11.1 Alkenes and Alkynes: Structure and Physical Properties. Chapter 11. Bonding and Geometry of Two-Carbon Molecules

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "11.1 Alkenes and Alkynes: Structure and Physical Properties. Chapter 11. Bonding and Geometry of Two-Carbon Molecules"

Transcription

1 Denniston Topping Caret 6 th Edition!"#$%&'()!*+(,*-./%0123&44*!"5#06&,78*96.:**;,%5&77&"6*%,<=&%,>*?"%*%,#%">=.)&"6*"%*>&7#40$: Chapter 11 The Unsaturated Hydrocarbons: Alkenes, Alkynes, and Aromatic : Structure and Physical Properties Both alkenes and alkynes are unsaturated hydrocarbons The alkene functional group is the carbon-carbon double bond The alkyne functional group is the carbon-carbon triple bond Simplest alkene: ethene (ethylene) C 2 H 4 Simplest alkyne: ethyne (acetylene) C 2 H Structure and Physical Properties Aliphatic Hydrocarbon Structure Comparison 11.1 Structure and Physical Properties Bonding and Geometry of Two-Carbon Molecules 3 4

2 11.1 Structure and Physical Properties Structural Comparison of Five Carbon Molecules Basic tetrahedral Planar around the Linear at the zig-zag shape double bond triple bond 11.1 Structure and Physical Properties Physical Properties Physical properties of the alkenes and alkynes are quite similar to those of alkanes Nonpolar Not soluble in water Highly soluble in nonpolar solvents Boiling points rise with molecular weight : Nomenclature Base name from longest chain containing the multiple bond Change from -ane to -ene or -yne Number from the end, that will give the first carbon of the multiple bond the lower number Prefix the name with the number of the first multiple bond carbon Prefix branch/substituent names as for alkanes 11.2 Nomenclature Comparison of Names 7 8

3 11.2 Nomenclature Nam e Basic Naming Practice 3-ethyl-6-methyl-3-heptene 11.2 Nomenclature Molecules With More Than One Double Bond Alkenes having more than one double bond: 2 double bonds = alkadiene 3 triple bonds = alkatriene Same rules for alkynes 2-bromo-3-hexyne Nomenclature Naming Cycloalkenes Cyclic alkenes are named like cyclic alkanes Prefix name with cyclo Numbering must start at one end of the double bond and pass through the bond Substituents must have the lower possible numbers Either number clockwise or counterclockwise Name : 11.2 Nomenclature Naming Haloalkenes Double or triple bonds take precedence over a halogen or alkyl group 2-Chloro-2-butene If 2 or more halogens, indicate the position of each 5-chloro-3-methylcyclohexene 11 12

4 11.3 Geometric Isomers: A Consequence of Unsaturation Carbon-carbon double bonds are rigid Orbital shape restricts the rotation around the bond Results in cis-trans isomers Requires two different groups on each of the carbon atoms attached by the double bond 11.3 Geometric Isomers Naming Geometric Isomers 2-butene is the first example of an alkene which can have two different structures based on restricted rotation about the double bond trans-2-butene cis-2-butene Geometric Isomers Identifying cis and trans Isomers If one end of the C=C has two groups the same, cis-trans isomers are not possible Both carbons of the C=C must have two different groups attached Find a group common to both ends of the C=C If the common group is on the same side of the pi bond, the molecule is cis If on the opposite side, the molecule is trans 11.3 Geometric Isomers Questions to Identify cistrans Isomers 1. Are both groups on a double-bond carbon the same? 1. A = B? C = D? If no, continue 2. Is one group on each carbon the same? A = C or D? B = C or D? If either or both is yes, cis-trans isomer is present i. A " B A ii. C " D C So continue B D 15 16

5 11.3 Geometric Isomers Distinguishing cis-trans Isomers Each carbon has 2 different substituents One substituent on each carbon is the same (Cl) The 2 chlorine atoms are attached on opposites of the plane of the double bond = trans trans-1,2-dichloro-1-butene 11.3 Geometric Isomers cis-trans Isomers Decide whether each compound is cis trans neither A: methyls are trans B: no cis-trans. Right C has two isopropyls C: hydrogens are cis A B C Alkenes in Nature Alkenes are abundant in nature Ethene is a fruit ripener and promotes plant growth Polyenes built from the isoprene skeleton are called isoprenoids Isoprene is the basic 5 carbon unit shown here The next slide shows some isoprenoids 11.4 Alkenes in Nature Isoprenoids Distinctive Aromas 19 20

