PWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering

Size: px
Start display at page:

Download "PWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering"

Transcription

1 PWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering 22.06: Engineering of Nuclear Systems

2 Pressurized Water Reactor (PWR) Public domain image from wikipedia.

3 SCHEMATIC OF A PWR POWER PLANT Major PWR vendors include Westinghouse, Areva and Mitsubishi source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

4 PWR Coolant Circuits INDIRECT CYCLE: Primary and Secondary Coolant Loops Single Phase (Liquid) Reactor Coolant [T in =287.7 C, T out =324 C, P=15.2 MPa, T sat = C] Two-Phase (Steam-Water) Power Conversion Cycle Loop [T SG,in =227 C, T SG,out =285 C, P=6.9 MPa, T sat =285 C] [ ] [T Condenser = 37.8 C, P=6.6 kpa] Condenser

5 Phase Diagram of Water Pressure [MPa] Saturation line PWR primary system PWR secondary system Liquid Condenser Vapor Temperature [ C]

6 PWR Vessel, Core and Primary System

7 ARRANGEMENT OF THE PRIMARY SYSTEM FOR A WESTINGHOUSE 4-LOOP PWR A.V. Nero, Jr., A Guidebook to Nuclear Reactors, 1979 University of CA press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

8 FLOW PATH WITHIN REACTOR VESSEL CR guide tubes Upper support plate Barrel flange Water in at 288 C Hot nozzle Water out at 324 C Cold nozzle Top of active fuel Core Bottom of active fuel Lower core plate

9 REACTOR VESSEL AND INTERNALS Pictures from: M. Kanda, Improvement in US-APWR design from lessons learned in Japanese PWRs.ICAPP-07. May 2007 (top), and EPR brochure available at (bottom two) Public domain image from Wikipedia. source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

10 TYPICAL 4-LOOP REACTOR VESSEL PARAMETERS Overall length of assembled vessel, closure head, and nozzles Inside diameter of shell Radius from center of vessel to nozzle face Inlet Outlet Nominal cladding thickness Minimum cladding thickness m 439m m 3.12 m 5.56 mm 3.18 mm Coolant volume with core and internals in place m 3 Operating pressure Design pressure Design temperature Vessel material Cladding material Sta Number of vessel material surveillance capsules, total MPa MPa C Carbon steel inless steel

11 TYPICAL 4-LOOP CORE Image by MIT OpenCourseWare. Masche, G., Systems Summary: W PWR NPP, 1971

12 Geometry of the fuel Image by MIT OpenCourseWare. source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Image by MIT OpenCourseWare. Cross Section of a Representative Fuel Pin (not drawn to scale) mm (in.) BWR PWR 2r o (0.409) 8.20 (0.323) 2r co (0.483) 9.50 (0.374) t (0.032) 0.57 (0.023)

13 Why the fuel/clad gap? Provides clearance for fuel pellet insertion during fabrication Accommodates fuel swelling without breaking the clad Filled with helium gas Example of a Cracked Fuel Cross Section Source: Todreas & Kazimi, Vol. I, p Taylor & Francis. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

14 TYPICAL FUEL ROD PARAMETERS Outside diameter Cladding thickness Diametral gap Pellet diameter Pitch Rods array in assembly Fuel rods per assembly 9.50 mm 0.57 mm mm 8.19 mm 12.6 cm 17x Total number of fuel rods in core 50,952

15 CUTAWAY OF TYPICAL ROD CLUSTER CONTROL ASSEMBLY (RCCA) Masche, G., Systems Summary: W PWR NPP, 1971 From: EPR brochure. Available at source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

16 PWR Control Rod ( Westinghouse RCCA) Made of ( black rods for scram) or Inconel ( gray rods for fine tuning) Public domain image from wikipedia. Control rod guide tube (24) Instrument thimble source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

17 Other means to control reactivity in PWRs Boron (boric acid, H 3 BO 3 ) dissolved in coolant. Compensates for loss of reactivity due to fuel burnup. High concentration at BOC (beginning of cycle), progressively decreased to zero at EOC (end of cycle) Pros: uniform absorption throughout core, concentration is easily controlled Cons: makes coolant slightly acidic (requires addition of other chemicals to reequilibrate ph), can deposit (come out of solution) as crud on fuel rods, can make moderator reactivity feedback positive at high concentration 8000 Core critical boron concentration (ppm) Exposure (GWD/MTU) Enrichment = 5 W / 0 U235 Enrichment = 6 W / 0 U235 Enrichment = 7 W / 0 U235 Image by MIT OpenCourseWare.

