Evolutionary Computation: introduction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Evolutionary Computation: introduction"

Transcription

1 Evolutionary Computation: introduction Dirk Thierens Universiteit Utrecht The Netherlands Dirk Thierens (Universiteit Utrecht) EC Introduction 1 / 44 What? Evolutionary Computation Evolutionary Computation = Population-based, stochastic search algorithms based on the mechanisms of natural evolution Evolution viewed as search algorithm or problem solver. Natural evolution only used as metaphor for designing computational systems ($ evolutionary biology). Dirk Thierens (Universiteit Utrecht) EC Introduction 2 / 44

2 Evolutionary Computation Why? Example: NASA ST5 spacecraft antenna This complicated shape was found by an evolutionary computer design program to create the best radiation pattern. Dirk Thierens (Universiteit Utrecht) EC Introduction 3 / 44 Evolutionary Computation Darwinian process characteristics 5 Key requirements of a Darwinian system 1 Structures: Information 2 Structures are copied 3 Copies partially vary from the original: Inheritance 4 Structures are competing for a limited resource: Selection 5 Relative reproductive success depends on the environment: Survival of the Fittest Dirk Thierens (Universiteit Utrecht) EC Introduction 4 / 44

3 Evolutionary Computation Darwinian process characteristics in EC 1 Structures ) e.g. binary strings, real-valued vectors, programs,... 2 Structures are copied ) selection algorithm: e.g. tournament selection,... 3 Copies partially vary from the original ) mutation & crossover operators 4 Structures are competing for a limited resource ) selecting fixed sized parent pool 5 Reproductive success depends on environment ) user defined fitness function Dirk Thierens (Universiteit Utrecht) EC Introduction 5 / 44 Evolutionary Computation Dirk Thierens (Universiteit Utrecht) EC Introduction 6 / 44

4 Genetic Algorithm GAs: structures = discrete representations. Neo-Darwinism...AUUCGCCAAU... ) organism Genetic Algorithm ) F( ) 2< User: String representation and function F GA: string manipulation selection: copy better strings variation: generate new strings Dirk Thierens (Universiteit Utrecht) EC Introduction 7 / 44 Selection methods Genetic Algorithm Proportionate Selection Probability individual i selected: f i P fj (f i : fitness ind. i ; j: 1! N) Expected number of copies of ind. i : f i P fj.n = f i f (t) (N: population size) Disadvantages: 1 An initial solution might be a lot better than the rest by chance and will be selected too often ) loss of diversity! 2 When population starts to convergence to similar solutions the selection pressure disappears. Dirk Thierens (Universiteit Utrecht) EC Introduction 8 / 44

5 Genetic Algorithm Ranked based selection methods Selection based on relative fitness rather than absolute fitness values. Truncation selection Sort population based on fitness. Select the top %. Copy each selected solution 100 times. Tournament selection Randomly select (with replacement) Select the best of these Hold N tournaments. solutions. solutions. (N = population size) Dirk Thierens (Universiteit Utrecht) EC Introduction 9 / 44 Variation methods Genetic Algorithm Mutation { } ) { } Crossover 2-point crossover: uniform crossover: ) ) Dirk Thierens (Universiteit Utrecht) EC Introduction 10 / 44

6 Toy example Genetic Algorithm x [0, 31] : f (x) =x 2 binary integer representation: x i {0, 1} x = x x x x x Initial Random Population: : 18 2 = : 12 2 = : 9 2 = : 20 2 = : 8 2 = : 7 2 = 49 population mean fitness f (0) = 177 Dirk Thierens (Universiteit Utrecht) EC Introduction 11 / 44 Genetic Algorithm Generation 1: tournament selection ( = 2), 1-point crossover, mutation Parents Fitness Offspring Fitness 100! ! ! ! ! ! Parent population mean fitness f (1) =383 Dirk Thierens (Universiteit Utrecht) EC Introduction 12 / 44

7 Genetic Algorithm Generation 3: Parents Fitness Offspring Fitness 1! ! ! ! ! ! Parent population mean fitness f (3) =762 Dirk Thierens (Universiteit Utrecht) EC Introduction 13 / 44 Permutation Representation Traveling salesman problem Find the shortest route while visiting all cities exactly once. Dirk Thierens (Universiteit Utrecht) EC Introduction 14 / 44

8 Permutation Representation Permutation problems Solutions are permutations of a set of elements. Tour representation: list of cities? I p1 = I p2 = I simple crossover ) illegal tours I c1 = I c2 = Need suitable representations and genetic operators for permutation problems. Dirk Thierens (Universiteit Utrecht) EC Introduction 15 / 44 Mutation Permutation Representation Swap mutation parent A B C D E F G H I swap -? - -? child A E C D B F G H I Randomly select and swap 2 elements. Dirk Thierens (Universiteit Utrecht) EC Introduction 16 / 44

