake. Which one could be true? A) The correlation between height and weight is 0.56 inches per pound. B) The correlation between weight and length of foot is 0.. C) The correlation between the breed of a dog and its weight is D) The correlation between gender and age is A correlation of zero between two quantitative variables means that A) We have done something wrong in our calculation of r. B) There is no association between the two variables. C) There is no linear association between the two variables. D) Re-epressing the data will guarantee a linear association between the two variables. E) None of the above. 5. A residual plot is useful because I. it will help us to see whether our model is appropriate II. it might show a pattern in the data that was hard to see in the original scatterplot. III. it will clearly identify influential points. A) I only B) II only C) I and II only D) I and III only E) I, II, and III 6. When using midterm eam scores to predict a student s final grade in a class, one would prefer to have a A) positive residual, because that means the student s final grade is higher than we would predict with the model. B) positive residual, because that means the student s final grade is lower than we would predict with the model. C) residual equal to zero because that means the student s final grade is eactly what we would predict with the model. D) negative residual, because that means the student s final grade is higher than we would predict with the model.

2 7. Which one of the following statements is true? A) Values of r near zero indicate a strong linear relationship. B) The correlation can be strongly affected by a few outlying observations. C) Changing the measurement units of and y may affect the correlation between and y. D) Strong correlation means that there is a definite cause-and-effect relationship between and y E) Correlation changes when the and y variables are reversed.. Which of the following associations is likely to have a negative correlation? A) Number of hours devoted to studying for a final eam and a student s grade on the final B) A teacher s salary and the number of years teaching eperience that the teacher has C) The age of an automobile and the number of miles an automobile has D) The number of children in a family and the weekly amount of money spent on food. E) The speed a car travels and the time required to travel a given distance on a flat deserted road 9. For the following scatterplots, write the appropriate correlation coefficient underneath each plot Researchers investigating the association between the size and strength of muscles measured the forearm circumference (in inches) of teenage boys. Then they measured the strength of the boys grips (in lbs). Their data are plotted at right. a) Describe the association between forearm circumference and strength. There is a moderate (or weak), positive, linear association between forearm circumference and strength. (the association is moderate not strong due to the outlier) b) If the point at the lower right corner (at about 1 and 3 lbs.) were removed, would the correlation become stronger, weaker, or remain about the same? The correlation would become STRONGER (closer to 1).

3 11. The scatterplot shows a relationship between and y that results in a correlation coefficient of r = Eplain why r = 0.02 in this situation even though there appears to be a strong relationship between the and y variables. The association between and y is NON-linear. Correlation is only useful for describing LINEAR association. y vs. A student who has created a linear model is disappointed to find that their R 2 value is a very low 13%. a) Does this mean that a linear model is not appropriate? Eplain. Not necessarily. Although the linear model may not have a tremendously strong correlation (r = 0.361), a linear model may still be appropriate, as long as the scatterplot looks fairly linear and as long as there is no clear pattern in the residual plot (it just wouldn t be a very strong association). R 2 values only tell strength of association NOT appropriateness of the linear model. b) Does this model allow the student to make accurate predictions? Eplain. No. Since the r-value is only 0.361, this indicates that the residual values would be relatively large, and there is a good chance that most predictions made from the linear model would be pretty far off from the actual (observed) values. 13. Storks Data show that there is a positive association between the population of 17 European countries and the number of stork pairs in those countries. a) Briefly eplain what positive association means in this contet. As the number of stork pairs increases, so does the population of that European country (or vice-versa). b) Wildlife advocates want the stork population to grow, so they approach the governments of these countries to encourage their citizens to have children. As a statistician, what do you think of this plan? Eplain briefly. Having children may not (probably will not?) CAUSE the stork population to increase. Even if there is a strong association between these two variables, correlation does not imply causation.