18 Other means to control reactivity in PWRs (2) Burnable absorbers ( poisons ) loaded in fuel. Gd (Gd 2 O 3 )has higher a than 235 U, thus it burns faster than fuel, which tends to increase k eff over time. Pros: no impact on coolant corrosion or moderator reactivity feedback Cons: lowers melting point and thermal conductivity of UO 2, cannot burn out completely by EOC k Assembly exposure (GWD/MTU) No Poison 24 BA Pins 32 BA Pins 36 BA Pins 40 BA Pins 44 BA Pins Image by MIT OpenCourseWare.

19 PWR GRID SPACERS From: Mitsubishi US-APWR Fuel and core design. DOE Technical session UAP-HF June 29, Masche, G., Systems Summary: W PWR NPP, 1971 Hold fuel rods in place prevent excessive vibrations Have mixing vanes enhance coolant mixing and heat transfer source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

20 Connection of PWR Core Design to Neutronics Why is Zr used as structural material in fuel assemblies? What functions does water perform? What determines the fuel rod spacing? Why are the fuel rods so small? Why are the control rods arranged in clusters? Why is boron dissolved in the coolant? What is Gd used for?

21 PWR Bundle Design Advances Extended burnup features Advanced cladding (ZIRLO, M5) Annular blankets Larger gas plena Improved mechanical performance Improved debris filters Low growth, wear-resistant materials Improved economic and operational performance Natural uranium blankets Flow mixing grids to enhance margin to DNB Reduced O&M costs Low cobalt steel alloys to reduce exposure Reduced inspection requirements source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

22 REPRESENTATIVE CHARACTERISTICS OF PWRs Parameter 4-loop PWR Parameter 4-loop PWR 1. Plant 5. Fuel Assembiles Number of primary loops 4 Number of assemblies 193 Reactor thermal power (MWth) 3411 Number of heated rods per assembly 264 Total plant thermal efficiency (%) Plant electrical output Power generated directly in coolant (%) Power generated in the fuel (%) 2. Core Core barrel inside diameter/outside diameter (m) Rated power density (kw/l) Core volume (m 3 ) Effective core flow area (m 2 ) Active heat transfer surface area (m 2 ) Average heat flux (kw/m 2 ) Design axial enthalpy rise peaking factor (F h ) Allowable core total peaking factor (F Q ) 3. Primary Coolant System pressure (MPa) / Fuel rod pitch (mm) Fuel assembly pitch (mm) Number of grids per assembly Fuel assembly effective flow area (m 2 ) Location of first spacer grid above beginning of heated length (m) Grid spacing (m) Grid type Number of control rod thimbles per assembly Number of instrument tubes Guide tube outer diameter (mm) 6. Rod Cluster Control Assemblies Neutron absorbing material Cladding material L-grid * Ag-In-Cd Type 304 SS Core inlet temperature ( o C) Cladding thickness (mm) 0.46 Average temperature rise in reactor ( o C) Total core flow rate (Mg/s) Effective core flow rate for heat removal (Mg/s) Average core inlet mass flux (kg/m 2 -s) ,729 Number of clusters Full/Part length Number of absorber rods per cluster *Employs mixing vanes 53/ Fuel Rods Total number Fuel density (% of theoretical) Fuel pellet diameter (mm) Fuel rod diameter (mm) Cladding thickness (mm) Cladding material Active fuel height (m) 50, Zircaloy Image by MIT OpenCourseWare. A.V. Nero, Jr., A Guidebook to Nuclear Reactors, 1979.

23 PWR PRESSURIZER Pressurizer (Saturated Liquid-Steam System: P=15.5 MPa, T=344.7 C) Controls pressure in the primary system Liquid Spray From cold leg Steam 2 m - Pressure can be raised by heating water (electrically) Electric heaters Liquid - Pressure can be lowered by condensing steam (on sprayed droplets) Surge Line Hot leg

24 PRESSURIZER TYPICAL DESIGN DATA Number and type Overall height Overall diameter Water volume Steam volume Design pressure Design temperature Type of heaters Number of heaters Installed heater power Number of relief valves Number of safety valves Spray rate Pressure transient Continuous Shell material Dry weight Normal operating weight Flooded weight (21.1 o C) 1 Two-phase water and steam pressurizer m 2.35 m cu m cu m 17.2 MPa 360 o C Electric immersion kw 2 Power-operated 3 Self-actuating 3028 L/m 3.79 L/m Mn-Mo steel, clad internally with stainless steel 106,594 kg 125, 191 kg 157,542 kg Image by MIT OpenCourseWare. Masche, G., Systems Summary: W PWR NPP, 1971

25 Reactor Coolant Pumps - Large centrifugal pumps - Utilize controlled leakage shaft seal - Have large flywheel to ensure slow coast-down upon loss of electric power to the motor

