A handy exact solution for flow due to a stretching boundary with partial slip

Size: px
Start display at page:

Download "A handy exact solution for flow due to a stretching boundary with partial slip"

Transcription

1 EDUCATION Revista Mexicana de Física E 59 (2013) JANUARY JUNE 2013 A handy exact solution for flow due to a stretching oundary with partial slip U. Filoello-Nino a, H. Vazquez-Leal a, Y. Khan, A. Perez-Sesma a, A. Diaz-Sanchez c, A. Herrera-May d, D. Pereyra-Diaz a, R. Castaneda-Sheissa, V.M. Jimenez-Fernandez a, and J. Cervantes-Perez a a University of Veracruz, Electronic Instrumentation and Atmospheric Sciences School, Cto. Gonzalo Aguirre Beltrán S/N, Zona Universitaria, Xalapa, Veracruz, México 91000, Department of Mathematics, Zhejiang University, Hangzhou , China. c National Institute for Astrophysics, Optics and Electronics, Electronics Department, Luis Enrique Erro #1, Tonantzintla, Puela, México. d Micro and Nanotechnology Research Center, University of Veracruz, Calzada Ruiz Cortines 455, Boca del Rio, Veracruz, Mexico, Received 27 Novemer 2012; accepted 21 March 2013 In this article we provide an exact solution to the nonlinear differential equation that descries the ehaviour of a flow due to a stretching flat oundary due to partial slip. For this, we take as a guide the search for an asymptotic solution of the aforementioned equation. Keywords: Nonlinear differential equations; partial slip; stretching oundary; non-newtonian fluids. PACS: d; x 1. Introduction The flow due to a stretching oundary is important in many engineering processes. For instance in the glass fire drawing, crystal growing, polymer industries [2], and extrusion processes for the production of plastic sheets [2,3,8,9,10], among many others. Unlike what happens with Newtonian fluids (water, mercury, glycerine, etc.) which usually use no slip oundary conditions, [7] (pages ), there are cases where partial slip etween the fluid and the moving surface may occur. Examples include emulsions, as mustard and paints; solutions of solids in liquids finely pulverized, such as the case of clay, and polymer solutions [4]. In these cases the oundary conditions are adequately descried y Navier s condition, which states that the amount of relative slip is proportional to local shear stress [4]. As aforementioned, in this study we provide an exact solution to the nonlinear differential equation that descries the ehaviour of a flow due to partial slip, and therefore a non Newtonian fluid should e involved. Nevertheless for the sake of simplicity, we will consider the adequate limit cases, in order to justify the use of Newtonian equations for fluids. For instance, the Newtonian approximation for Bingham plastics (like the clay) amounts to consider fluids, in the limit of small values of the so called, yield stress [1] (page. 233). On the other hand, for the case of pseudo-plastic non Newtonian fluids (generally, aqueous solutions of water solule polymers show this ehaviour), their Newtonian limit amounts to consider the limits for large values of shear rate and apparent viscosity constant [1] (page. 233). Although there are solutions to this prolem [8,9,10], the solving procedures are not easy to follow for undergraduates in physics, mathematics and engineering. Therefore, we propose a straightforward methodology, ased on elementary differential and integral calculus, employing as a guide the search for an asymptotic solution of the afore mentioned prolem. The systematic procedures used to determine qualitatively, the asymptotic ehaviour for solutions of a differential equation, elong to the qualitative theory of nonlinear differential equations [11] (page. 334). Unlike the aove, this study proposes an asymptotic analytical solution, which turns out to e the exact solution of the prolem. 2. Governing Equations Consider a two dimensional stretching oundary (see Fig. 1). Where the velocity of the oundary is approximately proportional to the distance X to the origin [6], so that U = X. (1) Let (u, v) e the fluid velocities in the (X, Y ) directions, respectively. In this case, the oundary conditions are adequately descried y Navier s condition which states that the amount of relative slip is proportional to local shear stress. u(x, 0) U = kν u (X, 0), (2) Y where k is a proportional constant and ν is the kinematic viscosity of the ulk fluid. The relevant equations for this case are Navier-Stokes and continuity uu X + vu Y + p X ρ ν(u XX + u Y Y ) = 0, (3) uv X + vv Y + p Y ρ ν(v XX + v Y Y ) = 0, (4) u X + v Y = 0, (5) where ρ and p are density and pressure, respectively.