9 Permutation Representation Crossover Cycle crossover parent 1 A B C D E F G H I parent 2 f e d a b c h i g cycles child A e C D b F h i g Mark and randomly recombine elements in a cycle set. Dirk Thierens (Universiteit Utrecht) EC Introduction 17 / 44 Permutation Representation Permutation problems Permutation problems have different characteristics: adjacency relative order absolute order Cycle crossover emphasizes absolute position above adjacency or relative order. TSP problems: adjacency only aspect that counts. Dirk Thierens (Universiteit Utrecht) EC Introduction 18 / 44

10 Edge recombination Permutation Representation Edge map: Table of all cities with their direct neighbors in both parents. edge map: Two parent tours [ABCDEF] & [BDCAEF] city A B C D E F edges BFCE ACDF BD A C EB DF A AE B : common edge of both parents Dirk Thierens (Universiteit Utrecht) EC Introduction 19 / 44 Permutation Representation Edge recombination algorithm 1 Choose initial city from one parent. 2 Remove current city from edge map. 3 If current city has remaining edges: goto step 4. else goto step 5. 4 Choose from current city a common edge, if none present choose the city with fewest remaining edges (ties broken randomly). 5 If still remaining cities, choose one with fewest remaining edges. Dirk Thierens (Universiteit Utrecht) EC Introduction 20 / 44

11 Permutation Representation 1 random choice ) B 2 next candidates: A C D F choose from C D F (same edge number) ) D 3 next candidates: C E (C is a common edge) ) C 4 next candidate: A ) A 5 next candidates: F E (same edge number) ) F 6 next candidate: E ) E Resulting tour = [BDCAFE]. Dirk Thierens (Universiteit Utrecht) EC Introduction 21 / 44 Permutation Representation Properties Parent tours: [ABCDEF] &[BDCAEF]. Child tour = [BDCAFE]. Common edges in the parents are inherited: CD and EF. Most edges in the child tour are inherited from (at least) one of the parent tours. Dirk Thierens (Universiteit Utrecht) EC Introduction 22 / 44

12 Permutation Representation Fitness correlation coefficients What variation operator is most suitable for a given problem? Genetic operators should preserve useful fitness characteristics between parents and offspring = inheritance. Calculate the fitness correlation coefficient to quantify this. Operator fitness correlation coefficient op : op = cov(f p, F c ) (F p ) (F c ) Dirk Thierens (Universiteit Utrecht) EC Introduction 23 / 44 Permutation Representation Fitness correlation coefficients K-ary operator: generate n sets of k parents. ) {f (p g1 ), f (p g2 ),...,f (p gn } Apply operator to each set to create children. ) {f (c g1 ), f (c g2 ),...,f (c gn } F p : mean fitness of the parents F c : mean fitness of the children (F p ) = standard deviation of fitness parents (F c ) = standard deviation of fitness children cov(f p, F c )= P n (f (p gi ) F p )(f (c gi ) F c ) i=1 n covariance between fitness parents and fitness children Dirk Thierens (Universiteit Utrecht) EC Introduction 24 / 44

13 Permutation Representation Traveling Salesman problem: crossover operators For TSP edge crossover (EX) gives better results than cycle crossover (CX). This performance difference is reflected in the crossover correlation coefficients cross : EX 0.90 CX 0.57 Dirk Thierens (Universiteit Utrecht) EC Introduction 25 / 44 Dirk Thierens (Universiteit Utrecht) EC Introduction 26 / 44

14 Evolving a Checkers Player Can we build intelligent systems to learn to play checkers? No expert knowledge provided to the learning system. Programs simply have to play against themselves, and figure out how to play. Evolutionary computation feasible approach? Dirk Thierens (Universiteit Utrecht) EC Introduction 27 / 44 Game playing Board representation Move search: minimax algorithm Traditional game playing programs: board evaluation functions are extensively knowledge based 1 weighted feature function 2 opening games 3 end games table look-up ) they do not learn by themselves! Here: Evolving Neural Networks to Play Checkers Dirk Thierens (Universiteit Utrecht) EC Introduction 28 / 44

15 Board representation Output 2 [ ] -1: loss positions +1: win positions! closer to +1 ) better evaluations Input: vector of 32 possible positions, 5 possible values 1 - K : king opponent 2-1 : checker opponent 3 0 : empty : checker self 5 + K : king self K 2 [1...3] : exact value evolved Dirk Thierens (Universiteit Utrecht) EC Introduction 29 / 44 Mini-Max algorithm Dirk Thierens (Universiteit Utrecht) EC Introduction 30 / 44

16 Game lookahead The further we can lookahead the better. Computational restrictions: number of possible board positions grows very fast with increasing number of lookahead levels. Deep Blue when defeating chess champion Garry Kasparov made 200 million chess board evaluations per second! Here only lookahead search of 2 moves each side when evolving. When testing against players on Internet: lookahead search of 3 moves each side. Dirk Thierens (Universiteit Utrecht) EC Introduction 31 / 44 Board Evaluation Evaluation function represented by an artificial neural network Dirk Thierens (Universiteit Utrecht) EC Introduction 32 / 44

