How To Solve A Problem Of Torque And Shear Stress

Size: px
Start display at page:

Download "How To Solve A Problem Of Torque And Shear Stress"

Transcription

1 ENGINEERING COUNCI IPOMA EVE MECHANICS OF SOIS 20 TUTORIA 10 - TORSION You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following. erive the torsion equation erive polar second moment of area. Solve problems involving torque, shear stress and angle of twist. erive the formula for the power transmitted by a shaft Relate power transmission to torsion. Outline the method of solution for rectangular cross sections. Solve problems with shafts of rectangular cross section. It is assumed that students doing this tutorial are already familiar with the concepts of second moments of area and shear stress..j.unn 1

2 1. TORSION OF SHAFTS Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines, motors and turbines) or stationary (such as with a bolt or screw). The torque makes the shaft twist and one end rotates relative to the other inducing shear stress on any cross section. Failure might occur due to shear alone or because the shear is accompanied by stretching or bending TORSION EQUATION The diagram shows a shaft fixed at one end and twisted at the other end due to the action of a torque T. The radius of the shaft is R and the length is. Figure 1 Imagine a horizontal radial line drawn on the end face. When the end is twisted, the line rotates through an angle. The length of the arc produced is R. Now consider a line drawn along the length of the shaft. When twisted, the line moves through an angle. The length of the arc produced is. If we assume that the two arcs are the same it follows that R = Rθ Hence by equating = R we get γ...(1a) If you refer to basic stress and strain theory, you will appreciate that is the shear strain on the outer surface of the shaft. The relationship between shear strain and shear stress is G...(1B) γ is the shear stress and G the modulus of rigidity. G is one of the elastic constants of a material. The equation is only true so long as the material remains elastic. Gθ Substituting (1A) into (1B) we get...(1c) R Since the derivation could be applied to any radius, it follows that shear stress is directly proportional to radius 'r' and is a maximum on the surface. Equation (1C) could be written as Gθ...(1) r Now let's consider how the applied torque 'T' is balanced by the internal stresses of the material..j.unn freestudy.co.uk 2

3 Consider an elementary ring of material with a shear stress acting on it at radius r. The area of the ring is da = 2 r dr The shear force acting on it tangential is df = da = 2r dr This force acts at radius r so the torque produced is dt = 2r2 dr Gθ r Gθ Since from equation (1) then dt 2π r dr The torque on the whole cross section resulting from the shear stress is The expression reduces to Gθ T 2π R 0 r dr Figure 2 R 2π r dr is called the polar second moment of area and denoted as 'J'. The Torque equation 0 Gθ T J and this is usually written as Combining (1) and (1E) we get the torsion equation 1.2 POAR SECON MOMENTS OF AREA T Gθ...(1E) J T Gθ...(1F) J r This tutorial only covers circular sections. The formula for J is found by carrying out the integration or may be found in standard tables. π For a shaft of diameter the formula is J 2 This is not to be confused with the second moment of area about a diameter, used in bending of beams (I) but it should be noted that J = 2 I. WORKE EXAMPE No.1 A shaft 50 mm diameter and 0.7 m long is subjected to a torque of 1200 Nm. Calculate the shear stress and the angle of twist. Take G = 0 GPa. Important values to use are = 0.05 m, = 0.7 m, T = 1200 Nm, G = 0 x10 Pa π π x J 1.5 x 10 m 2 2 TR 1200 x max 8.8 x 10 Pa or 8.8 MPa - J 1.5 x 10 T 1200 x 0.7 θ radian - J 0 x 10 x 1.5 x x 10 x 0.7 Alternately θ radian GR 0 x 10 x o Converting to degrees θ x J.unn freestudy.co.uk