2 52 U. FILOBELLO-NINO et al that is u X ν y (x), (8) where prime denotes differentiation with respect to x. Since y = y(x), after integrating (8), we otain u ν y (x)x, (9) (y choosing an aritrary function of x, zero). In order to simplify the equations of motion, we introduce the following constant of proportionality into (6) FIGURE 1. Schematic showing a stretching oundary. v = νy(x), (10) and, therefore, (9) is rewritten as u = y (x)x. (11) Thus, expressing velocity field according to (10), (11), and (7); (5) is automatically satisfied. Next, we will show that (3) adopts a simpler form under these assumptions. By using (7), (10), and (11), (3) can e rewritten as uy (x) + ν vxy (x) p x ρ 2 Xy (x) = 0, (12) FIGURE 2. Source in front of a wall. In order to satisfy the equation of incompressiility (5), we will motivate a transformation, which contains implicitly the functional form of the velocity field. We will see that in this fashion, the motion equations are reduced to a single ordinary nonlinear differential equation. To this end, consider the case of a source of intensity Q in front of a wall (axis X), as it is shown in Fig. 2 [1]. By symmetry arguments, it is expected that streamlines pattern shown in Fig. 2 have, in general terms, a symmetry similar to those in Fig. 1 as a increases. From [1] it is possile to show that the value of v component, when a, is v(y ) = Y Q 2πa 2, noticing that v < 0 and it is only a function of Y. Using as a guide the aove argument, we define a function y(x), such that v y(x), (6) where y(x) 0, 0 x < and x = Y ν. (7) From (5) and (6) we deduce that u X = v Y y Y (x) = ν y (x), where we have employed the chain rule from differential calculus. It should e noted that p x = 0, since the fluid motion is caused y the fluid eing dragged along y the moving oundary, therefore uy (x) + ν vxy (x) 2 Xy (x) = 0, (13) sustituting (10) and (11) into (13), we otain y y 2 + yy = 0. (14) To deduce the oundary conditions of (14), we see that v(y = 0) = 0, (see Fig. 1); therefore, from (7) and (10), is clear that y(0) = 0, (15) in the same way, from the condition lim u(x, Y ) = 0, Y and (7) (see Fig. 1), we otain the following oundary condition y ( ) = 0. (16) To conclude, y sustituting (1) and (11) into the Navier s condition (2), we otain Xy (0) X = kν u (X, 0), (17) Y y the chain rule we rewrite (17) as ( ) ( u dx Xy (0) X = kν (X, 0) x dy ), (18)

