# Directions: Answer the following questions on another sheet of paper

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Module 3 Review Directions: Answer the following questions on another sheet of paper Questions 1-16 refer to the following situation: Is there a relationship between crime rate and the number of unemployment rate among young men? The data below is for several US cities, collected by the FBI's Uniform Crime Report and other government agencies. The first column is the unemployment rate (as a percentage) for men aged The second column is the crime rate (number of offenses reported to police per million population) city unemployment rate crime rate Allentown Busytown Charleston Daisyville Easyville What is the explanatory variable? 2. What is the response variable? 3. Make a scatterplot, then describe it. 4. Compute (with a calculator) the mean and standard deviation of the unemployment rate 5. Compute (with a calculator) the mean and standard deviation of the crime rate 6. Compute the correlation (r), then explain what the result means. 7. Compute the least-squares regression line 8. In the least-squares regression line, (from problem 7), which number represents the slope? Explain the meaning of this number, in the context of the problem. Include units in your answer. 9. In the least-squares regression line, (from problem 7), which number represents the y-intercept? Explain the meaning of this number, in the context of the problem. Include units in your answer. 10. Suppose the unemployment rate for young men of another city, Fairview, is What would you predict the crime rate to be, according to the least-squares regression line? 11. How confident are you of your prediction in question 10? Explain your answer. 12. Suppose Fairview's actual crime rate is 154 incidents per million people. What is the residual? Explain what a negative residual would mean. Explain what a positive residual would mean. 13. If you had to compute the SSE by hand, show what the first two rows of the table would look like.

2 14. Does the scatterplot, regression line, etc. indicate that the unemployment rate among young males *causes* crime? Why or why not? If it doesn't, what does the scatterplot tell you about the relationship between unemployment and crime? 15. What are some confounding variables in this situation? 16. Give an example of extrapolation in this situation. Explain why the extrapolation is not necessarily valid. 17. (multiple choice) Measurements on young children in Mumbai, India, found this least-squares regression line for predicting the height y from armspan x: y = x. All measurements are in centimeters. How much, on the average, does height increase for each additional centimeter of armspan? a) 0.15 cm b) 6.40 cm c) 2.00 cm d) 0.93 cm e) 7.33 cm Questions refer to the following scatterplot: Describe the scatterplot: 19. In the scatterplot from the previous question, suppose r = 0.7. If an outlier was added to the scatterplot, at the point (10, 10), would r increase, decrease or stay about the same? 20. A researcher wanted to find the relationship between a weight and height of middle-aged women. Suppose the mean height was 168 cm, the standard deviation of the height was 4.5 cm. Suppose the mean weight was 58 kg and the standard deviation of the weight was 5.1 kg. Suppose r = a) Find the equation of the best-fit line. Let x = height and y = weight b) If a woman was 174 cm tall, use the best-fit line from part (a) to predict her weight. c) How reliable is your prediction from part (b)? Explain using concepts about correlation.

3 21. Match the following graphs to the following correlations (one value of r will not be used) a) r = 0.97 b)r = c) r = 0.76 d) r = 0.04 e) r = (multiple choice) The points on a scatterplot lie very close to the line y = 4-3x. The correlation between x and y is close to... a) -3 b) -1 c) 0 d) 1 e) Below is a scatterplot. a)use the scatterplot below to estimate the slope of the least squares regression line b) Use the scatterplot below to estimate the y-intercept c) use parts (a) and (b) to write out the equation of least squares regression line

4 Answers 1. Unemployment rate. This is the variable being used to try to explain and/or predict the crime rate. 2. crime rate. This is the variable in response to the unemployment rate. 3. The direction is positive. There is a moderate amount of scatter. The form looks curvilinear, but there are only 5 points, so it s hard to establish any definite trends. 4. Mean unemployment rate: x = 14.1 percent SD of unemployment rate: s x = 5.34 percentage points 5. Mean of crime rate: y =155.2 incidents per million people SD of crime rate: s y = incidents per million people 6. r = (rounded off). This means the correlation is fairly strong and the direction is positive. Below ae the calculations: unemployment rate (x) crime rate (y) total s b r y s 5.34 x a y bx (5.92)(14.1) The least-squares regression line is (using symbols) yˆ x Or (using words) predicted crime rate = (unemployment rate) divide by 5.34, then by 39.32, then by 4