26 PWR Secondary System

27 PWR STEAM GENERATORS Primary side, Hot (T in = 324 C, T out = 288 C): High Pressure Liquid Secondary side, Cold (T sat = 285 C): Lower Pressure Steam and Liquid Water Boils on Shell Side of Heat E changer - Water Boils on Shell Side of Heat Exchanger - Steam Passes through Liquid Separators, Steam Dryers - Liquid Water Naturally Recirculates via Downcomer - Level Controlled via Steam and Feedwater Flowrates

28 U-TUBE STEAM GENERATOR source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see From: EPR bro chure. Available at

29 ONCE-THROUGH NUCLEAR STEAM GENERATOR Used only in old B&W plants B&W, Steam, Its Generation & Use, source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Babcock & Wilcox. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

30 TYPICAL DESIGN DATA FOR STEAM GENERATORS Number and type Height overall Upper shell OD Lower shell OD Operating pressure, tube side Design pressure, tube side Design temperature, tube side Full load pressure, shell side Maximum moisture at outlet (full load) Design pressure, shell side Reactor coolant flow rate Reactor coolant inlet temperature Reactor coolant outlet temperature Shell material Channel head material Tube sheet material Tube material Tube OD Average tube wall thickness Steam generator weights Dry weight, in place Normal operating weight, in place Flooded weight (cold) 4 Vertical, U-tube steam generators with integral steam-drum m 4.48 m 2.44 m 15.5 MPa 17.2 MPa o C 6.90 MPa 0.25% 8.27 MPa 4360 kg/s o C o C Mn-Mo steel Carbon steel clad internally with stainless steel Mo-Cr-Ni steel clad with Inconel on primary face Inconel 2.22 cm 1.27 mm 312,208 kg 376,028 kg 509,384 kg Image by MIT OpenCourseWare. Masche, G., Systems Summary: W PWR NPP, 1971

31 PWR power cycle (secondary s ystem) Reactor 5 3 W (1- f )m g T1 6 m p b a Steam Generator W P2 m s 2 High Pressure Turbine Boiler Feedwater Pump m s 11 Low Pressure Turbine 9 Moisture 4 Separator 10 m f 12 OFWH Turbine Low Steam Pressure Requires: Large turbine Lower rotational speed (1800 RPM) 13 Main Condensate Pump 1 W T2 Condenser fm g 8 Condenser Steam Side at Low Pressure Cooling water from sea, river or cooling tower W P1 7

32 PWR safety systems and containment to be discussed later in the course

33 MIT OpenCourseWare Engineering of Nuclear Systems Fall 2010 For information about citing these materials or our Terms of Use, visit:

BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering

BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering BWR Description Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering 22.06: Engineering of Nuclear Systems 1 Boiling Water Reactor (BWR) Public domain image by US NRC. 2 The BWR is

More information

Dynamic Behavior of BWR

Dynamic Behavior of BWR Massachusetts Institute of Technology Department of Nuclear Science and Engineering 22.06 Engineering of Nuclear Systems Dynamic Behavior of BWR 1 The control system of the BWR controls the reactor pressure,

More information

Physics and Engineering of the EPR

Physics and Engineering of the EPR Physics and Engineering of the EPR Keith Ardron UK Licensing Manager, UK Presentation to IOP Nuclear Industry Group Birchwood Park, Warrington UK, November 10 2010 EPRs in UK EPR is Generation 3+ PWR design

More information

Babcock & Wilcox Pressurized Water Reactors

Babcock & Wilcox Pressurized Water Reactors Babcock & Wilcox Pressurized Water Reactors Course Description Gary W Castleberry, PE This course provides an overview of the reactor and major reactor support systems found in a Babcock & Wilcox (B&W)

More information

5.2. Vaporizers - Types and Usage

5.2. Vaporizers - Types and Usage 5.2. Vaporizers - Types and Usage 5.2.1. General Vaporizers are constructed in numerous designs and operated in many modes. Depending upon the service application the design, construction, inspection,

More information

C. starting positive displacement pumps with the discharge valve closed.

C. starting positive displacement pumps with the discharge valve closed. KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

More information

WWER Type Fuel Manufacture in China

WWER Type Fuel Manufacture in China WWER Type Fuel Manufacture in China Yang Xiaodong P.O. Box 273, CJNF, YiBin City, Sichuan, China, [Fax: (+86)8318279161] Abstract: At CJNF, a plan was established for implementation of technical introduction

More information

Boiling Water Reactor Systems

Boiling Water Reactor Systems Boiling Water (BWR) s This chapter will discuss the purposes of some of the major systems and components associated with a boiling water reactor (BWR) in the generation of electrical power. USNRC Technical

More information

4. Reactor AP1000 Design Control Document CHAPTER 4 REACTOR. 4.1 Summary Description

4. Reactor AP1000 Design Control Document CHAPTER 4 REACTOR. 4.1 Summary Description CHAPTER 4 REACTOR 4.1 Summary Description This chapter describes the mechanical components of the reactor and reactor core, including the fuel rods and fuel assemblies, the nuclear design, and the thermal-hydraulic