6 There are two kinds of reactions typical of alkenes: Addition: two molecules combine to give one new molecule Redox: oxidation and reduction The two classes are not always mutually exclusive Addition: General Reaction A small molecule, AB, reacts with the pi electrons of the double bond The pi bond breaks and its electrons are used to bond to the A and B pieces Some additions require a catalyst Types of Addition Reactions 1. Symmetrical: same atom added to each carbon Hydrogenation - H 2 (Pt, Pd, or Ni as catalyst) Halogenation - Br 2, Cl 2 2. Unsymmetrical: H and another atom are added to the two carbons Hydrohalogenation - HCl, HBr Hydration - H 2 O (requires strong acid catalyst e.g., H 3 O +, H 2 SO 4, H 3 PO 4 ) 3. Self-addition or polymerization Hydrogenation: Addition of H 2 Hydrogenation is the addition of a molecule of hydrogen (H 2 ) to a carbon-carbon double bond to produce an alkane The double bond is broken Two new C-H bonds result Platinum, palladium, or nickel is required as a catalyst Heat and/or pressure may also be required 23 24

7 Halogenation: Addition of X 2 Halogenation is the addition of a molecule of halogen (X 2 ) to a carbon-carbon double bond to produce an alkane The double bond is broken Two new C-X bonds result Reaction occurs quite readily and does NOT require a catalyst Cl and Br are most often the halogen added Bromination of an Alkene Left beaker contains bromine, but no unsaturated hydrocarbon Right beaker contains bromine, but reaction with an unsaturated hydrocarbon results in a colorless solution Unsymmetrical Addition Two products are possible depending how the 2 groups (as H and OH) add to the ends of the pi bond The hydrogen will add to one carbon atom The other carbon atom will attach the other piece of the addition reagent OH (Hydration) Halogen (Hydrohalogenation) Hydration A water molecule can be added to an alkene The addition of a water molecule to an alkene is called hydration Presence of strong acid is required as a catalyst Product resulting is an alcohol 27 28

8 Markovnikov s Observation Dimitri Markovnikov (Russian) observed many acid additions to C=C systems He noticed that the majority of the hydrogen went to a specific end of the double bond He formulated an explanation Markovnikov s Rule When an acid adds to a double bond - the H of the acid most often goes to the end of the double bond, which had more hydrogens attached initially H-OH H-Cl H-Br Hydration of Alkynes Hydration of an alkyne is a more complex process The initial product is not stable Enol produced both an alkene and an alcohol Product is rapidly isomerized Final product is either Aldehyde Ketone Hydrohalogenation An alkene can be combined with a hydrogen halide such as HBr or HCl The reaction product is an alkyl halide Markovnikov s Rule is followed in this reaction 31 32

9 Alkene Reactions Predict the major product in each of the following reactions Name the alkene reactant and the product using Addition Polymers of Alkenes Polymers are macromolecules composed of repeating units called monomers Polymers can be made up of thousands of monomers linked together Many commercially important materials are addition polymers made from alkenes and substituted alkenes Addition polymers are named for the fact that they are made by the sequential addition of the repeating alkene monomer Some Important Addition Polymers of Alkenes Benzene s structure was first proposed 150 years ago A cyclic structure for benzene, C 6 H 6 Something special about benzene Although his structures showed double bonds, the molecule did not react as if it had any unsaturation Originally named aromatic compounds for the pleasant smell of resins from tropical trees (early source) Now aromatic hydrocarbons are characterized by a much higher degree of chemical stability than predicted by their chemical composition Most common group of aromatic compounds is based on the 6-member aromatic ring, benzene 35 36

10 Benzene Structure The benzene ring consists of: Six carbon atoms Joined in a planar hexagonal arrangement Each carbon is bonded to one hydrogen atom Two equivalent structures proposed by Kekulé are recognized today as resonance structures The real benzene molecule is a hybrid with each resonance structure contributing to the true structure Benzene Structure Modern Modern concept of benzene structure is based on overlapping orbitals Each carbon is bonded to two others by sharing a pair of electrons These same carbon atoms also each share a pair of electrons with a hydrogen atom Remaining 6 electrons are located in p orbitals that are perpendicular to the plane of the carbon ring These p orbitals overlap laterally Form a cloud of electrons above and below the ring Pi Cloud Formation in Benzene The current model of bonding in benzene IUPAC Names: Benzenes Most simple aromatic compounds are named as derivatives of benzene For monosubstituted benzenes, name the group and add benzene nitrobenzene chlorobenzene ethylbenzene 39 40

11 IUPAC Names: Benzenes For disubstituted benzenes, name the groups in alphabetical order The first named group is at position 1 If a special group is present, it must be number 1 on the ring An older system of naming indicates groups using ortho (o) = 1,2 on the ring meta (m) = 1,3 on the ring para (p) = 1,4 on the ring IUPAC Names of Substituted Benzenes 1-bromo-2-ethylbenzene o-bromoethylbenzene 1,4-dichlorobenzene p-dichlorobenzene 3-nitrotoluene m-nitrotoluene Historical Nomenclature Some members of the benzene family have unique names acquired before the IUPAC system was adopted that are still frequently used today Benzene As a Substituent When the benzene ring is a substituent on a chain (C 6 H 5 ), it is called a phenyl group Note the difference between Phenyl Phenol (a functional group) 4-phenyl-1-pentene 43 44