5 8. The slope is It means each time the unemployment increases by one percentage point, the crime rate will increase by 5.92 incidents per million people. 9. The y-intercept is This means if the unemployment rate was zero, then the predicted crime rate would be 71.1 incidents per million people. 10. yˆ x = (5.92)(13.6) = The predicted crime rate would be incidents per million people. 11. By looking at the scatterplot, there is a moderate to amount of scatter in the plot. The prediction would be somewhat accurate. However (this is just a side comment) the sample size of only 5 cities is not very large. With a larger sample we could have a more confident prediction. 12. Residual = y yˆ = = 1.8 incidents per million people. The residual is positive, which means: The actual data is 1.8 units higher than the predicted amount. A negative residual would mean the actual data is lower than the predicted amount. 13. x y y residual Residual squared No, because correlation does not imply causation. There could be other variables that cause both the unemployment rate and the crime rate to increase together. However, the scatterplot DOES tell us that there is some kind of relationship between unemployment rate and crime rate. 15. There are many possible answers. Here are some examples: level of education of the young men, drug use, disabilities. Anything that increases both the unemployment and the crime rate would be a confounding variable. 16. Any example where the unemployment rate is outside the range of the given data (less than 9% or more than 23%) would be extrapolation. This is not necessarily valid because there is no data to show the crime rate will continue to increase in the same way. 17. d 18. Direction is positive, strength is moderate to strong, form is linear 19. It would decrease because the outlier would create a greater amount of scatter and a weaker correlation. r is sensitive to outliers. s a) b r y s 4.5 x a y ax (168) yˆ x b) yˆ x = *174 = kg c) This is not too reliable because r is low e 2. d 3. a 4. c

6 22. d 23. a) slope is about -0.8 b) y-intercept is about 85 c) yˆ x

### Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

### Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation

Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation Display and Summarize Correlation for Direction and Strength Properties of Correlation Regression Line Cengage

### Unit 11: Fitting Lines to Data

Unit 11: Fitting Lines to Data Summary of Video Scatterplots are a great way to visualize the relationship between two quantitative variables. For example, the scatterplot of temperatures and coral reef

### , has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.

BA 275 Review Problems - Week 9 (11/20/06-11/24/06) CD Lessons: 69, 70, 16-20 Textbook: pp. 520-528, 111-124, 133-141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### AP Statistics Semester Exam Review Chapters 1-3

AP Statistics Semester Exam Review Chapters 1-3 1. Here are the IQ test scores of 10 randomly chosen fifth-grade students: 145 139 126 122 125 130 96 110 118 118 To make a stemplot of these scores, you

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

### Correlation and Regression

Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look

### College of the Canyons Math 140 Exam 1 Amy Morrow. Name:

Name: Answer the following questions NEATLY. Show all necessary work directly on the exam. Scratch paper will be discarded unread. One point each part unless otherwise marked. 1. Owners of an exercise

### Mind on Statistics. Chapter 3

Mind on Statistics Chapter 3 Section 3.1 1. Which one of the following is not appropriate for studying the relationship between two quantitative variables? A. Scatterplot B. Bar chart C. Correlation D.

### Homework 8 Solutions

Math 17, Section 2 Spring 2011 Homework 8 Solutions Assignment Chapter 7: 7.36, 7.40 Chapter 8: 8.14, 8.16, 8.28, 8.36 (a-d), 8.38, 8.62 Chapter 9: 9.4, 9.14 Chapter 7 7.36] a) A scatterplot is given below.