4 1. Car commercials A car dealer investigated the association between the number of TV commercials he ran each week and the number of cars he sold the following weekend. He found the correlation to be r = During the time he collected the data he ran an average of. commercials a week with a standard deviation of 1., and sold an average of 30.5 cars with a standard deviation of.2. Net weekend he is planning a sale, hoping to sell 0 cars. a) Write an equation of the linear model to estimate the number of cars he might sell on a certain weekend based on the number of TV commercials run that week. Define any variable used in this equation or state the equation in contet. (Show your work as well as your formulas but only if you want any credit!) b) If the car dealer decides to pay for 1 TV commercials, how many cars might he epect to sell the following weekend? c) Let us suppose that in a particular week, the car dealer paid for 10 commercials and sold 22 cars. Calculate the residual for the number of cars sold that weekend, and interpret this value in contet.

5 15. Professor Rogers has found that the grades on the nursing final eam are normally distributed with a mean of 6 and standard deviation of 11. a) If the passing grade is 5, what percent of the class will pass (will make greater than 5)? b) If Professor Rogers wants only 5% of the class to pass, what should the passing grade be?. There is a linear relationship between posted speed limit and the average number of accidents. A least squares fit of some data collected by the department of traffic control gives the model yˆ where is the posted speed limit and ŷ is the estimated number of accidents. a) What is the estimated increase in accidents that corresponds to an increase of mph? b) The department of traffic control reported 23 accidents when the posted speed limit was 50 mph. Does the least squares model overestimate or underestimate the number of accidents? Show your thinking.

6 17. Landslides are common events in tree-growing regions of the Pacific Northwest, so their effect on timber growth is of special concern to foresters. The following is information on clear-cut growth, with age of the tree (years) used to predict the 5-year height growth (cm). A scatterplot, a residual plot, and the computer output from a regression analysis are shown: Tree age and height tree_age_in_years Tree age and height tree_age_in_years Predictor Coefficient St Dev T P Age Constant S = 51.6 R-Sq = 67% R-Sq(adj) = 6.2% a) Is a linear model appropriate to summarize this data? Eplain. b) State the least squares regression line equation that summarizes the relationship between the age of trees in years and the height of the tree. Define any variables used in this equation or state the equation in contet. c) Interpret the meaning of the slope of the regression line in contet. d) If meaningful, interpret the y-intercept. If not meaningful, eplain why not. e) What is the percent of variation height of the trees that can be eplained by the linear association of tree age in years and height of the trees? f) Interpret s e in this contet. g) Predict the height of trees that are 30 years old. Comment on your prediction.

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### College of the Canyons Math 140 Exam 1 Amy Morrow. Name:

Name: Answer the following questions NEATLY. Show all necessary work directly on the exam. Scratch paper will be discarded unread. One point each part unless otherwise marked. 1. Owners of an exercise

### Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation

Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation Display and Summarize Correlation for Direction and Strength Properties of Correlation Regression Line Cengage

### Chapter 10 - Practice Problems 1

Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the

### Mind on Statistics. Chapter 3

Mind on Statistics Chapter 3 Section 3.1 1. Which one of the following is not appropriate for studying the relationship between two quantitative variables? A. Scatterplot B. Bar chart C. Correlation D.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All but one of these statements contain a mistake. Which could be true? A) There is a correlation

### Chapter 9 Descriptive Statistics for Bivariate Data

9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)

### Regents Exam Questions A2.S.8: Correlation Coefficient

A2.S.8: Correlation Coefficient: Interpret within the linear regression model the value of the correlation coefficient as a measure of the strength of the relationship 1 Which statement regarding correlation

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)

### Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### Chapter 9. Section Correlation

Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation

### Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

### , has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.

BA 275 Review Problems - Week 9 (11/20/06-11/24/06) CD Lessons: 69, 70, 16-20 Textbook: pp. 520-528, 111-124, 133-141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### REGRESSION LINES IN STATA

REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression

### Homework 8 Solutions

Math 17, Section 2 Spring 2011 Homework 8 Solutions Assignment Chapter 7: 7.36, 7.40 Chapter 8: 8.14, 8.16, 8.28, 8.36 (a-d), 8.38, 8.62 Chapter 9: 9.4, 9.14 Chapter 7 7.36] a) A scatterplot is given below.