12 Polynuclear Aromatic Hydrocarbons Polynuclear aromatic hydrocarbons (PAH) are composed of two or more aromatic rings joined together Many have been shown to cause cancer Reactions of Benzene Benzene does not readily undergo addition reactions Benzene typically undergoes aromatic substitution reactions: An atom or group substitutes for an H on the ring All benzene reactions we consider require a catalyst The reactions are: 1. Halogenation 2. Nitration 3. Sulfonation Benzene Halogenation Halogenation places a Br or Cl on the ring The reagent used is typically Br 2 or Cl 2 Fe or FeCl 3 are used as catalysts Benzene Nitration Nitration places the nitro group on the ring Sulfuric acid is needed as a catalyst 47 48

13 Benzene Sulfonation Sulfonation places an SO 3 H group on the ring Concentrated sulfuric acid is required as a catalyst This is also a substitution reaction 11.7 Heterocyclic Aromatic Rings with at least one atom other than carbon as part of the structure of the aromatic ring This hetero atom is typically O, N, S The ring also has delocalized electrons The total number of atoms in the ring is typically either: A six membered ring Some have a five membered ring Heterocyclic Aromatic Compounds Heterocyclic Aromatics Heterocyclic aromatics are similar to benzene in stability and chemical behavior Many are significant biologically Found in DNA and RNA Found in hemoglobin and chlorophyll Reaction Schematic + H 2 Pt, Pd, or Ni Hydrogenation Alkene + H 2 O acidic Hydration + HX + X 2 adds easily Hydrohalogenation Halogenation 51 52

14 Summary of Reactions 1. Addition Reactions of Alkenes a. Hydrogenation b. Hydration c. Halogenation d. Hydrohalogenation 2. Addition Polymers of Alkenes 3. Reactions of Benzene a. Halogenation b. Nitration c. Sulfonation Diagrammatic Summary of Reactions 53 54

Study Guide Chapters 19-20 Alkanes, Alkenes and Alkynes

Study Guide Chapters 19-20 Alkanes, Alkenes and Alkynes Study Guide Chapters 19-20 Alkanes, Alkenes and Alkynes 1) Carbon-Carbon Bonding in Alkanes (C-C), Alkenes (C=C) and Alkynes (C C). Understand the hybridization of atomic orbitals (ground state promotion

More information

Chapter Thirteen. Alkenes, Alkynes, and Aromatic Compounds

Chapter Thirteen. Alkenes, Alkynes, and Aromatic Compounds Chapter Thirteen Alkenes, Alkynes, and Aromatic Compounds Saturated: A molecule whose carbon atoms bond to the maximum number of hydrogen atoms. Unsaturated: A molecule that contains a carbon carbon multiple

More information

Alkenes and Alkynes. Chapter 1.2

Alkenes and Alkynes. Chapter 1.2 Alkenes and Alkynes Chapter 1.2 Unsaturated Hydrocarbons Alkenes and alkynes are unsaturated hydrocarbons An alkene is a hydrocarbon that contains at least one carbon-carbon double bond An alkyne is a

More information

ALKENES, ALKYNES and AROMATIC COMPOUNDS Chapter 13

ALKENES, ALKYNES and AROMATIC COMPOUNDS Chapter 13 ALKENES, ALKYNES and AROMATIC COMPOUNDS Chapter 13 13.1 Introduction An ALKENE is a hydrocarbon with a double C bond that looks like C=C An ALKYNE is a hydrocarbon with a triple C bond that looks like

More information

Chapter 11 Unsaturated Hydrocarbons Alkenes and Alkynes

Chapter 11 Unsaturated Hydrocarbons Alkenes and Alkynes 1 Chapter 11 Unsaturated ydrocarbons Alkenes and Alkynes Saturated ydrocarbons 2 Saturated hydrocarbons have the maximum number of hydrogen atoms attached to each carbon atom are alkanes and cycloalkanes

More information

Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules

Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules Chapter 25 The Chemistry of Life: Organic Chemistry general characteristics of organic molecules introduction to hydrocarbons alkanes unsaturated hydrocarbons functional groups: alcohols and ethers compounds

More information

AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter 22 - Organic and Biological Molecules AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

More information

Chapter 13 Alkenes and Alkynes

Chapter 13 Alkenes and Alkynes hapter 13 Alkenes and Alkynes Types of Bonds Alkanes and haloalkanes consist of atoms held together by bonds. These can also be called sigma bonds (σ bonds) which means that the orbitals of each atom overlap

More information

Alkenes: Alkynes: Example: What are all the structural possibilities for C 3 H 4? Unsaturated hydrocarbons: Bonding Patterns of Multiple Bonds