### We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?

Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries? Do

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Chapter 10 - Practice Problems 1

Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the

### Chapter 9. Section Correlation

Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### Simple Linear Regression in SPSS STAT 314

Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,

### Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

Using Your TI-NSpire Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All but one of these statements contain a mistake. Which could be true? A) There is a correlation

### Regents Exam Questions A2.S.8: Correlation Coefficient

A2.S.8: Correlation Coefficient: Interpret within the linear regression model the value of the correlation coefficient as a measure of the strength of the relationship 1 Which statement regarding correlation

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### Lecture 13/Chapter 10 Relationships between Measurement (Quantitative) Variables

Lecture 13/Chapter 10 Relationships between Measurement (Quantitative) Variables Scatterplot; Roles of Variables 3 Features of Relationship Correlation Regression Definition Scatterplot displays relationship

### The importance of graphing the data: Anscombe s regression examples

The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 30-31, 2008 B. Weaver, NHRC 2008 1 The Objective

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Statistiek II. John Nerbonne. March 24, 2010. Information Science, Groningen Slides improved a lot by Harmut Fitz, Groningen!

Information Science, Groningen j.nerbonne@rug.nl Slides improved a lot by Harmut Fitz, Groningen! March 24, 2010 Correlation and regression We often wish to compare two different variables Examples: compare

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### SIMPLE REGRESSION ANALYSIS

SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two

### Monopoly and Regression

Math Objectives Students will analyze the linear association between two variables and interpret the association in the context of a given scenario. Students will calculate a least-squares regression line

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Stats Review Chapters 3-4

Stats Review Chapters 3-4 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)

### Lesson Lesson Outline Outline

Lesson 15 Linear Regression Lesson 15 Outline Review correlation analysis Dependent and Independent variables Least Squares Regression line Calculating l the slope Calculating the Intercept Residuals and

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### Linear Regression and Correlation

Chapter 12 Linear Regression and Correlation 12.1 Linear Regression and Correlation 1 12.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Discuss basic ideas of

### MTH 140 Statistics Videos

MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

### a) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?

1. Phone surveys are sometimes used to rate TV shows. Such a survey records several variables listed below. Which ones of them are categorical and which are quantitative? - the number of people watching

### Section 1.5 Linear Models

Section 1.5 Linear Models Some real-life problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### The correlation coefficient

The correlation coefficient Clinical Biostatistics The correlation coefficient Martin Bland Correlation coefficients are used to measure the of the relationship or association between two quantitative

### Practice Test - Chapter 4. y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept.

y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept. Plot the y-intercept (0, 3). The slope is. From (0, 3), move up 2 units and right 1 unit. Plot

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down)

Two-Variable Statistics Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down) Positive Correlation As one variable

### Chapter 5. Regression

Topics covered in this chapter: Chapter 5. Regression Adding a Regression Line to a Scatterplot Regression Lines and Influential Observations Finding the Least Squares Regression Model Adding a Regression

### EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

### REGRESSION LINES IN STATA

REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression

### Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

### THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer

THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,

### MULTIPLE REGRESSION EXAMPLE

MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if

### 1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand

### Statistics 151 Practice Midterm 1 Mike Kowalski

Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and

### Foundations for Functions

Activity: TEKS: Overview: Materials: Grouping: Time: Crime Scene Investigation (A.2) Foundations for functions. The student uses the properties and attributes of functions. The student is expected to:

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Module 7 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. You are given information about a straight line. Use two points to graph the equation.

### Exam 2 Study Guide and Review Problems

Exam 2 Study Guide and Review Problems Exam 2 covers chapters 4, 5, and 6. You are allowed to bring one 3x5 note card, front and back, and your graphing calculator. Study tips: Do the review problems below.

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared jn2@ecs.soton.ac.uk Relationships between variables So far we have looked at ways of characterizing the distribution

### Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### table to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The z-scores for 16 and 60 are: 60 38 = 1.