More information

Pressurized Water Reactor Systems

Pressurized Water Reactor Systems Pressurized Water Reactor (PWR) Systems For a nuclear power plant to perform the function of generating electricity, many different systems must perform their functions. These functions may range from

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

How To Clean Up A Reactor Water Cleanup

How To Clean Up A Reactor Water Cleanup General Electric Systems Technology Manual Chapter 2.8 Reactor Water Cleanup System TABLE OF CONTENTS 2.8 REACTOR CLEANUP SYSTEM... 1 2.8.1 Introduction... 2 2.8.2 System Description... 2 2.8.3 Component

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

How To Understand And Understand Tvo

How To Understand And Understand Tvo Nuclear Power Plant Unit Olkiluoto Contents TVO a pioneer in its own field Olkiluoto One unit, many buildings n PRIMARY CIRCUIT Reactor pressure vessel and internal structures Reactor core and fuel Reactor

More information

Supercritical Rankine Cycle

Supercritical Rankine Cycle Supercritical Rankine Cycle A synopsis of the cycle, it s background, potential applications and engineering challenges. Shane Hough 04/07/09 (ME-517) Abstract The Rankine cycle has been using water to

More information

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called...

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... KNOWLEDGE: K1.01 [2.7/2.8] B558 Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... A. fissile materials. B. fission product poisons.

More information

the westinghouse pressurized water reactor nuclear power plant

the westinghouse pressurized water reactor nuclear power plant the westinghouse pressurized water reactor nuclear power plant Copyright 1984 Westinghouse Electric Corporation Water Reactor Divisions No part of this book may be reproduced in any form without permission

More information

HOW DOES A NUCLEAR POWER PLANT WORK?

HOW DOES A NUCLEAR POWER PLANT WORK? HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does

More information

Desuperheater Online Program Sizing Guidance

Desuperheater Online Program Sizing Guidance Local regulations may restrict the use of this product to below the conditions quoted. In the interests of development and improvement of the product, we reserve the right to change the specification without

More information

TEMA DESIGNATIONS OF HEAT EXCHANGERS REMOVABLE BUNDLE EXCHANGERS NON REMOVABLE BUNDLE EXCHANGERS SOURCE: WWW.WERMAC.ORG/

TEMA DESIGNATIONS OF HEAT EXCHANGERS REMOVABLE BUNDLE EXCHANGERS NON REMOVABLE BUNDLE EXCHANGERS SOURCE: WWW.WERMAC.ORG/ TEMA DESIGNATIONS OF HEAT EXCHANGERS Because of the number of variations in mechanical designs for front and rear heads and shells, and for commercial reasons, TEMA has designated a system of notations

More information

Operational Reactor Safety 22.091/22.903

Operational Reactor Safety 22.091/22.903 Operational Reactor Safety 22.091/22.903 Professor Andrew C. Kadak Professor of the Practice Lecture 19 Three Mile Island Accident Primary system Pilot operated relief valve Secondary System Emergency

More information

NUCLEAR POWER PLANT SYSTEMS and OPERATION

NUCLEAR POWER PLANT SYSTEMS and OPERATION Revision 4 July 2005 NUCLEAR POWER PLANT SYSTEMS and OPERATION Reference Text Professor and Dean School of Energy Systems and Nuclear Science University of Ontario Institute of Technology Oshawa, Ontario

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

Boiling Water Reactor Basics

Boiling Water Reactor Basics Boiling Water Reactor Basics Larry Nelson November 2008 Overview Big Picture - BWR Plants Major Components BWR Evolution BWR Features vs. PWR Features Electrochemical Potential (ECP) Concept ECP Monitoring

More information

Retrieval of Damaged Components form Experimental Fast Reactor Joyo Reactor Vessel

Retrieval of Damaged Components form Experimental Fast Reactor Joyo Reactor Vessel Retrieval of Damaged Components form Experimental Fast Reactor Joyo Reactor Vessel June. 8 th, 2010 Yukimoto MAEDA Japan Atomic Energy Agency (JAEA) Experimental fast reactor Joyo Joyo (Oarai R&D Center)

More information

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares

More information

Numerical Investigation of Natural Circulation During a Small Break LOCA Scenarios in a PWR-System Using the TRACE v5.0 Code

Numerical Investigation of Natural Circulation During a Small Break LOCA Scenarios in a PWR-System Using the TRACE v5.0 Code Numerical Investigation of Natural Circulation During a Small Break LOCA Scenarios in a PWR-System Using the TRACE v5.0 Code ABSTRACT E. Coscarelli, A. Del Nevo University of Pisa San Piero a Grado Nuclear