3 A HANDY EXACT SOLUTION FOR FLOW DUE TO A STRETCHING BOUNDARY WITH PARTIAL SLIP 53 after sustituting (7) and (11) we get where we have defined y (0) = 1 + Ky (0), (19) K = k ν. (20) In the next section we will solve (14) with oundary conditions (15), (16), and (18). 3. The Exact solution of a two dimensional Viscous Flow Equation In order to otain an exact solution for (14) we take as a guide the search for an asymptotic solution of the same equation. Rewriting (14) in the form and defining it is possile to express (21) as and the derivative of (21) as follows y = y 2 y y, (21) y 1 = y, (22) y 1 y yy 1 = 0, (23) y 1 = y 1(2y 1 y 1 y 1 ) y 1 (y 2 1 y y ). (24) Equations (23) and (24) take the following limit forms when y 1 ( ) 0 (oundary condition (16)) y 1 + Ly 1 = 0, (25) y 2 1 y 1y 1 = 0, (26) (ecause the condition y 1 ( ) 0 implies that y( ) L, where L is constant. Also from Fig. 1 and (10), it follows that v < 0 and L > 0). Taking the square of (25) and sustituting into (26), we otain y 1 = L 2 y 1. (27) In order to solve (27), we propose the following change of variale z = y 1, (28) in such a way that (27) adopts the form Equation (29) has the known solution z = L 2 z. (29) z(x) = A exp(lx) + B exp( Lx), (30) where A and B are constants. To avoid that z, when x (from (16), (22), and (28) is clear that z 0 for that limit), we choose A = 0 so that (30) adopts the simpler form also, from (28) and (31), we otain z(x) = B exp( Lx), (31) y 1 = B exp( Lx), (32) therefore, after integrating the aove equation, we otain y 1 = B L exp( Lx) + c 1. (33) The condition y 1 ( ) = 0 (see (16) and (22)) leads to c 1 = 0, therefore after integrating (34), is otained y 1 = B exp( Lx), (34) L y(x) = B L 2 exp( Lx) + c 2. (35) Since y(0) = 0, then c 2 = (B/L 2 ), and (35) ecomes y(x) = B (exp( Lx) 1). (36) L2 Finally, the condition y( ) L is satisfied y choosing B = L 3, so that and y(x) = L(1 exp( Lx)). (37) On the other hand, from (37), we deduce that y (0) = L 2, (38) y (0) = L 3. (39) The sustitution of (38) and (39) into (19) leads to a general relation etween K and the asymptotic form of the solution given y y = L KL 3 + L 2 = 1. (40) For the case K = 0 [4,5], (40) and (37) adopt the form respectively. L = 1, (41) y(x) = 1 exp( x), 0 x, (42)

4 54 4. U. FILOBELLO-NINO et al Discussion The sustitution of (37) into (14) reveals that (37) is, indeed, an exact general solution not just an approximation; although our process was aimed to find an asymptotic solution that would satisfy oundary conditions (15), (16), and (19). As a matter of fact, for the particular case of inviscid flow K = 0 ((41) and (42)) was reported in [4,5] as a rare closed exact solution for (14). F IGURE 5. Streamlines for K = 0. F IGURE 3. Function y(x) for several values of K. It is noteworthy that (40) relates the asymptotic form of the solution y = L with the constant K, and the latter is related to the fluid viscosity (see (20)); so that, in principle, (40) determines in advance the asymptotic value of the solution, from the value of the viscosity. Similarly, (39) and (40) provide a general way to determine the value of y 00 (0) in terms of K. These values are often difficult to calculate and in the literature can e found tales that provide some values ut just for a few values of K [4]. Figure 3 and Fig. 4 show functions y(x) and y 0 (x) respectively for various values of K; these functions determine the velocity field through (10) and (11). Figure 5 shows a sketch for several streamlines when K = Conclusion An important task is to find analytic expressions that provide a good description of the solution to the nonlinear differential equations like (14). For instance, the flow induced y a stretching sheet is adequately descried y (37) and (40). An important result for practical applications it follows that (40) relates the asymptotic form of the solution y = L, with the fluid viscosity, so that in principle (40) determines in advance the asymptotic value of the solution from the value of the viscosity. This work showed, y means of a simple procedure, that some nonlinear differential equations may e solved in exact form taking as a guide the search for an asymptotic solution of the same equation. Is clear that this procedure could e useful, at least, to find approximate solutions for some equations. F IGURE 4. Function y 0 (x) for several values of K. 1. W.F. Hughes and J.A. Brighton, Dina mica De Los Fluidos (Mc Graw Hill. 1967). 2. V. Aliakar, A. Alizadeh- Pahlavan and K. Sadaghy, Nonlinear Sciences and Numerical Simulation, Elsevier (2007) M.M. Rashidi and D.D. Gangi, J. Homotopy perturation method for solving flow in the extrusion processes.ije Transactions A: Basics 23 (2010) C.Y. Wang, Chemical Engineering Science 23 (2002) L.J. Crane, Flow past a stretching plate. Zeitschrift fuer Angewandte Mathematik und Physik 21 (1970) J. Vleggar, Chemical Engineering Science 32 (1977) B.R. Munson, D.F. Young and T.H. Okiishi, Fundamentals of Fluid Mechanics (John Wiley and Sons, Inc. Copyright 2002). 8. H.I. Anderson, Acta Mech. 158 (2002) C.Y. Wang, Nonlinear Anal. Real World Appl. 10 (2009)

5 A HANDY EXACT SOLUTION FOR FLOW DUE TO A STRETCHING BOUNDARY WITH PARTIAL SLIP T. Fang, J. Zhang, and S. Yao, Commun Nonlinear Sci. Numer. Simul. 14 (2009) F. Simmons, Ecuaciones Diferenciales con Aplicaciones y Notas Históricas (Mc Graw Hill. 1977).