17 Neural Network Architecture Input Layer: 32 inputs First hidden layer: 40 neurons Second hidden layer: 10 neurons Direct input-output connections with weight 1.0 Total number of neural network weights (incl. bias term) = (32 + 1) x 40 + (40 + 1) x 10 + (10 + 1) x 1 = 1741 Need to determine values for the 1741 weights + Use evolutionary algorithm to co-evolve the weights Dirk Thierens (Universiteit Utrecht) EC Introduction 33 / 44 Evolutionary search for network weights Mutate neural network weights by adding a small random, Gaussian distributed number to each weight. Each weight has its own Gaussian distribution (different widths or standard deviations). The width or variance of each Gaussian distribution also evolves by mutation. For each neural network NN i all the N w (= 1741) neural network weights w i (j) (j = 1...N w ) gets associated with the corresponding standard deviation i (j) (j = 1...N w ) of the Gaussian mutation distribution (mean value is always zero). Dirk Thierens (Universiteit Utrecht) EC Introduction 34 / 44

18 Self-adaptive Mutation First mutate the N w widths of the Gaussian distributions, then mutate the N w weights (j = 1...N w ): Self-adaptive mutation of the mutation step-size: 0 i (j) = i(j) exp( RandNorm j(0,1) p2 p N w ) Mutation of the neural network weights: w 0 i (j) =w i(j)+ 0 i (j)randnorm j(0, 1) Dirk Thierens (Universiteit Utrecht) EC Introduction 35 / 44 Evolutionary Cycle Dirk Thierens (Universiteit Utrecht) EC Introduction 36 / 44

19 Fitness evaluation 15 parents + 15 offspring neural networks Each NN competes against 5 randomly chosen NN Score: win : + 1; draw : 0; loss : -2 Fitness: sum of scores Dirk Thierens (Universiteit Utrecht) EC Introduction 37 / 44 Darwinian system? 1 Structures?! neural networks 2 Structures are copied?! 15 parents ) 15 offspring 3 Copies partially vary from the original! weights Gaussian mutated 4 Structures are competing for a limited resource! fixed population size each generation 5 Reproductive success depends on environment! winning strategies survive Dirk Thierens (Universiteit Utrecht) EC Introduction 38 / 44

20 Experiment total of 250 generations evolved 15 neural networks each generation ) 15 x 250 = 3750 neural networks created fitness evaluation: 15 parents + 15 offspring: each competing against 5 others ) 30 x 5 x 250 = games played Dirk Thierens (Universiteit Utrecht) EC Introduction 39 / 44 Checkers Rating Dirk Thierens (Universiteit Utrecht) EC Introduction 40 / 44

21 Evolved neural network rating: 1902 Dirk Thierens (Universiteit Utrecht) EC Introduction 41 / 44 1 draw against player rated 2207, ie. master level, ranked 18 out of listed players Dirk Thierens (Universiteit Utrecht) EC Introduction 42 / 44

22 Discussion Chinook: opening games, end games table look-up, hand-crafted evaluation function Deep Blue: 200 million board evaluations per second vs here Payoff: summed score over 5 games! no immediate feedback about winning or losing a single game Input to neural networks do not give spatial information: only 1 x 32 vector of {-K,-1,0,1,K} Allen Newell: It is extremely doubtful whether there is enough information in win, lose, or draw when referred to the whole play of the game to permit any learning at all over available time scales Dirk Thierens (Universiteit Utrecht) EC Introduction 43 / 44 Conclusion Building intelligent systems by evolutionary computing. Learn to play checkers at high level by competing against themselves. No tedious domain knowledge extraction. Learning by evolution: feasible approach. Dirk Thierens (Universiteit Utrecht) EC Introduction 44 / 44

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods

More information

Introduction To Genetic Algorithms

Introduction To Genetic Algorithms 1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization

More information

Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms

Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms Lab 4: 26 th March 2012 Exercise 1: Evolutionary algorithms 1. Found a problem where EAs would certainly perform very poorly compared to alternative approaches. Explain why. Suppose that we want to find

More information

Genetic Algorithms. Part 2: The Knapsack Problem. Spring 2009 Instructor: Dr. Masoud Yaghini

Genetic Algorithms. Part 2: The Knapsack Problem. Spring 2009 Instructor: Dr. Masoud Yaghini Genetic Algorithms Part 2: The Knapsack Problem Spring 2009 Instructor: Dr. Masoud Yaghini Outline Genetic Algorithms: Part 2 Problem Definition Representations Fitness Function Handling of Constraints

More information

Genetic Algorithms and Sudoku

Genetic Algorithms and Sudoku Genetic Algorithms and Sudoku Dr. John M. Weiss Department of Mathematics and Computer Science South Dakota School of Mines and Technology (SDSM&T) Rapid City, SD 57701-3995 john.weiss@sdsmt.edu MICS 2009