Review Problems for Exam 3 Math 1040 1 1. Find the probability that a standard normal random variable is less than 2.37. Looking up 2.37 on the normal table, we see that the probability is 0.9911. 2. Find

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### 2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

### AP Statistics Section :12.2 Transforming to Achieve Linearity

AP Statistics Section :12.2 Transforming to Achieve Linearity In Chapter 3, we learned how to analyze relationships between two quantitative variables that showed a linear pattern. When two-variable data

### CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

### Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

### Homework #1 Solutions

Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

### Scatter Plots with Error Bars

Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each

### Scatter Plot, Correlation, and Regression on the TI-83/84

Scatter Plot, Correlation, and Regression on the TI-83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page

### When it is not in our power to determine what is true, we ought to follow what is most probable.

10 10.1 Scatter Diagrams and Linear Correlation 10.2 Linear Regression and the Coefficient of Determination 10.3 Inferences for Correlation and Regression 10.4 Multiple Regression When it is not in our

### FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

### Project: Linear Correlation and Regression

Project: Linear Correlation and Regression You may very well have studied linear regression before; I know many instructors discuss it in their classes. If the word regression means nothing to you...great!

Lecture 5: Linear least-squares Regression III: Advanced Methods William G. Jacoby Department of Political Science Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Simple Linear Regression

### ch12 practice test SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

ch12 practice test 1) The null hypothesis that x and y are is H0: = 0. 1) 2) When a two-sided significance test about a population slope has a P-value below 0.05, the 95% confidence interval for A) does

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### !.!. = 10!"! 1!!!!!!!!!

ALBERTA WEIGHTLIFTING ASSOCIATION The Sinclair Coefficients for the Olympiad January 1, 2013 to December 31, 2016 For Men's and Women's Olympic Weightlifting The Sinclair coefficients, derived statistically,

### Appendix C: Graphs. Vern Lindberg

Vern Lindberg 1 Making Graphs A picture is worth a thousand words. Graphical presentation of data is a vital tool in the sciences and engineering. Good graphs convey a great deal of information and can

### A. Test the hypothesis: The older you are, the more money you earn. Plot the data on the scatter plot below, choosing appropriate scales and labels.

MPM1D Scatterplot Assignment A. Test the hypothesis: The older you are, the more money you earn. Plot the data on the scatter plot below, choosing appropriate scales and labels. Age Earnings (\$) 25 22000

### Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

### the Median-Medi Graphing bivariate data in a scatter plot

the Median-Medi Students use movie sales data to estimate and draw lines of best fit, bridging technology and mathematical understanding. david c. Wilson Graphing bivariate data in a scatter plot and drawing

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### WEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y 7.1 1 8.92 X 10.0 0.0 16.0 10.0 1.6

WEB APPENDIX 8A Calculating Beta Coefficients The CAPM is an ex ante model, which means that all of the variables represent before-thefact, expected values. In particular, the beta coefficient used in

### Interpreting Residuals from a Line

Interpreting Residuals from a Line The gestation time for an animal is the typical duration between conception and birth. The longevity of an animal is the typical lifespan for that animal. The gestation

### Topic 4: Lines of Best Fit pen & paper methods

Topic 4: Lines of Best Fit pen & paper methods Let s use an example to illustrate the two methods to be discussed. A shopkeeper records the daily temperature ( C) and the number of cans of soft drink sold

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### Dealing with Data in Excel 2010

Dealing with Data in Excel 2010 Excel provides the ability to do computations and graphing of data. Here we provide the basics and some advanced capabilities available in Excel that are useful for dealing

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### hp calculators HP 50g Trend Lines The STAT menu Trend Lines Practice predicting the future using trend lines

The STAT menu Trend Lines Practice predicting the future using trend lines The STAT menu The Statistics menu is accessed from the ORANGE shifted function of the 5 key by pressing Ù. When pressed, a CHOOSE

### Elementary Statistics Sample Exam #3

Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to

Using Your TI-83/84 Calculator: Linear Correlation and Regression Elementary Statistics Dr. Laura Schultz This handout describes how to use your calculator for various linear correlation and regression