Alkenes: Alkynes: Example: What are all the structural possibilities for C 3 H 4? Unsaturated hydrocarbons: Bonding Patterns of Multiple Bonds Chapter 3 Organic Chem: Alkenes & Alkynes Don t need to know the following reactions found on summary pages 110-112: 1. Hydroboration-Oxidation 2. Cycloaddition to Conjugated Dienes 3. Alkyne reaction

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 13_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In organic chemistry, the term unsaturated means a molecule A) which contains one or more

More information

Monday, September 10th

Monday, September 10th Monday, September 10th Review Chapter 11 iclicker Quiz #1 Chapter 12 Chapter 13(maybe) Group assignment Keep checking the class webpage at www.bhsu.edu/danasunskis. Go to the course tab then CHEM107 Lecture

More information

Chapter 11 Unsaturated Hydrocarbons. Saturated Hydrocarbons. Unsaturated Hydrocarbons Alkenes and Alkynes

Chapter 11 Unsaturated Hydrocarbons. Saturated Hydrocarbons. Unsaturated Hydrocarbons Alkenes and Alkynes 1 hapter 11 Unsaturated ydrocarbons 11.1 Alkenes and Alkynes opyright 2009 by Pearson Education, Inc. 1 2 Saturated ydrocarbons Saturated hydrocarbons have the maximum number of hydrogen atoms attached

More information

Chemistry B11 Chapters Alkanes, Alkenes, Alkynes and Benzene

Chemistry B11 Chapters Alkanes, Alkenes, Alkynes and Benzene Chemistry B11 Chapters 10-13 Alkanes, Alkenes, Alkynes and Benzene Organic compounds: organic chemistry is the chemistry of carbon and only a few other elements-chiefly, hydrogen, oxygen, nitrogen, sulfur,

More information

Last Time: Alkanes (C n H 2n+2 ) Last Time: Organic Compounds. Last Time: Intermolecular Forces- BP Increases w/ Increasing Size

Last Time: Alkanes (C n H 2n+2 ) Last Time: Organic Compounds. Last Time: Intermolecular Forces- BP Increases w/ Increasing Size Announcements & Agenda (0/02/07) Welcome Visitors! Please make yourselves comfortable; we will start with a quiz Mid-term grades are only based on lecture I will give you detailed grade sheets on Monday

More information

ORGANIC COMPOUNDS IN THREE DIMENSIONS

ORGANIC COMPOUNDS IN THREE DIMENSIONS (adapted from Blackburn et al., Laboratory Manual to Accompany World of hemistry, 2 nd ed., (1996) Saunders ollege Publishing: Fort Worth) Purpose: To become familiar with organic molecules in three dimensions

More information

Unit VII Compound Formula Writing and Nomenclature Review Sheet. Chapter 6: Basic Naming & Formula Writing

Unit VII Compound Formula Writing and Nomenclature Review Sheet. Chapter 6: Basic Naming & Formula Writing Unit VII Compound Formula Writing and Nomenclature Review Sheet Chapter 6: Basic Naming & Formula Writing 1. Distinguish among: a. Atoms b. Molecules: combinations of covalently bonded nonmetals c. Formula

More information

the double or triple bond. If the multiple bond is CH 3 C CCHCCH 3

the double or triple bond. If the multiple bond is CH 3 C CCHCCH 3 Alkenes, Alkynes, and Aromatic ompounds Alkenes and Alkynes Unsaturated contain carbon-carbon double and triple bond to which more hydrogen atoms can be added. Alkenes: carbon-carbon double bonds Alkynes:

More information

SCH4U: Summary of the Rules for Naming Organic Compounds

SCH4U: Summary of the Rules for Naming Organic Compounds SCH4U: Summary of the Rules for Naming Organic Compounds A) Rules for Naming Saturated Hydrocarbons 1) Identify the longest unbranched carbon backbone in the molecule (parent chain). (Do not confuse bends

More information

Organic Chemistry Questions

Organic Chemistry Questions Organic Chemistry Questions 1 Molecules of 1-propanol and 2-propanol have different (1) percentage compositions (2) molecular masses (3) molecular formulas (4) structural formulas 2 Which compound is an

More information

UNIT (7) ORGANIC COMPOUNDS: HYDROCARBONS

UNIT (7) ORGANIC COMPOUNDS: HYDROCARBONS UNIT (7) ORGANIC COMPOUNDS: YDROCARBONS Organic chemistry is the study carbon containing compounds. 7.1 Bonding in Organic Compounds Organic compounds are made up of only a few elements and the bonding

More information

Alkynes and Their Reactions

Alkynes and Their Reactions Alkynes and Their Reactions Naming Alkynes Alkynes are named in the same general way that alkenes are named. In the IUPAC system, change the ane ending of the parent alkane name to the suffix yne. Choose