More information

Alpha Cut based Novel Selection for Genetic Algorithm

Alpha Cut based Novel Selection for Genetic Algorithm Alpha Cut based Novel for Genetic Algorithm Rakesh Kumar Professor Girdhar Gopal Research Scholar Rajesh Kumar Assistant Professor ABSTRACT Genetic algorithm (GA) has several genetic operators that can

More information

COMP-424: Artificial intelligence. Lecture 7: Game Playing

COMP-424: Artificial intelligence. Lecture 7: Game Playing COMP 424 - Artificial Intelligence Lecture 7: Game Playing Instructor: Joelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp424 Unless otherwise noted, all material posted

More information

New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem

New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem Radovic, Marija; and Milutinovic, Veljko Abstract One of the algorithms used for solving Traveling Salesman

More information

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 Transistor Level Fault Finding in VLSI Circuits using Genetic Algorithm Lalit A. Patel, Sarman K. Hadia CSPIT, CHARUSAT, Changa., CSPIT, CHARUSAT, Changa Abstract This paper presents, genetic based algorithm

More information

Asexual Versus Sexual Reproduction in Genetic Algorithms 1

Asexual Versus Sexual Reproduction in Genetic Algorithms 1 Asexual Versus Sexual Reproduction in Genetic Algorithms Wendy Ann Deslauriers (wendyd@alumni.princeton.edu) Institute of Cognitive Science,Room 22, Dunton Tower Carleton University, 25 Colonel By Drive

More information

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,

More information

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm 24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic

More information

Evolutionary SAT Solver (ESS)

Evolutionary SAT Solver (ESS) Ninth LACCEI Latin American and Caribbean Conference (LACCEI 2011), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011,

More information

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers

More information

Introduction to Genetic Programming

Introduction to Genetic Programming Introduction to Genetic Programming Matthew Walker October 7, 2001 1 The Basic Idea Genetic Programming (GP) is a method to evolve computer programs. And the reason we would want to try this is because,

More information

Selection Procedures for Module Discovery: Exploring Evolutionary Algorithms for Cognitive Science

Selection Procedures for Module Discovery: Exploring Evolutionary Algorithms for Cognitive Science Selection Procedures for Module Discovery: Exploring Evolutionary Algorithms for Cognitive Science Janet Wiles (j.wiles@csee.uq.edu.au) Ruth Schulz (ruth@csee.uq.edu.au) Scott Bolland (scottb@csee.uq.edu.au)

More information

New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers

New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers Proceedings of the 5th WSEAS Int Conf on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 0-, 006 363 New binary representation in Genetic Algorithms for solving

More information

Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com

Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com Neural Network and Genetic Algorithm Based Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com Consider the challenge of constructing a financial market trading system using commonly available technical

More information

Why Machine Learning and Games? Machine Learning in Video Games. Machine Learning in Online Games. The Path of Go Conclusions

Why Machine Learning and Games? Machine Learning in Video Games. Machine Learning in Online Games. The Path of Go Conclusions Why Machine Learning and Games? Machine Learning in Video Games Drivatars Reinforcement Learning Machine Learning in Online Games TrueSkill Halo 3 The Path of Go Conclusions Test Beds for Machine Learning

More information

CSCI-8940: An Intelligent Decision Aid for Battlefield Communications Network Configuration

CSCI-8940: An Intelligent Decision Aid for Battlefield Communications Network Configuration CSCI-8940: An Intelligent Decision Aid for Battlefield Communications Network Configuration W.D. Potter Department of Computer Science & Artificial Intelligence Center University of Georgia Abstract The

More information

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes International Archive of Applied Sciences and Technology Volume 3 [2] June 2012: 47-57 ISSN: 0976-4828 Society of Education, India Website: www.soeagra.com/iaast/iaast.htm Original Article Efficient Genetic

More information

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.

More information

USING THE EVOLUTION STRATEGIES' SELF-ADAPTATION MECHANISM AND TOURNAMENT SELECTION FOR GLOBAL OPTIMIZATION

USING THE EVOLUTION STRATEGIES' SELF-ADAPTATION MECHANISM AND TOURNAMENT SELECTION FOR GLOBAL OPTIMIZATION 1 USING THE EVOLUTION STRATEGIES' SELF-ADAPTATION MECHANISM AND TOURNAMENT SELECTION FOR GLOBAL OPTIMIZATION EFRÉN MEZURA-MONTES AND CARLOS A. COELLO COELLO Evolutionary Computation Group at CINVESTAV-IPN

More information

Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies

Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

NEUROEVOLUTION OF AUTO-TEACHING ARCHITECTURES

NEUROEVOLUTION OF AUTO-TEACHING ARCHITECTURES NEUROEVOLUTION OF AUTO-TEACHING ARCHITECTURES EDWARD ROBINSON & JOHN A. BULLINARIA School of Computer Science, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK e.robinson@cs.bham.ac.uk This