More information

Technical Challenges for Conversion of U.S. High-Performance Research Reactors (USHPRR)

Technical Challenges for Conversion of U.S. High-Performance Research Reactors (USHPRR) Technical Challenges for Conversion of U.S. High-Performance Research Reactors (USHPRR) John G. Stevens, Ph.D. Argonne National Laboratory Technical Lead of Reactor Conversion GTRI USHPRR Conversion Program

More information

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment K. Litfin, A. Batta, A. G. Class,T. Wetzel, R. Stieglitz Karlsruhe Institute of Technology Institute for Nuclear and Energy

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

How To Use An Akua Magnetic Lime Scale Preventing Device

How To Use An Akua Magnetic Lime Scale Preventing Device AKUA MAGNETIC LIMESCALE PREVENTING DEVICES INTRODUCTION AND OPERATING MANUAL This manual contains information about Akua Magnetic Lime Scale Preventing devices, their assembly and usage rules. In order

More information

V K Raina. Reactor Group, BARC

V K Raina. Reactor Group, BARC Critical facility for AHWR and PHWRs V K Raina Reactor Group, BARC India has large reserves of Thorium Critical facility Utilisation of Thorium for power production is a thrust area of the Indian Nuclear

More information

SECTION 3: CLARIFICATION AND UTILITIES (1)

SECTION 3: CLARIFICATION AND UTILITIES (1) CHPR4402 Chemical Engineering Design Project The University of Western Australia SECTION 3: CLARIFICATION AND UTILITIES (1) Aaliyah Hoosenally 10428141 TEAM A: ALCOHOLICS ANONYMOUS AALIYAH HOOSENALLY,

More information

Pressurized Water Reactor B&W Technology Crosstraining Course Manual. Chapter 9.0. Integrated Control System

Pressurized Water Reactor B&W Technology Crosstraining Course Manual. Chapter 9.0. Integrated Control System Pressurized Water Reactor B&W Technology Crosstraining Course Manual Chapter 9.0 Integrated Control System TABLE OF CONTENTS 9.0 INTEGRATED CONTROL SYSTEM... 1 9.1 Introduction... 1 9.2 General Description...

More information

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Nitesh B. Dahare Student, M.Tech (Heat power Engg.) Ballarpur Institute of Technology,

More information

Selecting TEMA Type Heat Exchangers

Selecting TEMA Type Heat Exchangers Selecting TEMA Type Heat Exchangers TEMA is a set of standards developed by leading heat exchanger manufacturers that defines the heat exchanger style and the machining and assembly tolerances to be employed

More information

PLATE HEAT EXCHANGER. Installation Manual. Customer Name: Serial number: Purchase order number: Project:

PLATE HEAT EXCHANGER. Installation Manual. Customer Name: Serial number: Purchase order number: Project: PLATE HEAT EXCHANGER Installation Manual Customer Name: Serial number: Purchase order number: Project: Table of Contents ----------------------------------------------------------------- Page: 2 3 Name

More information

A PROCESS-INHERENT, ULTIMATE-SAFETY (PIUS), BOILING-WATER REACTOR

A PROCESS-INHERENT, ULTIMATE-SAFETY (PIUS), BOILING-WATER REACTOR A PROCESS-INHERENT, ULTIMATE-SAFETY (PIUS), BOILING-WATER REACTOR Charles W. Forsberg Oak Ridge National Laboratory* P.O. Box X Oak Ridge, Tennessee 37831 (615) 574-6783 Summary fcr 1985 American Nuclear

More information

The soot and scale problems

The soot and scale problems Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

THREE MILE ISLAND ACCIDENT

THREE MILE ISLAND ACCIDENT THREE MILE ISLAND ACCIDENT M. Ragheb 4/12/2011 1. INTRODUCTION The Three Mile Island (TMI) Accident at Harrisburg, Pennsylvania in the USA is a severe and expensive incident that has seriously affected,

More information

FLASH TANK ECONOMIZER PRODUCT GUIDE

FLASH TANK ECONOMIZER PRODUCT GUIDE FLASH TANK ECONOMIZER PRODUCT GUIDE Overview A flash tank is used to recover blowdown energy in the form of flash steam and blowdown. This can only be used with a deaerator or some other pressurized device.