More information

Chapter 12 Unsaturated Hydrocarbons

Chapter 12 Unsaturated Hydrocarbons hapter 12 Unsaturated ydrocarbons 12.1 Alkenes and Alkynes opyright 2007 by Pearson Education, Inc. Publishing as Benjamin ummings Unsaturated ydrocarbons Unsaturated hydrocarbons ave fewer hydrogen atoms

More information

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of Alkynes An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of acetaldehyde, acetic acid, vinyl chloride O O H

More information

Alkanes, Alkenes, Alkynes. Alkanes

Alkanes, Alkenes, Alkynes. Alkanes Alkanes, Alkenes, Alkynes Alkanes Single bonds between carbon atoms General formula: C n H (2n+2) The maximum amount of hydrogen atoms are bonded so alkanes are referred to as saturated 1 IUPAC name Molecular

More information

3/9/2012. First Ten Alkanes. Simple Organic Chemistry Basic Structure and Nomenclature. (Nomenclature) Rules for Naming Alkanes.

3/9/2012. First Ten Alkanes. Simple Organic Chemistry Basic Structure and Nomenclature. (Nomenclature) Rules for Naming Alkanes. C Simple Organic Chemistry Basic Structure and Nomenclature First Ten Alkanes Formula Name Formula Name CH4 Methane C6H14 Hexane C2H5 Ethane C7H16 Heptane C3H8 Propane C8H18 Octane C4H10 Butane C9H20 Nonane

More information

Alkynes: An Introduction to Organic Synthesis

Alkynes: An Introduction to Organic Synthesis Alkynes: An Introduction to Organic Synthesis Alkynes Hydrocarbons that contain carbon-carbon triple bonds Acetylene, the simplest alkyne is produced industrially from methane and steam at high temperature

More information

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes: An Introduction to Organic Synthesis Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes! Hydrocarbons that contain carbon-carbon triple bonds! Acetylene, the simplest alkyne

More information

Molecular Models Experiment #1

Molecular Models Experiment #1 Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of

More information

Chapter 4: Alkenes and Alkynes. Degree of unsaturation

Chapter 4: Alkenes and Alkynes. Degree of unsaturation hapter 4: Alkenes and Alkynes Unsaturated ydrocarbon: ontains one or more carbon-carbon double or triple bonds or benzene-like rings. Alkene: contains a carbon-carbon double bond and has the general formula

More information

Organic Chemistry. Hydrocarbons. Introduction to Organic Molecules. The simplest organic molecules containing only carbon and hydrogen atoms

Organic Chemistry. Hydrocarbons. Introduction to Organic Molecules. The simplest organic molecules containing only carbon and hydrogen atoms Introduction to Organic Molecules Organic Chemistry: (1828) Friedrich Wohler first synthesized an organic compound from an inorganic source leading to the birth of Organic Chemistry. Organic chemistry

More information

Worksheet Addition reactions

Worksheet Addition reactions Worksheet Addition reactions The presence of electrons in alkenes allows addition reactions to take place. In general: In each case, the bond is broken and the e - are used to form a new bond in the product

More information

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CHEM 203 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _D C 1. Which of the following elements is a large percentage of both

More information

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol

More information

Page 1. 6. Which hydrocarbon is a member of the alkane series? (1) 1. Which is the structural formula of methane? (1) (2) (2) (3) (3) (4) (4)

Page 1. 6. Which hydrocarbon is a member of the alkane series? (1) 1. Which is the structural formula of methane? (1) (2) (2) (3) (3) (4) (4) 1. Which is the structural formula of methane? 6. Which hydrocarbon is a member of the alkane series? 7. How many carbon atoms are contained in an ethyl group? 1 3 2 4 2. In the alkane series, each molecule

More information

Chapter 6 Alkenes I. IUPAC Rules for Alkene and Cycloalkene Nomenclature

Chapter 6 Alkenes I. IUPAC Rules for Alkene and Cycloalkene Nomenclature hapter 6 Alkenes I Naming Alkenes General Rule: replace ane with ene. No. of arbons IUPA Name ommon Name Formula n 2n Structure 2 Ethane ethylene 2 4 2 = 2 3 Propene propylene 3 6 2 = 3 4 1-Butene butylene

More information

Alkanes. Chapter 1.1

Alkanes. Chapter 1.1 Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

Chapter 4 Introduction to Organic Compounds

Chapter 4 Introduction to Organic Compounds Chapter 4 Introduction to Organic Compounds Outline 4.1 Alkanes: The Simplest Organic Compounds 4.2 Representing Structures of Organic Compounds 4.3 Families of Compounds Functional Groups 4.4 Nomenclature

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic.

Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic. Chapter 10 Introduction to Organic Chemistry: Alkanes 10.1 Organic Compounds Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also

More information

Alkynes contain a C C triple bond

Alkynes contain a C C triple bond Chapter 8: Alkynes: an introduction to organic synthesis Alkynes contain a C C triple bond Acetylene: H-C C-H is the common name for ethyne, used as a torch fuel Alkyne nomenclature follows normal hydrocarbon

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. Alkanes In your textbook, read about organic chemistry, hydrocarbons, and straight-chain alkanes.

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. Alkanes In your textbook, read about organic chemistry, hydrocarbons, and straight-chain alkanes. ydrocarbons Section 22.1 Alkanes In your textbook, read about organic chemistry, hydrocarbons, and straight-chain alkanes. Use each of the terms below just once to complete the passage. hydrocarbons homologous

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

Nomenclature of Organic Compounds Chem21, Introduction to Organic and Biochemistry

Nomenclature of Organic Compounds Chem21, Introduction to Organic and Biochemistry Nomenclature of Organic Compounds Chem, Introduction to Organic and Biochemistry FOR ALKANES:.) Find the longest chain of connected carbon atoms this is your base chain. The number of carbons in the chain

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

Organic Chemistry. Saturated Hydrocarbons: The Alkanes. methane H C H CH 4. ethane H C C H CH 3 CH 3

Organic Chemistry. Saturated Hydrocarbons: The Alkanes. methane H C H CH 4. ethane H C C H CH 3 CH 3 rganic hemistry The classification of chemical compounds in to the general areas of organic and inorganic derives from the use of the "mineral, vegetable and animal" designation by the early workers in

More information

Nomenclature of organic compounds

Nomenclature of organic compounds P.1 Nomenclature of organic compounds A. Alkanes (C n H 2n+2 ) i. The following table give the names of some root names different number of carbon atoms of hydrocarbon. CH 4 methane C 6 H 14 hexane C 2

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

Chapter 18 Organic Chemistry I: The Hydrocarbons

Chapter 18 Organic Chemistry I: The Hydrocarbons Key oncepts Overview hapter 18 Organic hemistry I: The ydrocarbons Aliphatic ydrocarbons (Sections 18.1 18.7) hydrocarbons, types of hydrocarbons, aliphatic hydrocarbon, aromatic hydrocarbon, condensed

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

Mr. Kent s Organic Chemistry Unit Notes I Basic Concepts

Mr. Kent s Organic Chemistry Unit Notes I Basic Concepts Mr. Kent s Organic Chemistry Unit Notes I Basic Concepts A. Organic Chemistry-The study of containing compounds. 1. They occur extensively in nature because all living things are made of containing compounds.

More information

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:

More information

Hydrocarbons Part 1: Structural Formulas

Hydrocarbons Part 1: Structural Formulas ydrocarbons Part 1: Structural Formulas Structural Formulas for Organic Molecules ondensed Skeletal-line Lewis (Expanded) 1 Neutral Bonding Patterns for Organic ompounds 2 Skeletal Line Structures arbon

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes

Chapter 10 Introduction to Organic Chemistry: Alkanes hapter 10 Introduction to Organic hemistry: Alkanes 1 Organic hemistry An organic compound is a compound made from carbon atoms has one or more atoms has many atoms may also contain O, S, N, and halogens

More information

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test Unit 2 Review: Answers: Review for Organic Chemistry Unit Test 2. Write the IUPAC names for the following organic molecules: a) acetone: propanone d) acetylene: ethyne b) acetic acid: ethanoic acid e)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM 210 Chemistry Homework #6 Alkanes (Ch. 10) Due: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Compounds that have the same molecular formula

More information

Nomenclature International Union of Pure and Applied Chemistry (IUPAC)

Nomenclature International Union of Pure and Applied Chemistry (IUPAC) Nomenclature International Union of Pure and Applied Chemistry (IUPAC) I. Alkanes A. Alkanes: Simple-Chain Alkanes consist of only hydrogen and carbon molecules and are known to be the simplest type of

More information

Question Bank Organic Chemistry-I

Question Bank Organic Chemistry-I Question Bank Organic Chemistry-I 1. (a) What do you understand by the following terms : (i) Organic chemistry (ii) Organic compounds (iii) Catenation? [3] (b) Why are there very large number of organic

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

Chapter: Introduction to Organic Chemistry: Alkanes

Chapter: Introduction to Organic Chemistry: Alkanes Chapter: Introduction to Organic Chemistry: Alkanes Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also contain O, S, N, and

More information

NOMENCLATURE VI BASICS

NOMENCLATURE VI BASICS NMENLATURE VI This exercise covers the basics of organic nomenclature. It is primarily based upon the IUPA system (the names under IUPA rules are called systematic names). In a few cases there are special

More information

e. What are the compositions and uses of fractions of crude oil? f. How are further fractions lubricationg oils and waxes obtained?

e. What are the compositions and uses of fractions of crude oil? f. How are further fractions lubricationg oils and waxes obtained? CRUDE OIL AND ITS COMPOSITION 1. Use a textbook to answer the following questions: a. How was crude oil formed? b. What is crude oil chemically? c. How can the components of crude oil be separated? d.