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2004-05 MODULE TITLE: Fluid mechanics DURATION OF EXAMINATION:

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY

PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY PUMP CLINIC 22 VISCOSITY The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move

More information

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The Boundary-Layer Concept Boundary-Layer Thicknesses Laminar Flat-Plate Boundary Layer: Exact Solution Momentum

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Strain and deformation

Strain and deformation Outline Strain and deformation a global overview Mark van Kraaij Seminar on Continuum Mechanics Outline Continuum mechanics Continuum mechanics Continuum mechanics is a branch of mechanics concerned with

More information

Fig. 1. The velocity distribution will be linear over the distance dx, and experiments show that the velocity

Fig. 1. The velocity distribution will be linear over the distance dx, and experiments show that the velocity Viscosity The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move in relation to

More information

Fluid Dynamics and the Navier-Stokes Equation

Fluid Dynamics and the Navier-Stokes Equation Fluid Dynamics and the Navier-Stokes Equation CMSC498A: Spring 12 Semester By: Steven Dobek 5/17/2012 Introduction I began this project through a desire to simulate smoke and fire through the use of programming

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

More information

Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients

Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 28, 1395-1407 Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients Lin Jin Modern Educational Technology

More information

1 Lecture 19: Implicit differentiation

1 Lecture 19: Implicit differentiation Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

ω h (t) = Ae t/τ. (3) + 1 = 0 τ =.

ω h (t) = Ae t/τ. (3) + 1 = 0 τ =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.004 Dynamics and Control II Fall 2007 Lecture 2 Solving the Equation of Motion Goals for today Modeling of the 2.004 La s rotational

More information

Chapter 7. Potential flow theory. 7.1 Basic concepts. 7.1.1 Velocity potential

Chapter 7. Potential flow theory. 7.1 Basic concepts. 7.1.1 Velocity potential Chapter 7 Potential flow theory Flows past immersed bodies generate boundary layers within which the presence of the body is felt through viscous effects. Outside these boundary layers, the flow is typically

More information

Governing Equations of Fluid Dynamics

Governing Equations of Fluid Dynamics Chapter 2 Governing Equations of Fluid Dynamics J.D. Anderson, Jr. 2.1 Introduction The cornerstone of computational fluid dynamics is the fundamental governing equations of fluid dynamics the continuity,

More information

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

More information

Rheological Properties of Topical Formulations

Rheological Properties of Topical Formulations Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency

More information

MHD boundary layer flow of a non-newtonian power-law fluid on a moving flat plate

MHD boundary layer flow of a non-newtonian power-law fluid on a moving flat plate Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 202, 3 (3):472-48 ISSN: 0976-860 CODEN (USA): AASRFC MHD boundary layer flow of a non-newtonian power-law fluid

More information

Counting Primes whose Sum of Digits is Prime

Counting Primes whose Sum of Digits is Prime 2 3 47 6 23 Journal of Integer Sequences, Vol. 5 (202), Article 2.2.2 Counting Primes whose Sum of Digits is Prime Glyn Harman Department of Mathematics Royal Holloway, University of London Egham Surrey

More information

Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate

Blasius solution. Chapter 19. 19.1 Boundary layer over a semi-infinite flat plate Chapter 19 Blasius solution 191 Boundary layer over a semi-infinite flat plate Let us consider a uniform and stationary flow impinging tangentially upon a vertical flat plate of semi-infinite length Fig

More information

Non-Newtonian Flows. R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University. τ = ηθ

Non-Newtonian Flows. R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University. τ = ηθ Non-Newtonian Flows R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University Fluids such as water, air, ethanol, and benzene are Newtonian. This means that a plot