More information

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

Accidents of loss of flow for the ETTR-2 reactor: deterministic analysis

Accidents of loss of flow for the ETTR-2 reactor: deterministic analysis NUKLEONIKA 2000;45(4):229 233 ORIGINAL PAPER Accidents of loss of flow for the ETTR-2 reactor: deterministic analysis Ahmed Mohammed El-Messiry Abstract The main objective for reactor safety is to keep

More information

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler [N.2.1.1] R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler (Environment-Friendly, High-Efficiency Boiler Group) Takashi Murakawa, Yasuhiro Kotani, Kazuhiro Kamijo, Koichi Tsujimoto, Hiroshi

More information

Overview. Introduction Cooling Tower Basics Principles of Operation Types of Cooling Towers Common Applications Design Considerations

Overview. Introduction Cooling Tower Basics Principles of Operation Types of Cooling Towers Common Applications Design Considerations Stephen Lowe ASHRAE Hampton Roads Chapter Past President AECOM Design Mechanical Engineering Discipline Manager, Virginia Beach Division Professional Engineer Commonwealth of Virginia, NCEES BSME University

More information

CFD Topics at the US Nuclear Regulatory Commission. Christopher Boyd, Ghani Zigh Office of Nuclear Regulatory Research June 2008

CFD Topics at the US Nuclear Regulatory Commission. Christopher Boyd, Ghani Zigh Office of Nuclear Regulatory Research June 2008 CFD Topics at the US Nuclear Regulatory Commission Christopher Boyd, Ghani Zigh Office of Nuclear Regulatory Research June 2008 Overview Computational Fluid Dynamics (CFD) is playing an ever increasing

More information

DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING

DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING By Philip Sutter Pick Heaters, Inc. DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING INTRODUCTION Many process plants currently use steam or hot water to heat jacketed devices such as tanks,

More information

Best Practice in Boiler Water Treatment

Best Practice in Boiler Water Treatment Best Practice in Boiler Water Treatment Boiler Water Treatment Part 2 Internal Treatment Objectives of Internal Water Treatment 1 To control the level of total dissolved solids (TDS) within the boiler

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

Injection molding equipment

Injection molding equipment Injection Molding Process Injection molding equipment Classification of injection molding machines 1. The injection molding machine processing ability style clamping force(kn) theoretical injection volume(cm3)

More information

WASHING PROCESS OF CARGO TANKS ON TANKERS FOR TRANSPORTATION OF CRUDE OIL

WASHING PROCESS OF CARGO TANKS ON TANKERS FOR TRANSPORTATION OF CRUDE OIL WASHING PROCESS OF CARGO TANKS ON TANKERS FOR TRANSPORTATION OF CRUDE OIL Siniša Stojan, Ph.D. student Damir Dražić, Ph.D. student Brodotrogir, HR - 21220 Trogir, Croatia sinisa.stojan@brodotrogir.hr,

More information

VAD. Variable Area Desuperheaters

VAD. Variable Area Desuperheaters Desuperheater overview Steam used in process plants can be superheated, that is, heated to a temperature above saturation. The excess of temperature above its saturation is called 'superheat'. Desuperheated

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

VAD Variable Area Desuperheaters

VAD Variable Area Desuperheaters Local regulations may restrict the use of this product to below the conditions quoted. In the interests of development and improvement of the product, we reserve the right to change the specification without

More information

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I A.S. Gerasimov, G.V. Kiselev, L.A. Myrtsymova State Scientific Centre of the Russian Federation Institute of Theoretical

More information

BB-18 Black Body High Vacuum System Technical Description

BB-18 Black Body High Vacuum System Technical Description BB-18 Black Body High Vacuum System Technical Description The BB-18 Black Body is versatile and is programmed for use as a fixed cold target at 80 K or variable target, at 80 K- 350 K no extra cost. The

More information

THE COMPARISON OF THE PERFORMANCE FOR THE ALLOY FUEL AND THE INTER-METALLIC DISPERSION FUEL BY THE MACSIS-H AND THE DIMAC

THE COMPARISON OF THE PERFORMANCE FOR THE ALLOY FUEL AND THE INTER-METALLIC DISPERSION FUEL BY THE MACSIS-H AND THE DIMAC THE COMPARISON OF THE PERFORMANCE FOR THE ALLOY FUEL AND THE INTER-METALLIC DISPERSION FUEL BY THE MACSIS-H AND THE DIMAC Byoung-Oon Lee, Bong-S. Lee and Won-S. Park Korea Atomic Energy Research Institute

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel

Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel Fukushima 2011 Safety of Nuclear Power Plants Earthquake and Tsunami Accident initiators and progression Jan Leen Kloosterman Delft University of Technology 1 2 Nuclear fission Distribution of energy radioactive

More information

CFD simulation of fibre material transport in a PWR core under loss of coolant conditions

CFD simulation of fibre material transport in a PWR core under loss of coolant conditions CFD simulation of fibre material transport in a PWR core under loss of coolant conditions T. Höhne, A. Grahn, S. Kliem Forschungszentrum Dresden- Rossendorf (FZD) Institut für Sicherheitsforschung Postfach

More information

Nuclear power plant systems, structures and components and their safety classification. 1 General 3. 2 Safety classes 3. 3 Classification criteria 3

Nuclear power plant systems, structures and components and their safety classification. 1 General 3. 2 Safety classes 3. 3 Classification criteria 3 GUIDE 26 June 2000 YVL 2.1 Nuclear power plant systems, structures and components and their safety classification 1 General 3 2 Safety classes 3 3 Classification criteria 3 4 Assigning systems to safety

More information

www.klmtechgroup.com TABLE OF CONTENT

www.klmtechgroup.com TABLE OF CONTENT Page : 1 of 24 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia S TABLE OF CONTENT SCOPE 2 DEFINITIONS

More information

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11.