4 1. HOOW SHAFTS Since the shear stress is small near the middle, then if there are no other stress considerations other than torsion, a hollow shaft may be used to reduce the weight. π d The formula for the polar second moment of area is J. 2 is the outside diameter and d the inside diameter. WORKE EXAMPE No.2 Repeat the previous problem but this time the shaft is hollow with an internal diameter of 0 mm. π d π x J 5.07 x 10 m 2 2 TR 1200 x max 5.17 x 10 Pa or 5.17 MPa - J 5.07 x 10 T 1200 x 0.7 θ radian - J 0 x 10 x 5.07 x x 10 x 0.7 Alternately θ radian GR 0 x 10 x o Converting to degrees θ x 1 Note that the answers are nearly the same even though there is much less material in the shaft. WORKE EXAMPE No. A shaft 0 mm diameter is made from steel and the maximum allowable shear stress for the material is 50 MPa. Calculate the maximum torque that can be safely transmitted. Take G = 0 GPa. Important values to use are: = 0.0 m, R = 0.02 m, = 50 x10 Pa and G = 0 x10 Pa T Gθ J r π π x J x 10 m 2 2 T Gθ The complete torsion equation is Rearrange and ignore the middle term. J R - max J 50 x 10 x x 10 T 28. Nm R 0.02.J.unn freestudy.co.uk

5 SEF ASSESSMENT EXERCISE No.1 1. A shaft is made from tube 25 mm outer diameter and 20 mm inner diameter. The shear stress must not exceed 150 MPa. Calculate the maximum torque that should be placed on it. (Ans Nm). 2. A shaft is made of solid round bar 0 mm diameter and 0.5 m long. The shear stress must not exceed 200 MPa. Calculate the following. i. The maximum torque that should be transmitted. ii. The angle of twist which will occur. Take G = 0 GPa. (Ans. 100 Nm and.2o) 1. MECHANICA POWER TRANSMISSION BY A SHAFT In this section you will derive the formula for the power transmitted by a shaft and combine it with torsion theory. Mechanical power is defined as work done per second. Work done is defined as force times distance moved. Hence P = Fx/t where P is the Power F is the force x is distance moved. t is the time taken. Since distance moved/time taken is the velocity of the force we may write P = F v...(2a) where v is the velocity. When a force rotates at radius R it travels one circumference in the time of one revolution. Hence the distance moved in one revolution is x = 2R If the speed is N rev/second then the time of one revolution is 1/N seconds. The mechanical power is hence P = F 2R/(1/N) = 2NFR Since FR is the torque produced by the force this reduces to P = 2NT...(2B) Since 2N is the angular velocity radians/s it further reduces to P = T...(2C) Note that equations (2C) is the angular equivalent of equation (2A) and all three equations should be remembered..j.unn freestudy.co.uk 5

6 WORKE EXAMPE No. A shaft is made from tube. The ratio of the inside diameter to the outside diameter is 0.. The material must not experience a shear stress greater than 500 kpa. The shaft must transmit 1.5 MW of mechanical power at 1500 rev/min. Calculate the shaft diameters. The important quantities are P = 1.5 x 10 Watts, = 500 x 10 Pa, N = 1500 rev/min and d = 0.. N 1500 rev/min 1500/0 25 rev/s P 2 π N T hence T π J T J d π 0. π 0. R 2 P 2π N x Nm 2π x 25 hence x 500 x m 81. mm x 2 x 500 x 10 d mm SEF ASSESSMENT EXERCISE No.2 1. A shaft is made from tube 25 mm outer diameter and 20 mm inner diameter. The shear stress must not exceed 150 MPa. Calculate the maximum power that should be transmitted at 500 rev/min. (Ans kw) 2. A shaft must transmit 20 kw of power at 00 rev/min. The shear stress must not exceed 150 MPa. Calculate a suitable diameter. (Ans.27.8 mm) A steel shaft 5 m long, having a diameter of 50 mm, is to transmit power at a rotational speed of 00 rev/min. If the maximum shear stress is limited to 0MN/m2. etermine the following. (i) The maximum power that can be transmitted. (2.5 kw) (ii) The corresponding angle of twist. (8.5o) Assume the modulus of rigidity for steel is 80 GN/m2.. A hollow steel shaft with a diameter ratio of 0.75 and a length of m is required to transmit 1 MW at 120 rev/min. The maximum shear stress is not to exceed 70 MN/m2 nor is the overall angle of twist to exceed 1.75o. etermine the following. (i) The necessary outside diameter of the shaft so that both of the above limitations are satisfied. (222 mm) (ii) The actual maximum shear stress and the actual angle of twist. (1.75o) Assume the modulus of rigidity for steel is 80 GPa.J.unn freestudy.co.uk