More information

Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms

Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms Symposium on Automotive/Avionics Avionics Systems Engineering (SAASE) 2009, UC San Diego Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms Dipl.-Inform. Malte Lochau

More information

Skill-based Resource Allocation using Genetic Algorithms and Ontologies

Skill-based Resource Allocation using Genetic Algorithms and Ontologies Skill-based Resource Allocation using Genetic Algorithms and Ontologies Kushan Nammuni 1, John Levine 2 & John Kingston 2 1 Department of Biomedical Informatics, Eastman Institute for Oral Health Care

More information

Genetic Algorithm Performance with Different Selection Strategies in Solving TSP

Genetic Algorithm Performance with Different Selection Strategies in Solving TSP Proceedings of the World Congress on Engineering Vol II WCE, July 6-8,, London, U.K. Genetic Algorithm Performance with Different Selection Strategies in Solving TSP Noraini Mohd Razali, John Geraghty

More information

A Basic Guide to Modeling Techniques for All Direct Marketing Challenges

A Basic Guide to Modeling Techniques for All Direct Marketing Challenges A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview

More information

Cellular Automaton: The Roulette Wheel and the Landscape Effect

Cellular Automaton: The Roulette Wheel and the Landscape Effect Cellular Automaton: The Roulette Wheel and the Landscape Effect Ioan Hălălae Faculty of Engineering, Eftimie Murgu University, Traian Vuia Square 1-4, 385 Reşiţa, Romania Phone: +40 255 210227, Fax: +40

More information

Pool Play Brackets 3 TEAM POOL PLAY FORMAT. Game 1 1 vs. 2* Game 2 2 vs. 3* Game 3 3 vs. 1* Example 3 Team Pool Play 4 TEAM POOL PLAY FORMAT

Pool Play Brackets 3 TEAM POOL PLAY FORMAT. Game 1 1 vs. 2* Game 2 2 vs. 3* Game 3 3 vs. 1* Example 3 Team Pool Play 4 TEAM POOL PLAY FORMAT Pool Play Brackets Game 1 Game 2 Game 3 Team 1 Iowa Team 2 Kansas Team 3 Missouri Iowa vs. Kansas* Kansas vs. Missouri* Missouri vs. Iowa* Note: Games may be played in any order 3 TEAM POOL PLAY FORMAT

More information

Effect of Using Neural Networks in GA-Based School Timetabling

Effect of Using Neural Networks in GA-Based School Timetabling Effect of Using Neural Networks in GA-Based School Timetabling JANIS ZUTERS Department of Computer Science University of Latvia Raina bulv. 19, Riga, LV-1050 LATVIA janis.zuters@lu.lv Abstract: - The school

More information

Game Playing in the Real World. Next time: Knowledge Representation Reading: Chapter 7.1-7.3

Game Playing in the Real World. Next time: Knowledge Representation Reading: Chapter 7.1-7.3 Game Playing in the Real World Next time: Knowledge Representation Reading: Chapter 7.1-7.3 1 What matters? Speed? Knowledge? Intelligence? (And what counts as intelligence?) Human vs. machine characteristics

More information

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 60 CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 3.1 INTRODUCTION Optimal short-term hydrothermal scheduling of power systems aims at determining optimal hydro and thermal generations

More information

CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT

CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 77 CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 6.1 INTRODUCTION The idea of evolutionary computing was introduced by (Ingo Rechenberg 1971) in his work Evolutionary strategies.

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College

More information

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in Microeconomics-Charles W Upton Zero Sum Games

More information

College of information technology Department of software

College of information technology Department of software University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************

More information

Evolution, Natural Selection, and Adaptation

Evolution, Natural Selection, and Adaptation Evolution, Natural Selection, and Adaptation Nothing in biology makes sense except in the light of evolution. (Theodosius Dobzhansky) Charles Darwin (1809-1882) Voyage of HMS Beagle (1831-1836) Thinking

More information

Stock price prediction using genetic algorithms and evolution strategies

Stock price prediction using genetic algorithms and evolution strategies Stock price prediction using genetic algorithms and evolution strategies Ganesh Bonde Institute of Artificial Intelligence University Of Georgia Athens,GA-30601 Email: ganesh84@uga.edu Rasheed Khaled Institute

More information

GA as a Data Optimization Tool for Predictive Analytics

GA as a Data Optimization Tool for Predictive Analytics GA as a Data Optimization Tool for Predictive Analytics Chandra.J 1, Dr.Nachamai.M 2,Dr.Anitha.S.Pillai 3 1Assistant Professor, Department of computer Science, Christ University, Bangalore,India, chandra.j@christunivesity.in