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11. Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions Nici Bergroth, Fortum Oyj FORS-seminar 26.11.2009, Otaniemi Loviisa 3 CHP Basis for the Loviisa 3 CHP alternative Replacement

More information

Pressurized Water Reactor Power Plant

Pressurized Water Reactor Power Plant Pressurized Water Reactor Power Plant This material was, for a purpose to be used in a nuclear education, compiled comprehensively with a caution on appropriateness and neutrality of information, based

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

ELECTRODE BOILERS VAPOR POWER INTERNATIONAL

ELECTRODE BOILERS VAPOR POWER INTERNATIONAL ELECTRODE BOILERS WITH JET-FLO Technology VAPOR POWER INTERNATIONAL ELECTRODE boilers The Electrode Steam Boiler with Jet-Flo technology consists of an insulated pressure vessel and is fully enclosed in

More information

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained

More information

The Physics of Energy sources Nuclear Reactor Practicalities

The Physics of Energy sources Nuclear Reactor Practicalities The Physics of Energy sources Nuclear Reactor Practicalities B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Reactor 1 Commonalities between reactors All reactors will have the same

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

Achim Beisiegel Fouad El-Rharbaoui Michael Wich. AREVA GmbH, Technical Center, 63791 Karlstein, Seligenstädter Strasse 100, Germany

Achim Beisiegel Fouad El-Rharbaoui Michael Wich. AREVA GmbH, Technical Center, 63791 Karlstein, Seligenstädter Strasse 100, Germany Achim Beisiegel Fouad El-Rharbaoui Michael Wich AREVA GmbH, Technical Center, 63791 Karlstein, Seligenstädter Strasse 100, Germany 1 Introduction AREVA GmbH operates a unique Thermal-hydraulic platform

More information

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences

More information

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng Condensing Economizers Workshop Enbridge Gas, Toronto MENEX Boiler Plant Heat Recovery Technologies Prepared by: Jozo Martinovic, M A Sc, P Eng MENEX Innovative Solutions May 15, 2008 MENEX INC. 683 Louis

More information

Boiling Water Reactor Power Plant

Boiling Water Reactor Power Plant Boiling Water Reactor Power Plant This material was, for a purpose to be used in a nuclear education, compiled comprehensively with a caution on appropriateness and neutrality of information, based on

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER G: INSTRUMENTATION AND CONTROL

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER G: INSTRUMENTATION AND CONTROL SUB-CHAPTER: G.5 PAGE : 1 / 37 SUB CHAPTER G.5 INSTRUMENTATION 0. SAFETY REQUIREMENTS 0.1. SAFETY FUNCTIONS The instrumentation is directly involved in the three fundamental safety functions: Reactivity

More information

Cooking at the Speed of light!

Cooking at the Speed of light! Cooking at the Infrared Cooking & Colouring Infrabaker is a modular infrared continuous cooking system developed by Infrabaker International. The machine is designed to cook and/or put colour on a wide

More information

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual. Version 2.0 Beta DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

More information

BEST-ESTIMATE TRANSIENT ANALYSIS WITH SKETCH-INS/TRAC-BF1, ASSESSMENT AGAINST OECD/NEA BWR TURBINE TRIP BENCHMARK ABSTRACT

BEST-ESTIMATE TRANSIENT ANALYSIS WITH SKETCH-INS/TRAC-BF1, ASSESSMENT AGAINST OECD/NEA BWR TURBINE TRIP BENCHMARK ABSTRACT BEST-ESTIMATE TRANSIENT ANALYSIS WITH SKETCH-INS/TRAC-BF1, ASSESSMENT AGAINST OECD/NEA BWR TURBINE TRIP BENCHMARK Hideaki Utsuno, Fumio Kasahara Nuclear Power Engineering Corporation (NUPEC) Fujita kanko

More information

GNS Activities - Solutions for Russian Spent Fuel -

GNS Activities - Solutions for Russian Spent Fuel - GNS Activities - Solutions for Russian Spent Fuel - Bulgarian nuclear energynational, regional and world energy safety June 09-11, 2010 Varna, Bulgaria Dr. Felix Thomas GNS Gesellschaft für Nuklear-Service