7 2 TORSION OF NON CIRCUAR SECTIONS Shear stress cannot act in a direction normal to a free surface. It follows that at a corner the shear stress is zero. A way of visualising the shear stress over a section is found by the use of the elastic membrane analogy. Imagine a hollow section with the same dimensions covered in a thin elastic membrane. The inside is then pressurised so that the membrane expands. The shape obtained for a rectangle is like this. Figure The gradient of the membrane represents the shear stress and this is zero in the corners, zero in the centre and a maximum at the centre of the longest edge. This theory also works with other shapes such as a tee section. RECTANGUAR SECTIONS Figure Without proof the following formulae are offered based on various sources. The maximum shear stress in a rectangular section is T max and it occurs at the mid point of the longest 2 αb edge. T The angle of twist is θ is the length of the βb G shaft. Figure 5 α and β are figures that depend on the ratio of the dimensions and are given by the following formulae. 1 K α β 1.8/n 1 n = B/ Here is a table based on these formulae. n n 12n n 1.0 (square) α β Note that as the ratio n increases the values of α and β tend towards a value of 1/ and for ratios larger than 10 this figure is used..j.unn freestudy.co.uk 7

8 Some sources use a constant called the apparent polar second moment of area K which for a rectangle is 1 1 K B If B = n, K n B 12 B 1 n 12n n 1 1 When n is large K When square n = 1 and K n = B/ 1.0 (square) K Another source gives the maximum shear stress as: TB 1.8.8T m For a square B = 2 2 m which is consistent with the previous work. B T The same source gives the angle of twist as θ KG 7.1T For a square θ and this is consistent with the previous work. G WORKE EXAMPE No.5 Calculate the maximum shear stress and angle of twist for a square shaft 50 mm side and 1 m long when it transmits a torque of 000 Nm. The modulus of rigidity is 8 GPa.8T.8 x MPa 0.05 m 7.1T θ G 7.1x 000 x x 8 x 10 o 0.01radian or 2.5 WORKE EXAMPE No. Calculate the maximum shear stress and angle of twist for a rectangular shaft 0 mm x 20 mm and long when it transmits a torque of 000 Nm. The modulus of rigidity is 8 GPa 1 m K B x B 12 B 0 TB x x 0.02 m 50 MPa B T 000 x 1 o θ or 1.8 KG 12. x 10 x 8 x x 10.J.unn freestudy.co.uk 8

9 SEF ASSESSMENT EXERCISE No. 1. Calculate the maximum shear stress and angle of twist for a rectangular shaft 1 m long and section 0 mm x 0 mm when it transmits a torque of 200 Nm. The modulus of rigidity is 80 GPa (Answers 2 MPa and 0.7 o ) 2. Calculate the maximum shear stress and angle of twist for a rectangular shaft 1 m long and section 0 mm x 20 mm when it transmits a torque of 00 Nm. The modulus of rigidity is 80 GPa (Answers 0 MPa and 2. o ).J.unn freestudy.co.uk

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION ENGINEEING COUNCI CETIFICATE EVE ENGINEEING SCIENCE C10 TUTOIA - TOSION You should judge your progress by completing the self assessment exercises. These may be sent for marking or you may request copies

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles.

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. On completion of this tutorial you should be able to

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there

More information

SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE

SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE This work coers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems C10 Engineering Science. This tutorial examines

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas. MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

More information

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi. SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

More information

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

SHAFTS: TORSION LOADING AND DEFORMATION

SHAFTS: TORSION LOADING AND DEFORMATION ECURE hird Edition SHAFS: ORSION OADING AND DEFORMAION A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 6 Chapter 3.1-3.5 by Dr. Ibrahim A. Assakkaf SPRING 2003 ENES 220

More information

Module 5 Couplings. Version 2 ME, IIT Kharagpur

Module 5 Couplings. Version 2 ME, IIT Kharagpur Module 5 Couplings Lesson 1 Introduction, types and uses Instructional Objectives At the end of this lesson, the students should have the knowledge of The function of couplings in machinery. Different

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference. FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 3 HYDRAULIC AND PNEUMATIC MOTORS The material needed for outcome 2 is very extensive

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes) Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