More information

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 Lagrangians and Hamiltonians for High School Students John W. Norbury Physics Department and Center for Science Education, University of Wisconsin-Milwaukee,

More information

Viscosity Measurement Guide

Viscosity Measurement Guide Viscosity Measurement Guide For using Viscotester 3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan http://www.rion.co.jp/english/ Contents Introduction...1 What is viscosity?...2 Viscosity unit:

More information

ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW

ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW Engineering MECHANICS, Vol. 21, 2014, No. 6, p. 371 379 371 ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW Jaroslav Štigler* A new analytical formula of the velocity profile for both

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1. Governing Equations of Fluid Flow and Heat Transfer Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

More information

1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) 1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

More information

Determination of Viscosity Using A Brookfield Viscometer for Conditioning Polymers

Determination of Viscosity Using A Brookfield Viscometer for Conditioning Polymers LUBRIZOL TEST PROCEDURE TP-N01004 Edition: December 2, 2013 Previous Editions: August 10, 2000 / November 1, 2011 Determination of Viscosity Using A Brookfield Scope A material's flow property is an important

More information

Introduction to Turbulent Flow

Introduction to Turbulent Flow CBE 6333, R. Levicky 1 Introduction to Turbulent Flow Turbulent Flow. In turbulent flow, the velocity components and other variables (e.g. pressure, density - if the fluid is compressible, temperature

More information

THE EFFECTS OF DUCT SHAPE ON THE NUSSELT NUMBER

THE EFFECTS OF DUCT SHAPE ON THE NUSSELT NUMBER Mathematical and Computational pplications, Vol, No, pp 79-88, 5 ssociation for Scientific Research THE EFFECTS OF DUCT SHPE ON THE NUSSELT NUMBER M Emin Erdoğan and C Erdem Imrak Faculty of Mechanical

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE. Fluid Mechanics. Lecture 3 - Solved Examples (7 examples) - Home works

ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE. Fluid Mechanics. Lecture 3 - Solved Examples (7 examples) - Home works ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE Fluid Mechanics Lecture 3 - Solved Examples (7 examples) - Home works By Dr. Fahid Abbas Tofiq 1 Example 1: A plate 0.025 mm distant from

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Chapter 1 Vectors, lines, and planes

Chapter 1 Vectors, lines, and planes Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.

More information

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

More information

I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei

I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei 1 I-campus project School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows K. P. Burr, T. R. Akylas & C. C. Mei CHAPTER TWO TWO-DIMENSIONAL LAMINAR BOUNDARY LAYERS 1 Introduction.

More information

FLUID MECHANICS FOR CIVIL ENGINEERS

FLUID MECHANICS FOR CIVIL ENGINEERS FLUID MECHANICS FOR CIVIL ENGINEERS Bruce Hunt Department of Civil Engineering University Of Canterbury Christchurch, New Zealand? Bruce Hunt, 1995 Table of Contents Chapter 1 Introduction... 1.1 Fluid

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

CBE 6333, R. Levicky 1. Potential Flow

CBE 6333, R. Levicky 1. Potential Flow CBE 6333, R. Levicky Part I. Theoretical Background. Potential Flow Potential Flow. Potential flow is irrotational flow. Irrotational flows are often characterized by negligible viscosity effects. Viscous

More information

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

CBE 6333, R. Levicky 1 Fluid Kinematics and Constitutive Laws

CBE 6333, R. Levicky 1 Fluid Kinematics and Constitutive Laws CBE 6333, R. Levicky 1 Fluid Kinematics and Constitutive Laws In using the differential balance equations derived previously, it will be insightful to better understand the basic types of motion that a

More information

FLUID MECHANICS. Problem 2: Consider a water at 20 0 C flows between two parallel fixed plates.