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

### AP Statistics Semester Exam Review Chapters 1-3

AP Statistics Semester Exam Review Chapters 1-3 1. Here are the IQ test scores of 10 randomly chosen fifth-grade students: 145 139 126 122 125 130 96 110 118 118 To make a stemplot of these scores, you

### Teaching & Learning Plans. The Correlation Coefficient. Leaving Certificate Syllabus

Teaching & Learning Plans The Correlation Coefficient Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots

Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship

### 4. Describing Bivariate Data

4. Describing Bivariate Data A. Introduction to Bivariate Data B. Values of the Pearson Correlation C. Properties of Pearson's r D. Computing Pearson's r E. Variance Sum Law II F. Exercises A dataset with

### c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.

MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than non-smokers. Does this imply that smoking causes depression?

### Describing Relationships between Two Variables

Describing Relationships between Two Variables Up until now, we have dealt, for the most part, with just one variable at a time. This variable, when measured on many different subjects or objects, took

### Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

### Statistics 151 Practice Midterm 1 Mike Kowalski

Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and

### Chapter 10 - Practice Problems 2

Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the regression equation for the data. Round the final values

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### AP Statistics Section :12.2 Transforming to Achieve Linearity

AP Statistics Section :12.2 Transforming to Achieve Linearity In Chapter 3, we learned how to analyze relationships between two quantitative variables that showed a linear pattern. When two-variable data

### 2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

### Name: Date: Use the following to answer questions 2-3:

Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### Worksheet A5: Slope Intercept Form

Name Date Worksheet A5: Slope Intercept Form Find the Slope of each line below 1 3 Y - - - - - - - - - - Graph the lines containing the point below, then find their slopes from counting on the graph!.

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Unit 11: Fitting Lines to Data

Unit 11: Fitting Lines to Data Summary of Video Scatterplots are a great way to visualize the relationship between two quantitative variables. For example, the scatterplot of temperatures and coral reef

### 1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ

STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Exam 2 Study Guide and Review Problems

Exam 2 Study Guide and Review Problems Exam 2 covers chapters 4, 5, and 6. You are allowed to bring one 3x5 note card, front and back, and your graphing calculator. Study tips: Do the review problems below.

Using Your TI-NSpire Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

### Using Minitab for Regression Analysis: An extended example

Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?

Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries? Do

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Module 7 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. You are given information about a straight line. Use two points to graph the equation.

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### STAT 350 Practice Final Exam Solution (Spring 2015)

PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

### Pearson s correlation

Pearson s correlation Introduction Often several quantitative variables are measured on each member of a sample. If we consider a pair of such variables, it is frequently of interest to establish if there

### CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there

CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there is a relationship between variables, To find out the

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

### Economics of Strategy (ECON 4550) Maymester 2015 Applications of Regression Analysis

Economics of Strategy (ECON 4550) Maymester 015 Applications of Regression Analysis Reading: ACME Clinic (ECON 4550 Coursepak, Page 47) and Big Suzy s Snack Cakes (ECON 4550 Coursepak, Page 51) Definitions

### Transforming Bivariate Data

Math Objectives Students will recognize that bivariate data can be transformed to reduce the curvature in the graph of a relationship between two variables. Students will use scatterplots, residual plots,

### Statistics E100 Fall 2013 Practice Midterm I - A Solutions

STATISTICS E100 FALL 2013 PRACTICE MIDTERM I - A SOLUTIONS PAGE 1 OF 5 Statistics E100 Fall 2013 Practice Midterm I - A Solutions 1. (16 points total) Below is the histogram for the number of medals won

### 17.0 Linear Regression

17.0 Linear Regression 1 Answer Questions Lines Correlation Regression 17.1 Lines The algebraic equation for a line is Y = β 0 + β 1 X 2 The use of coordinate axes to show functional relationships was

### Lecture 13/Chapter 10 Relationships between Measurement (Quantitative) Variables

Lecture 13/Chapter 10 Relationships between Measurement (Quantitative) Variables Scatterplot; Roles of Variables 3 Features of Relationship Correlation Regression Definition Scatterplot displays relationship

### MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

Using Your TI-83/84 Calculator: Linear Correlation and Regression Elementary Statistics Dr. Laura Schultz This handout describes how to use your calculator for various linear correlation and regression

### Statistical Significance and Bivariate Tests

Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions,

### Correlation and Regression

Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look

### Answer Key for Exam A

Answer Key for Eam A For questions 1-2, determine whether the given relationship defines a function. Eplain your answer. 1. The temperatureton a backyard thermometer at 5 pm on a given day. Answer: This

### The importance of graphing the data: Anscombe s regression examples

The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 30-31, 2008 B. Weaver, NHRC 2008 1 The Objective

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### 17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### Lesson 3.2.1 Using Lines to Make Predictions

STATWAY INSTRUCTOR NOTES i INSTRUCTOR SPECIFIC MATERIAL IS INDENTED AND APPEARS IN GREY ESTIMATED TIME 50 minutes MATERIALS REQUIRED Overhead or electronic display of scatterplots in lesson BRIEF DESCRIPTION

### Using Excel for Statistical Analysis

Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### AP Statistics Solutions to Packet 3

AP Statistics Solutions to Packet 3 Examining Relationships Scatterplots Correlation Least-Squares Regression HW #15 1, 3, 6, 7, 9, 10 3.1 EPLANATORY AND RESPONSE VARIABLES In each of the following situations,

### Grade 12 Consumer Mathematics Standards Test. Written Test Student Booklet

Grade 12 Consumer Mathematics Standards Test Written Test Student Booklet January 2011 Manitoba Education Cataloguing in Publication Data Grade 12 Consumer Mathematics Standards Test : Written Test Student

### The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces

The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces Or: How I Learned to Stop Worrying and Love the Ball Comment [DP1]: Titles, headings, and figure/table captions

### ch12 practice test SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

ch12 practice test 1) The null hypothesis that x and y are is H0: = 0. 1) 2) When a two-sided significance test about a population slope has a P-value below 0.05, the 95% confidence interval for A) does

### AP Statistics. Chapter 4 Review

Name AP Statistics Chapter 4 Review 1. In a study of the link between high blood pressure and cardiovascular disease, a group of white males aged 35 to 64 was followed for 5 years. At the beginning of

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### Homework 11. Part 1. Name: Score: / null

Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is

### SIMPLE REGRESSION ANALYSIS

SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two

### Midterm Exam Review. 1) Identify a pattern in the following lists of numbers. Then use this pattern to find the next number.

Midterm Exam Review 1) Identify a pattern in the following lists of numbers. Then use this pattern to find the next number. a) 1, 1 3, 1 9, 1 27, b) 125, 25, 5, 1, 2) Identify the reasoning process, inductive

### The Big Picture. Correlation. Scatter Plots. Data

The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

### Elasticity. I. What is Elasticity?

Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in

### 5 Week Modular Course in Statistics & Probability Strand 1. Module 2

5 Week Modular Course in Statistics & Probability Strand 1 Module 2 Analysing Data Numerically Measures of Central Tendency Mean Median Mode Measures of Spread Range Standard Deviation Inter-Quartile Range

Using Your TI-83/84/89 Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch. Correlation and Regression. Correlation Interpret Scatter Plots and Correlations MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate

### Introductory Statistics Notes

Introductory Statistics Notes Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### Correlation & Regression, II. Residual Plots. What we like to see: no pattern. Steps in regression analysis (so far)

Steps in regression analysis (so far) Correlation & Regression, II 9.07 4/6/2004 Plot a scatter plot Find the parameters of the best fit regression line, y =a+bx Plot the regression line on the scatter

### table to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The z-scores for 16 and 60 are: 60 38 = 1.

Review Problems for Exam 3 Math 1040 1 1. Find the probability that a standard normal random variable is less than 2.37. Looking up 2.37 on the normal table, we see that the probability is 0.9911. 2. Find

### MTH 140 Statistics Videos

MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

### Project: Linear Correlation and Regression

Project: Linear Correlation and Regression You may very well have studied linear regression before; I know many instructors discuss it in their classes. If the word regression means nothing to you...great!