More information

LECTURE 1. ALKANES (PARAFFINS), ALKENES (OLEFINS), ALKYNES (ACETYLENES): GENERAL

LECTURE 1. ALKANES (PARAFFINS), ALKENES (OLEFINS), ALKYNES (ACETYLENES): GENERAL LECTURE 1. ALKANES (PARAFFINS), ALKENES (OLEFINS), ALKYNES (ACETYLENES): GENERAL Basic Nomenclature a saturated hydrocarbon is denoted by the suffix ANE an unsaturated hydrocarbon with one double bond

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes. Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition

Chapter 10 Introduction to Organic Chemistry: Alkanes. Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition 1 hapter 10 Introduction to Organic hemistry: Alkanes Organic hemistry and Organic ompounds 2 An organic compound is a compound made from carbon atoms has one or more atoms has many atoms may also contain

More information

Chapter 6. Alkenes: Structure and Stability

Chapter 6. Alkenes: Structure and Stability hapter 6. Alkenes: Structure and Stability Steric Acid (saturated fatty acid) Linoleic Acid (unsaturated fatty acid) Degrees of unsaturation saturated hydrocarbon n 2n2 cycloalkane (1 ring) n 2n alkene

More information

Chapter 2 Organic Chem: Alkanes & Cycloalkanes

Chapter 2 Organic Chem: Alkanes & Cycloalkanes Chapter 2 Organic Chem: Alkanes & Cycloalkanes Objectives: 1. Differentiate between saturated and unsaturated hydrocarbons, alkanes and cycloalkanes. 2. Draw, identify, determine and name isomers: a. Stereoisomers

More information

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents.

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents. BENZENE NAMING EXPLAINED. This was excerpted from CHEM WIKI and is used with appreciation to the authors. http://chemwiki.ucdavis.edu/organic_chemistry/hydrocarbons/aromatics/naming_the_benzenes. Simple

More information

2. Organic Compounds: Alkanes and Cycloalkanes. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 3

2. Organic Compounds: Alkanes and Cycloalkanes. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 3 2. Organic Compounds: Alkanes and Cycloalkanes Based on McMurry s Organic Chemistry, 6 th edition, Chapter 3 Families of Organic Compounds Organic compounds can be grouped into families by their common

More information

CHAPTER 3 1. ALKANES A. General Information

CHAPTER 3 1. ALKANES A. General Information CHAPTER 3 1. ALKANES A. General Information Hydrocarbons (contain only C,H) Saturated (all single bonds) alkanes, cycloalkanes Unsaturated (cont. double, triple bonds) alkenes, alkynes, aromatic Need to

More information

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes* CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity

More information

Learning Guide for Chapter 11 - Alkynes

Learning Guide for Chapter 11 - Alkynes Learning Guide for Chapter 11 - Alkynes Introduction to s - p 1 ybridization and geometry, Reactivity, Types of s, Cyclic s, Physical properties, Spectroscopy, Acidity, Natural occurrence and uses Nomenclature

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Benzene and aromatic compounds (McMurry Ch. 15 & 16) The resonance hybrid model explains these properties of benzene:

Benzene and aromatic compounds (McMurry Ch. 15 & 16) The resonance hybrid model explains these properties of benzene: Benzene and aromatic compounds (McMurry Ch. 15 & 16) C 6 H 6 is an unusually stable molecule that does NOT react like alkenes do A model was proposed by Kekule in 1865: The resonance hybrid model explains

More information

Copyright 2010 Pearson Education, Inc. Chapter Fourteen 1

Copyright 2010 Pearson Education, Inc. Chapter Fourteen 1 An alcohol has an OH bonded to an alkyl group; a phenol has an OH bonded directly to an aromatic ring; and an ether has an O bonded to two organic groups. Chapter Fourteen 1 Ethyl alcohol, dimethyl ether,

More information

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids.

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. R Carboxylic acids are classified according to the substituent

More information

Chem 401 Lab Exercise #5 Nomenclature Worksheet for Alkanes and Cycloalkanes

Chem 401 Lab Exercise #5 Nomenclature Worksheet for Alkanes and Cycloalkanes hem 401 Lab Exercise #5 Nomenclature Worksheet for Alkanes and ycloalkanes Structure and Nomenclature of Alkanes Alkanes are saturated hydrocarbons; that is, they contain only and which are bonded solely

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

IUPAC System of Nomenclature

IUPAC System of Nomenclature IUPAC System of Nomenclature The IUPAC (International Union of Pure and Applied Chemistry) is composed of chemists representing the national chemical societies of several countries. ne committee of the

More information

Hydrocarbon Frameworks. Alkanes

Hydrocarbon Frameworks. Alkanes Hydrocarbon Frameworks. Alkanes SUMMARY Section 2.1 Section 2.2 Section 2.3 The classes of hydrocarbons are alkanes, alkenes, alkynes, and arenes. Alkanes are hydrocarbons in which all of the bonds are

More information

PRACTICE PROBLEMS, CHAPTERS 1-3

PRACTICE PROBLEMS, CHAPTERS 1-3 PRATIE PRBLEMS, APTERS 1-3 (overed from h. 3: Alkane and Alkyl alide nomenclature only) 1. The atomic number of boron is 5. The correct electronic configuration of boron is: A. 1s 2 2s 3 B. 1s 2 2p 3.