FLUID MECHANICS. Problem 2: Consider a water at 20 0 C flows between two parallel fixed plates. FLUID MECHANICS Problem 1: Pressures are sometimes determined by measuring the height of a column of liquid in a vertical tube. What diameter of clean glass tubing is required so that the rise of water

More information

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in

More information

AA200 Chapter 9 - Viscous flow along a wall

AA200 Chapter 9 - Viscous flow along a wall AA200 Chapter 9 - Viscous flow along a wall 9.1 The no-slip condition 9.2 The equations of motion 9.3 Plane, Compressible Couette Flow (Review) 9.4 The viscous boundary layer on a wall 9.5 The laminar

More information

RHEOLOGY RHEOLOGY Science describing the flow and deformation of matter under stress. Rheo = the flow Viscosity (η) is the resistance of a fluid material to flow under stress. The higher the viscosity,

More information

Oversimplified Viscoelasticity

Oversimplified Viscoelasticity THE MAXWELL MODEL At time t = 0, suddenly deform to constant displacement X o. The force F is the same in the spring and the dashpot. F = K e X e = K v (dx v /dt) (1-20) X e is the displacement of the

More information

Non-Linear Regression 2006-2008 Samuel L. Baker

Non-Linear Regression 2006-2008 Samuel L. Baker NON-LINEAR REGRESSION 1 Non-Linear Regression 2006-2008 Samuel L. Baker The linear least squares method that you have een using fits a straight line or a flat plane to a unch of data points. Sometimes

More information

Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field

Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field DOI 1.1186/s464-15-197-1 RESEARCH Open Access Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field Sarveshanand 1,2* and A K Singh 2 *Correspondence:

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006). Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering

More information

Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere

Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x

More information

VISCOUS FLOW CALCULATIONS FOR UNDERGRADUATE FLUID MECHANICS EDUCATION USING MATLAB

VISCOUS FLOW CALCULATIONS FOR UNDERGRADUATE FLUID MECHANICS EDUCATION USING MATLAB ULIBTK 11 18. Ulusal Isı Bilimi ve Teknii Kongresi VISCOUS FLOW CALCULATIONS FOR UNDERGRADUATE FLUID MECHANICS EDUCATION USING MATLAB Barbaros ÇETN 1, Yakuphan ÖZTÜRK 2, Serdar TAZE 3 1,2,3 Middle East

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

More information

Optimal Control of Film Casting Processes

Optimal Control of Film Casting Processes Optimal Control of Film Casting Processes K. Selvanayagam Thomas Götz Abstract We present an optimal control approach for the isothermal film casting process with free surfaces described by averaged Navier

More information

3 The boundary layer equations

3 The boundary layer equations 3 The boundar laer equations Having introduced the concept of the boundar laer (BL), we now turn to the task of deriving the equations that govern the flow inside it. We focus throughout on the case of

More information

HOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba

HOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain

More information

DESIGN PROBLEMS IN LAP WELDED JOINTS OF REINFORCING STEEL BARS

DESIGN PROBLEMS IN LAP WELDED JOINTS OF REINFORCING STEEL BARS DESIGN PROBLEMS IN LAP WELDED JOINTS OF REINFORCING STEEL BARS Ch. Alk. Apostolopoulos. 1, P. Th. Savvopoulos 2, L. Dimitrov 3 Department of Mechanical Engineering and Aeronautics, University of Patras,

More information

Exact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids

Exact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids Journal of etroleum and Gas Exploration Research (ISSN 76-6510) Vol. () pp. 07-03, February, 01 Available online http://www.interesjournals.org/jger Copyright 01 International Research Journals Review

More information

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

More information

An ellipsoidal drop model for single drop dynamics with non-newtonian fluids

An ellipsoidal drop model for single drop dynamics with non-newtonian fluids An ellipsoidal drop model for single drop dynamics with non-newtonian fluids Francesco Greco Istituto per i Materiali Compositi e Biomedici CNR Piazzale Tecchio 80, Napoli, ITALIA Pier Luca Maffettone

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics. Prof. Young I Cho Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

More information

ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

More information

Software Reliability Measuring using Modified Maximum Likelihood Estimation and SPC

Software Reliability Measuring using Modified Maximum Likelihood Estimation and SPC Software Reliaility Measuring using Modified Maximum Likelihood Estimation and SPC Dr. R Satya Prasad Associate Prof, Dept. of CSE Acharya Nagarjuna University Guntur, INDIA K Ramchand H Rao Dept. of CSE