More information

Solving the Vehicle Routing Problem with Genetic Algorithms

Solving the Vehicle Routing Problem with Genetic Algorithms Solving the Vehicle Routing Problem with Genetic Algorithms Áslaug Sóley Bjarnadóttir April 2004 Informatics and Mathematical Modelling, IMM Technical University of Denmark, DTU Printed by IMM, DTU 3 Preface

More information

A Robust Method for Solving Transcendental Equations

A Robust Method for Solving Transcendental Equations www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,

More information

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012 Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012 1 Content Complexity of a chess game History of computer chess Search trees

More information

A Fast Computational Genetic Algorithm for Economic Load Dispatch

A Fast Computational Genetic Algorithm for Economic Load Dispatch A Fast Computational Genetic Algorithm for Economic Load Dispatch M.Sailaja Kumari 1, M.Sydulu 2 Email: 1 Sailaja_matam@Yahoo.com 1, 2 Department of Electrical Engineering National Institute of Technology,

More information

INTRODUCTION TO NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS INTRODUCTION TO NEURAL NETWORKS Pictures are taken from http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html http://research.microsoft.com/~cmbishop/prml/index.htm By Nobel Khandaker Neural Networks An

More information

D A T A M I N I N G C L A S S I F I C A T I O N

D A T A M I N I N G C L A S S I F I C A T I O N D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.

More information

Evolutionary Detection of Rules for Text Categorization. Application to Spam Filtering

Evolutionary Detection of Rules for Text Categorization. Application to Spam Filtering Advances in Intelligent Systems and Technologies Proceedings ECIT2004 - Third European Conference on Intelligent Systems and Technologies Iasi, Romania, July 21-23, 2004 Evolutionary Detection of Rules

More information

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Journal of Software and Web Sciences (IJSWS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

IAI : Biological Intelligence and Neural Networks

IAI : Biological Intelligence and Neural Networks IAI : Biological Intelligence and Neural Networks John A. Bullinaria, 2005 1. How do Humans do Intelligent Things? 2. What are Neural Networks? 3. What are Artificial Neural Networks used for? 4. Introduction

More information

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem American Journal of Industrial and Business Management, 2016, 6, 774-789 Published Online June 2016 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2016.66071 A Study of Crossover

More information

A Review And Evaluations Of Shortest Path Algorithms

A Review And Evaluations Of Shortest Path Algorithms A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing

More information

Models for Discrete Variables

Models for Discrete Variables Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

More information

An Introduction to Neural Networks

An Introduction to Neural Networks An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

Data Matching Optimal and Greedy

Data Matching Optimal and Greedy Chapter 13 Data Matching Optimal and Greedy Introduction This procedure is used to create treatment-control matches based on propensity scores and/or observed covariate variables. Both optimal and greedy

More information

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN)

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) ISSN: 2278 1323 All Rights Reserved 2014 IJARCET 3910 A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) Miss: KIRTI JOSHI Abstract A Genetic Algorithm (GA) is an intelligent search

More information

Hybrid Evolution of Heterogeneous Neural Networks

Hybrid Evolution of Heterogeneous Neural Networks Hybrid Evolution of Heterogeneous Neural Networks 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001

More information

Artificial Intelligence Methods (G52AIM)

Artificial Intelligence Methods (G52AIM) Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Constructive Heuristic Methods Constructive Heuristics method Start from an empty solution Repeatedly, extend the current solution

More information

Measuring Entertainment and Automatic Generation of Entertaining Games

Measuring Entertainment and Automatic Generation of Entertaining Games Measuring Entertainment and Automatic Generation of Entertaining Games Zahid Halim Department of Computer Science National University of Computer and Emerging Sciences, Islamabad zahid.halim@nu.edu.pk

More information

A Novel Binary Particle Swarm Optimization

A Novel Binary Particle Swarm Optimization Proceedings of the 5th Mediterranean Conference on T33- A Novel Binary Particle Swarm Optimization Motaba Ahmadieh Khanesar, Member, IEEE, Mohammad Teshnehlab and Mahdi Aliyari Shoorehdeli K. N. Toosi

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

An Investigation into the use of Intelligent Systems for Currency Trading Analysis

An Investigation into the use of Intelligent Systems for Currency Trading Analysis An Investigation into the use of Intelligent Systems for Currency Trading Analysis Submitted in partial fulfilment of the requirements of the degree of Bachelor of Science (Honours) of Rhodes University

More information

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines Chapter 16 Evolution of Populations 16.1 Genes and Variation Biology Mr. Hines Figure 1-21 Levels of Organization Section 1-3 Levels of organization Biosphere Ecosystem The part of Earth that contains

More information

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes. 1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Adaptive Variable Step Size in LMS Algorithm Using Evolutionary Programming: VSSLMSEV

Adaptive Variable Step Size in LMS Algorithm Using Evolutionary Programming: VSSLMSEV Adaptive Variable Step Size in LMS Algorithm Using Evolutionary Programming: VSSLMSEV Ajjaiah H.B.M Research scholar Jyothi institute of Technology Bangalore, 560006, India Prabhakar V Hunagund Dept.of