More information

Alkanes. Hydrocarbons. Structural Isomers. Butane Isomers. Contain only carbon and hydrogen

Alkanes. Hydrocarbons. Structural Isomers. Butane Isomers. Contain only carbon and hydrogen ydrocarbons Alkanes ontain only carbon and hydrogen ydrocarbons Alkanes Alkenes Alkynes Aromatics General formula n 2n+2 Each carbon is sp 3 hybridized Bond angles are 109.5 o Methane Ethane Propane Butane

More information

Number of carbon atoms. 3 propane 8 octane. 4 butane 9 nonane. 5 pentane 10 decane

Number of carbon atoms. 3 propane 8 octane. 4 butane 9 nonane. 5 pentane 10 decane Name: Date: Pd: Accelerated Chemistry - Naming Hydrocarbons Alkane Nomenclature 1. Alkanes are saturated hydrocarbons, with each C bonded to as many atoms as possible (4 other atoms, C or H). For example,

More information

Chapter 2 Alkanes and Cycloalkanes;

Chapter 2 Alkanes and Cycloalkanes; Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometric Isomerism Feb, 2008 Dr. Abdullah I. Saleh/236-2 1 Hydrocarbons The main components of petroleum and natural gas. Hydrocarbons: compounds

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

Ch 12. Alkanes Introduction to Organic Chemistry: Simple Hydrocarbons

Ch 12. Alkanes Introduction to Organic Chemistry: Simple Hydrocarbons Ch 12. Alkanes Introduction to Organic Chemistry: Simple Hydrocarbons Diagram of Methane. Member of Alkane family of hydrocarbons. Alkanes have only single bonds. When carbon is bonded to four atoms, the

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.

More information

Lab Workshop 1: Nomenclature of alkane and cycloalkanes

Lab Workshop 1: Nomenclature of alkane and cycloalkanes Lab Workshop 1: Nomenclature of alkane and cycloalkanes Each student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

Topic 7 National 4 & 5 Chemistry Summary Notes. Hydrocarbons

Topic 7 National 4 & 5 Chemistry Summary Notes. Hydrocarbons Topic 7 National 4 & 5 Chemistry Summary Notes Hydrocarbons A vast number of different hydrocarbons exist and so chemists have grouped them into sub-sets to make them easier to study. In this topic we

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

Naming Hydrocarbons Tutorial (nomenclature)

Naming Hydrocarbons Tutorial (nomenclature) Naming ydrocarbons Tutorial (nomenclature) Drawing structures: it s all good 2-butene This is called the skeletal structure 3 This is called the condensed structure 3 = Using brackets can also shorten

More information

Chemistry of the Functional Group

Chemistry of the Functional Group Name Lab Day Chemistry of the Functional Group Introduction: rganic molecules comprised only of carbon and hydrogen would be relatively unreactive and biologically unimportant. Inclusion of atoms of other

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

Organic Chemistry. Reactions of Alkanes: Combustion, Elimination & Substitution Reactions of Alkenes: Addition, Hydrogenation, Polymerization

Organic Chemistry. Reactions of Alkanes: Combustion, Elimination & Substitution Reactions of Alkenes: Addition, Hydrogenation, Polymerization Organic Chemistry Reactions of Alkanes: Combustion, Elimination & Substitution Reactions of Alkenes: Addition, Hydrogenation, Polymerization Alkanes Alkanes are non-polar, non-reactive hydrocarbons Why

More information

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS 17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic

More information

Question (3): What are the different types of covalent bonds found in carbons compounds? Briefly explain with examples.

Question (3): What are the different types of covalent bonds found in carbons compounds? Briefly explain with examples. CLASS: X NCERT (CBSE) Chemistry: For Class 10 Page : 1 Question (1): What is organic chemistry? Organic chemistry is the study of carbon compounds of living matter i.e., plants and animals (CO 2, carbonates,

More information

An Introduction to Organic Chemistry

An Introduction to Organic Chemistry An Introduction to Organic Chemistry 81 Organic Chemistry Organic chemistry is the study of compounds containing carbon with the exception of simple compounds e.g. carbonates (CO 3 2- ), carbon dioxide

More information