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

1.4 Using computers to solve differential equations

1.4 Using computers to solve differential equations 1.4. USING COMPUTERS TO SOLVE DIFFERENTIAL EQUATIONS67 1.4 Using computers to solve differential equations We have been looking so far at differential equations whose solutions can be constructed from

More information

Viscous flow through pipes of various cross-sections

Viscous flow through pipes of various cross-sections IOP PUBLISHING Eur. J. Phys. 28 (2007 521 527 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/28/3/014 Viscous flow through pipes of various cross-sections John Lekner School of Chemical and Physical

More information

Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0 viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

More information

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

More information

5 Double Integrals over Rectangular Regions

5 Double Integrals over Rectangular Regions Chapter 7 Section 5 Doule Integrals over Rectangular Regions 569 5 Doule Integrals over Rectangular Regions In Prolems 5 through 53, use the method of Lagrange multipliers to find the indicated maximum

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Collision of a small bubble with a large falling particle

Collision of a small bubble with a large falling particle EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin

More information

A. Break even analysis

A. Break even analysis Lecture (50 minutes) Eighth week lessons Function (continued) & Quadratic Equations (Divided into 3 lectures of 50 minutes each) a) Break even analysis ) Supply, Demand and market equilirium. c) Class

More information

Laminar flow in a baffled stirred mixer (COMSOL)

Laminar flow in a baffled stirred mixer (COMSOL) AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Laminar flow in a baffled stirred mixer (COMSOL) Sanna Hyvönen, 355551 Nelli Jämsä, 223188 Abstract In this simulation

More information

Actuarial Present Values of Annuities under Stochastic Interest Rate

Actuarial Present Values of Annuities under Stochastic Interest Rate Int. Journal of Math. Analysis, Vol. 7, 03, no. 59, 93-99 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ijma.03.3033 Actuarial Present Values of Annuities under Stochastic Interest Rate Zhao Xia

More information

Introduction to Engineering System Dynamics

Introduction to Engineering System Dynamics CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

More information

N 1. (q k+1 q k ) 2 + α 3. k=0

N 1. (q k+1 q k ) 2 + α 3. k=0 Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution

More information

4 Microscopic dynamics

4 Microscopic dynamics 4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

TWO EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS. 2 1 Introduction. 2 2 Analytical Solutions

TWO EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS. 2 1 Introduction. 2 2 Analytical Solutions TWO EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 2 1 Introduction Because of the great complexity of the full compressible Navier-Stokes equations, no known general analytical solution exists. Hence,

More information

TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

More information

Number Who Chose This Maximum Amount

Number Who Chose This Maximum Amount 1 TASK 3.3.1: MAXIMIZING REVENUE AND PROFIT Solutions Your school is trying to oost interest in its athletic program. It has decided to sell a pass that will allow the holder to attend all athletic events

More information

Conservation Laws of Turbulence Models

Conservation Laws of Turbulence Models Conservation Laws of Turbulence Models Leo G. Rebholz 1 Department of Mathematics University of Pittsburgh, PA 15260 ler6@math.pitt.edu October 17, 2005 Abstract Conservation of mass, momentum, energy,

More information

A numerical solution of Nagumo telegraph equation by Adomian decomposition method

A numerical solution of Nagumo telegraph equation by Adomian decomposition method Mathematics Scientific Journal Vol. 6, No. 2, S. N. 13, (2011), 73-81 A numerical solution of Nagumo telegraph equation by Adomian decomposition method H. Rouhparvar a,1 a Department of Mathematics, Islamic

More information

Sect 6.1 - Greatest Common Factor and Factoring by Grouping

Sect 6.1 - Greatest Common Factor and Factoring by Grouping Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

More information

3 rd Year Dental Materials Science

3 rd Year Dental Materials Science 3 rd Year Dental Materials Science Dr. Graham Cross School of Physics and CRANN SFI Nanoscience Building, Rm 1.5 http://www.tcd.ie/physics/people/graham.cross/ Graham.Cross@tcd.ie 16.11.2007 Dental Materials

More information

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

More information

Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

More information