More information

Comparative Study: ACO and EC for TSP

Comparative Study: ACO and EC for TSP Comparative Study: ACO and EC for TSP Urszula Boryczka 1 and Rafa l Skinderowicz 1 and Damian Świstowski1 1 University of Silesia, Institute of Computer Science, Sosnowiec, Poland, e-mail: uboryczk@us.edu.pl

More information

About the Author. The Role of Artificial Intelligence in Software Engineering. Brief History of AI. Introduction 2/27/2013

About the Author. The Role of Artificial Intelligence in Software Engineering. Brief History of AI. Introduction 2/27/2013 About the Author The Role of Artificial Intelligence in Software Engineering By: Mark Harman Presented by: Jacob Lear Mark Harman is a Professor of Software Engineering at University College London Director

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

Genetic Drift Simulation. Experimental Question: How do random events cause evolution (a change in the gene pool)?

Genetic Drift Simulation. Experimental Question: How do random events cause evolution (a change in the gene pool)? Genetic Drift Simulation Experimental Question: How do random events cause evolution (a change in the gene pool)? Hypothesis: Introduction: What is Genetic Drift? Let's examine a simple model of a population

More information

The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem

The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem Alex Rogers Adam Prügel-Bennett Image, Speech, and Intelligent Systems Research Group, Department of Electronics and Computer Science,

More information

SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER

SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER C.Sarada, K.Alivelu and Lakshmi Prayaga Directorate of Oilseeds Research, Rajendranagar, Hyderabad saradac@yahoo.com Self Organising mapping networks

More information

Introduction Solvability Rules Computer Solution Implementation. Connect Four. March 9, 2010. Connect Four

Introduction Solvability Rules Computer Solution Implementation. Connect Four. March 9, 2010. Connect Four March 9, 2010 is a tic-tac-toe like game in which two players drop discs into a 7x6 board. The first player to get four in a row (either vertically, horizontally, or diagonally) wins. The game was first

More information

Solving Timetable Scheduling Problem by Using Genetic Algorithms

Solving Timetable Scheduling Problem by Using Genetic Algorithms Solving Timetable Scheduling Problem by Using Genetic Algorithms Branimir Sigl, Marin Golub, Vedran Mornar Faculty of Electrical Engineering and Computing, University of Zagreb Unska 3, 1 Zagreb, Croatia

More information

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014 Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014 1 Content Complexity of a chess game Solving chess, is it a myth? History

More information

Random Map Generator v1.0 User s Guide

Random Map Generator v1.0 User s Guide Random Map Generator v1.0 User s Guide Jonathan Teutenberg 2003 1 Map Generation Overview...4 1.1 Command Line...4 1.2 Operation Flow...4 2 Map Initialisation...5 2.1 Initialisation Parameters...5 -w xxxxxxx...5

More information

Clustering Genetic Algorithm

Clustering Genetic Algorithm Clustering Genetic Algorithm Petra Kudová Department of Theoretical Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic ETID 2007 Outline Introduction Clustering Genetic

More information

Genetic Algorithm for Solving Simple Mathematical Equality Problem

Genetic Algorithm for Solving Simple Mathematical Equality Problem Genetic Algorithm for Solving Simple Mathematical Equality Problem Denny Hermawanto Indonesian Institute of Sciences (LIPI), INDONESIA Mail: denny.hermawanto@gmail.com Abstract This paper explains genetic

More information

Modified Version of Roulette Selection for Evolution Algorithms - the Fan Selection

Modified Version of Roulette Selection for Evolution Algorithms - the Fan Selection Modified Version of Roulette Selection for Evolution Algorithms - the Fan Selection Adam S lowik, Micha l Bia lko Department of Electronic, Technical University of Koszalin, ul. Śniadeckich 2, 75-453 Koszalin,

More information

Product Geometric Crossover for the Sudoku Puzzle

Product Geometric Crossover for the Sudoku Puzzle Product Geometric Crossover for the Sudoku Puzzle Alberto Moraglio Dept. of Computer Science University of Essex, UK amoragn@essex.ac.uk Julian Togelius Dept. of Computer Science University of Essex, UK

More information

Spatial Interaction Model Optimisation on. Parallel Computers

Spatial Interaction Model Optimisation on. Parallel Computers To appear in "Concurrency: Practice and Experience", 1994. Spatial Interaction Model Optimisation on Parallel Computers Felicity George, Nicholas Radcliffe, Mark Smith Edinburgh Parallel Computing Centre,

More information

Holland s GA Schema Theorem

Holland s GA Schema Theorem Holland s GA Schema Theorem v Objective provide a formal model for the effectiveness of the GA search process. v In the following we will first approach the problem through the framework formalized by