Highly flexible couplings

Highly flexible couplings Construction and operation 8.03.00 Instructions for installation 8.03.00 Types of stress 8.04.00 Diagrams for static deformation of the coupling ring 8.05.00 Coupling size 8.07.00 Examples of combinations

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

9 Area, Perimeter and Volume

9 Area, Perimeter and Volume 9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder

Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A

More information

SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

HPF Hollow Shaft Unit Type

HPF Hollow Shaft Unit Type HPF Hollow Shaft Size Model: 25, 32 Peak torque Model: 25= 100 Nm Model: 32 = 220 Nm Small backlash Standard: 3 min. or less Types Reduction ratio 1 11 Inside diameter of the hollow shaft Model: 25 = 25

More information

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

Gear Trains. Introduction:

Gear Trains. Introduction: Gear Trains Introduction: Sometimes, two or more gears are made to mesh with each other to transmit power from one shaft to another. Such a combination is called gear train or train of toothed wheels.

More information

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial

More information

ME 111: Engineering Drawing

ME 111: Engineering Drawing ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

ME 343: Mechanical Design-3

ME 343: Mechanical Design-3 ME 343: Mechanical Design-3 Design of Shaft (continue) Dr. Aly Mousaad Aly Department of Mechanical Engineering Faculty of Engineering, Alexandria University Objectives At the end of this lesson, we should

More information

SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM

SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM This work covers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems, C05 Mechanical and

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular

More information

16 Circles and Cylinders

16 Circles and Cylinders 16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

Lab for Deflection and Moment of Inertia

Lab for Deflection and Moment of Inertia Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #

More information

Removing chips is a method for producing plastic threads of small diameters and high batches, which cause frequent failures of thread punches.

Removing chips is a method for producing plastic threads of small diameters and high batches, which cause frequent failures of thread punches. Plastic Threads Technical University of Gabrovo Yordanka Atanasova Threads in plastic products can be produced in three ways: a) by direct moulding with thread punch or die; b) by placing a threaded metal

More information

Electric Motors and Drives

Electric Motors and Drives EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Shaft- Mounted Speed Reducers

Shaft- Mounted Speed Reducers Torque Arm Design Considerations for Todd R. Bobak has worked in the gear industry for 15 years. He has held positions in technical service, design and development, and quality assurance. He is a product

More information

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels

AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels AISI No. 1008 1010 1012 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 10 1026 1027 1029 10 1035 1036 1037 1038 1039 10 1041 1042 1043

More information

SIMRAD SD10 Sailboat Drive

SIMRAD SD10 Sailboat Drive INSTALLATION MANUAL SIMRAD SD10 Sailboat Drive 20222683/A English Simrad SD10 Sailboat Drive About this document Rev. A First issue 2007 Navico AS. All rights reserved. No part of this work covered by

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS 1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

More information

Math 1B, lecture 5: area and volume

Math 1B, lecture 5: area and volume Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

More information

Chapter. 4 Mechanism Design and Analysis

Chapter. 4 Mechanism Design and Analysis Chapter. 4 Mechanism Design and Analysis 1 All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Tips For Selecting DC Motors For Your Mobile Robot

Tips For Selecting DC Motors For Your Mobile Robot Tips For Selecting DC Motors For Your Mobile Robot By AJ Neal When building a mobile robot, selecting the drive motors is one of the most important decisions you will make. It is a perfect example of an

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

7.3 Fit selection. Inner ring: Rotating. Outer ring: Stationary. Inner ring: Stationary. Outer ring: Rotating. Inner ring: Stationary

7.3 Fit selection. Inner ring: Rotating. Outer ring: Stationary. Inner ring: Stationary. Outer ring: Rotating. Inner ring: Stationary 7. Bearing Fits 7. Fitting For rolling s, inner and outer rings are fixed on the or in the housing so that relative movement does not occur between fitting surfaces during operation or under. This relative

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Technical Data. 7. Bearing Fits. 7.1 Interference. 7.2 Calculation of interference F B LLLLLLLLL( A-54

Technical Data. 7. Bearing Fits. 7.1 Interference. 7.2 Calculation of interference F B LLLLLLLLL( A-54 Technical Data 7. Bearing Fits 7.1 Interference For rolling s the rings are fixed on the or in the housing so that slip or movement does not occur between the mated surface during operation or under. This

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information