More information

A Guide to Trouble-Free Cooling Towers

A Guide to Trouble-Free Cooling Towers A Guide to Trouble-Free Cooling Towers A basic understanding of cooling tower operation and maintenance will help keep a cooling water system running in top condition, year after year By David M. Suptic

More information

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine. EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy

More information

Direct steam injection humidifiers

Direct steam injection humidifiers Direct steam injection humidifiers Direct steam injection gives quality control of air humidity. Research and development in separation, the use of lightweight stainless steel combined a constant temperature

More information

Thermodynamical aspects of the passage to hybrid nuclear power plants

Thermodynamical aspects of the passage to hybrid nuclear power plants Energy Production and Management in the 21st Century, Vol. 1 273 Thermodynamical aspects of the passage to hybrid nuclear power plants A. Zaryankin, A. Rogalev & I. Komarov Moscow Power Engineering Institute,

More information

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Mark Schiffhauer, ATSI Engineering Services Cameron Veitch, Combustion and Energy Systems Scott Larsen, New York State Energy

More information

How To Understand Evaporator

How To Understand Evaporator SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.

More information

How To Improve Nuclear Power Plant Capacity Factor

How To Improve Nuclear Power Plant Capacity Factor 19th International Conference on Nuclear Engineering May 16-19, 2011, Chiba, Japan ICONE19-43791 IMPROVING NUCLEAR POWER PLANT'S OPERATIONAL EFFICIENCES IN THE USA Joseph S. Miller President and Principal

More information

TRAINING, EXAMINATION AND CERTIFICATION

TRAINING, EXAMINATION AND CERTIFICATION TECHNICAL STANDARDS & SAFETY AUTHORITY TRAINING, EXAMINATION AND CERTIFICATION REFRIGERATION OPERATOR CLASS B CERTIFICATION & EXAMINATION GUIDE REVISED EDITION 2 CERTIFICATIONS PERSUANT TO THE OPERATING

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

Summary Report of the EPRI Standard Radiation Monitoring Program

Summary Report of the EPRI Standard Radiation Monitoring Program Summary Report of the EPRI Standard Radiation Monitoring Program Dennis Hussey, Ph. D, dhussey@epri.com Electric Power Research Institute, 3420 Hillview Ave, Palo Alto, CA, 94304, USA Abstract: The Electric

More information

GAS COOLING SYSTEMS FOR STEAM REFORMING PLANTS

GAS COOLING SYSTEMS FOR STEAM REFORMING PLANTS GAS COOLING SYSTEMS FOR STEAM REFORMING PLANTS 1 1.1 INTRODUCTION is a leading and highly regarded supplier of components and systems for the petrochemical, chemical, refining & metallurgical industries.

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

Advances in Gas Cooler Design and the New Gas Cooler Product Selector

Advances in Gas Cooler Design and the New Gas Cooler Product Selector Advances in Gas Cooler Design and the New Gas Cooler Product Selector Simon Jones Engineering Manager Sean Armitage Sales Manager Introduction GEA Searle Over 90 years experience in the design and manufacture

More information

Preliminary validation of the APROS 3-D core model of the new Loviisa NPP training simulator

Preliminary validation of the APROS 3-D core model of the new Loviisa NPP training simulator Preliminary validation of the APROS 3-D core model of the new Loviisa NPP training simulator Anssu Ranta-aho, Elina Syrjälahti, Eija Karita Puska VTT Technical Research Centre of Finland P.O.B 1000, FI-02044

More information

I. STEAM GENERATION, BOILER TYPES

I. STEAM GENERATION, BOILER TYPES I. STEAM GENERATION, BOILER TYPES and BOILER PLANT SYSTEMS 1 Steam Generation Water s Unique Properties: High Thermal Capacity (Specific Heat) High Critical Temperature Ideal Medium for Heat Delivery High

More information

Cooling Systems 2/18/2014. Cooling Water Systems. Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX

Cooling Systems 2/18/2014. Cooling Water Systems. Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX Cooling Systems Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX Cooling Water Systems Water is used for cooling because of its capacity to remove and store heat and availability. Cooling water is used in

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there

More information

Boiling Water Reactor Simulator with Active Safety Systems

Boiling Water Reactor Simulator with Active Safety Systems Boiling Water Reactor Simulator with Active Safety Systems User Manual October 2009 INTERNATIONAL ATOMIC ENERGY AGENCY, 2009 The originating Section of this publication in the IAEA was: Nuclear Power Technology

More information

7.1 General 5 7.2 Events resulting in pressure increase 5

7.1 General 5 7.2 Events resulting in pressure increase 5 GUIDE YVL 2.4 / 24 Ma r ch 2006 Primary and secondary circuit pressure control at a nuclear power plant 1 Ge n e r a l 3 2 General design requirements 3 3 Pressure regulation 4 4 Overpressure protection

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information