More information

Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province

Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province Ran Cao 1,1, Yushu Yang 1, Wei Guo 1, 1 Engineering college of Northeast Agricultural University, Haerbin, China

More information

Highway Maintenance Scheduling Using Genetic Algorithm with Microscopic Traffic Simulation

Highway Maintenance Scheduling Using Genetic Algorithm with Microscopic Traffic Simulation Wang, Cheu and Fwa 1 Word Count: 6955 Highway Maintenance Scheduling Using Genetic Algorithm with Microscopic Traffic Simulation Ying Wang Research Scholar Department of Civil Engineering National University

More information

6 Creating the Animation

6 Creating the Animation 6 Creating the Animation Now that the animation can be represented, stored, and played back, all that is left to do is understand how it is created. This is where we will use genetic algorithms, and this

More information

Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm

Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm Progress In Electromagnetics Research Symposium, Beijing, China, March 23 27, 2009 229 Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm H. J.

More information

AI and computer game playing. Artificial Intelligence. Partial game tree for Tic-Tac-Toe. Game tree search. Minimax Algorithm

AI and computer game playing. Artificial Intelligence. Partial game tree for Tic-Tac-Toe. Game tree search. Minimax Algorithm AI and computer game playing Artificial Intelligence Introduction to game-playing search imax algorithm, evaluation functions, alpha-beta pruning, advanced techniques Game playing (especially chess and

More information

The ACO Encoding. Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson

The ACO Encoding. Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson The ACO Encoding Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson School of Computing and Centre for Reasoning, University of Kent, Canterbury, UK {A.Moraglio, F.E.B.Otero, C.G.Johnson}@kent.ac.uk

More information

Applying Design Patterns in Distributing a Genetic Algorithm Application

Applying Design Patterns in Distributing a Genetic Algorithm Application Applying Design Patterns in Distributing a Genetic Algorithm Application Nick Burns Mike Bradley Mei-Ling L. Liu California Polytechnic State University Computer Science Department San Luis Obispo, CA

More information

Implementation of a Chess Playing Artificial. Intelligence. Sean Stanek.

Implementation of a Chess Playing Artificial. Intelligence. Sean Stanek. Implementation of a Chess Playing Artificial Intelligence Sean Stanek vulture@cs.iastate.edu Overview Chess has always been a hobby of mine, and so have computers. In general, I like creating computer

More information

Adversarial Search and Game- Playing. C H A P T E R 5 C M P T 3 1 0 : S u m m e r 2 0 1 1 O l i v e r S c h u l t e

Adversarial Search and Game- Playing. C H A P T E R 5 C M P T 3 1 0 : S u m m e r 2 0 1 1 O l i v e r S c h u l t e Adversarial Search and Game- Playing C H A P T E R 5 C M P T 3 1 0 : S u m m e r 2 0 1 1 O l i v e r S c h u l t e Environment Type Discussed In this Lecture 2 Fully Observable yes Turn-taking: Semi-dynamic

More information

Optimization in Strategy Games: Using Genetic Algorithms to Optimize City Development in FreeCiv

Optimization in Strategy Games: Using Genetic Algorithms to Optimize City Development in FreeCiv Abstract Optimization in Strategy Games: Using Genetic Algorithms to Optimize City Development in FreeCiv Ian Watson,, Ya Chuyang, Wei Pan & Gary Chen There is a growing demand for the use of AI techniques

More information

Evolutionary Construction of de Bruijn Sequences

Evolutionary Construction of de Bruijn Sequences Evolutionary Construction of de Bruijn Sequences Meltem Sönmez Turan National Institute of Standards and Technology, Computer Security Division Abstract. A binary de Bruijn sequence of order n is a cyclic

More information

Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Algorithm

Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Algorithm Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Christine L. Mumford School of Computer Science, Cardiff University PO Box 916, Cardiff CF24 3XF, United Kingdom

More information

FORECASTING DAILY SPOT FOREIGN EXCHANGE RATES USING WAVELETS AND NEURAL NETWORKS

FORECASTING DAILY SPOT FOREIGN EXCHANGE RATES USING WAVELETS AND NEURAL NETWORKS FORECASTING DAILY SPOT FOREIGN EXCHANGE RATES USING WAVELETS AND NEURAL NETWORKS Amit Mitra Department of Mathematics & Statistics IIT Kanpur. 1/30 OVERVIEW OF THE TALK Introduction What are exchange rates

More information

Learning to Play Board Games using Temporal Difference Methods

Learning to Play Board Games using Temporal Difference Methods Learning to Play Board Games using Temporal Difference Methods Marco A. Wiering Jan Peter Patist Henk Mannen institute of information and computing sciences, utrecht university technical report UU-CS-2005-048

More information

Detecting Network Anomalies. Anant Shah

Detecting Network Anomalies. Anant Shah Detecting Network Anomalies using Traffic Modeling Anant Shah Anomaly Detection Anomalies are deviations from established behavior In most cases anomalies are indications of problems The science of extracting

More information