A handy exact solution for flow due to a stretching boundary with partial slip


 Amberlynn Cain
 1 years ago
 Views:
Transcription
1 EDUCATION Revista Mexicana de Física E 59 (2013) JANUARY JUNE 2013 A handy exact solution for flow due to a stretching oundary with partial slip U. FiloelloNino a, H. VazquezLeal a, Y. Khan, A. PerezSesma a, A. DiazSanchez c, A. HerreraMay d, D. PereyraDiaz a, R. CastanedaSheissa, V.M. JimenezFernandez a, and J. CervantesPerez a a University of Veracruz, Electronic Instrumentation and Atmospheric Sciences School, Cto. Gonzalo Aguirre Beltrán S/N, Zona Universitaria, Xalapa, Veracruz, México 91000, Department of Mathematics, Zhejiang University, Hangzhou , China. c National Institute for Astrophysics, Optics and Electronics, Electronics Department, Luis Enrique Erro #1, Tonantzintla, Puela, México. d Micro and Nanotechnology Research Center, University of Veracruz, Calzada Ruiz Cortines 455, Boca del Rio, Veracruz, Mexico, Received 27 Novemer 2012; accepted 21 March 2013 In this article we provide an exact solution to the nonlinear differential equation that descries the ehaviour of a flow due to a stretching flat oundary due to partial slip. For this, we take as a guide the search for an asymptotic solution of the aforementioned equation. Keywords: Nonlinear differential equations; partial slip; stretching oundary; nonnewtonian fluids. PACS: d; x 1. Introduction The flow due to a stretching oundary is important in many engineering processes. For instance in the glass fire drawing, crystal growing, polymer industries [2], and extrusion processes for the production of plastic sheets [2,3,8,9,10], among many others. Unlike what happens with Newtonian fluids (water, mercury, glycerine, etc.) which usually use no slip oundary conditions, [7] (pages ), there are cases where partial slip etween the fluid and the moving surface may occur. Examples include emulsions, as mustard and paints; solutions of solids in liquids finely pulverized, such as the case of clay, and polymer solutions [4]. In these cases the oundary conditions are adequately descried y Navier s condition, which states that the amount of relative slip is proportional to local shear stress [4]. As aforementioned, in this study we provide an exact solution to the nonlinear differential equation that descries the ehaviour of a flow due to partial slip, and therefore a non Newtonian fluid should e involved. Nevertheless for the sake of simplicity, we will consider the adequate limit cases, in order to justify the use of Newtonian equations for fluids. For instance, the Newtonian approximation for Bingham plastics (like the clay) amounts to consider fluids, in the limit of small values of the so called, yield stress [1] (page. 233). On the other hand, for the case of pseudoplastic non Newtonian fluids (generally, aqueous solutions of water solule polymers show this ehaviour), their Newtonian limit amounts to consider the limits for large values of shear rate and apparent viscosity constant [1] (page. 233). Although there are solutions to this prolem [8,9,10], the solving procedures are not easy to follow for undergraduates in physics, mathematics and engineering. Therefore, we propose a straightforward methodology, ased on elementary differential and integral calculus, employing as a guide the search for an asymptotic solution of the afore mentioned prolem. The systematic procedures used to determine qualitatively, the asymptotic ehaviour for solutions of a differential equation, elong to the qualitative theory of nonlinear differential equations [11] (page. 334). Unlike the aove, this study proposes an asymptotic analytical solution, which turns out to e the exact solution of the prolem. 2. Governing Equations Consider a two dimensional stretching oundary (see Fig. 1). Where the velocity of the oundary is approximately proportional to the distance X to the origin [6], so that U = X. (1) Let (u, v) e the fluid velocities in the (X, Y ) directions, respectively. In this case, the oundary conditions are adequately descried y Navier s condition which states that the amount of relative slip is proportional to local shear stress. u(x, 0) U = kν u (X, 0), (2) Y where k is a proportional constant and ν is the kinematic viscosity of the ulk fluid. The relevant equations for this case are NavierStokes and continuity uu X + vu Y + p X ρ ν(u XX + u Y Y ) = 0, (3) uv X + vv Y + p Y ρ ν(v XX + v Y Y ) = 0, (4) u X + v Y = 0, (5) where ρ and p are density and pressure, respectively.
2 52 U. FILOBELLONINO et al that is u X ν y (x), (8) where prime denotes differentiation with respect to x. Since y = y(x), after integrating (8), we otain u ν y (x)x, (9) (y choosing an aritrary function of x, zero). In order to simplify the equations of motion, we introduce the following constant of proportionality into (6) FIGURE 1. Schematic showing a stretching oundary. v = νy(x), (10) and, therefore, (9) is rewritten as u = y (x)x. (11) Thus, expressing velocity field according to (10), (11), and (7); (5) is automatically satisfied. Next, we will show that (3) adopts a simpler form under these assumptions. By using (7), (10), and (11), (3) can e rewritten as uy (x) + ν vxy (x) p x ρ 2 Xy (x) = 0, (12) FIGURE 2. Source in front of a wall. In order to satisfy the equation of incompressiility (5), we will motivate a transformation, which contains implicitly the functional form of the velocity field. We will see that in this fashion, the motion equations are reduced to a single ordinary nonlinear differential equation. To this end, consider the case of a source of intensity Q in front of a wall (axis X), as it is shown in Fig. 2 [1]. By symmetry arguments, it is expected that streamlines pattern shown in Fig. 2 have, in general terms, a symmetry similar to those in Fig. 1 as a increases. From [1] it is possile to show that the value of v component, when a, is v(y ) = Y Q 2πa 2, noticing that v < 0 and it is only a function of Y. Using as a guide the aove argument, we define a function y(x), such that v y(x), (6) where y(x) 0, 0 x < and x = Y ν. (7) From (5) and (6) we deduce that u X = v Y y Y (x) = ν y (x), where we have employed the chain rule from differential calculus. It should e noted that p x = 0, since the fluid motion is caused y the fluid eing dragged along y the moving oundary, therefore uy (x) + ν vxy (x) 2 Xy (x) = 0, (13) sustituting (10) and (11) into (13), we otain y y 2 + yy = 0. (14) To deduce the oundary conditions of (14), we see that v(y = 0) = 0, (see Fig. 1); therefore, from (7) and (10), is clear that y(0) = 0, (15) in the same way, from the condition lim u(x, Y ) = 0, Y and (7) (see Fig. 1), we otain the following oundary condition y ( ) = 0. (16) To conclude, y sustituting (1) and (11) into the Navier s condition (2), we otain Xy (0) X = kν u (X, 0), (17) Y y the chain rule we rewrite (17) as ( ) ( u dx Xy (0) X = kν (X, 0) x dy ), (18)
3 A HANDY EXACT SOLUTION FOR FLOW DUE TO A STRETCHING BOUNDARY WITH PARTIAL SLIP 53 after sustituting (7) and (11) we get where we have defined y (0) = 1 + Ky (0), (19) K = k ν. (20) In the next section we will solve (14) with oundary conditions (15), (16), and (18). 3. The Exact solution of a two dimensional Viscous Flow Equation In order to otain an exact solution for (14) we take as a guide the search for an asymptotic solution of the same equation. Rewriting (14) in the form and defining it is possile to express (21) as and the derivative of (21) as follows y = y 2 y y, (21) y 1 = y, (22) y 1 y yy 1 = 0, (23) y 1 = y 1(2y 1 y 1 y 1 ) y 1 (y 2 1 y y ). (24) Equations (23) and (24) take the following limit forms when y 1 ( ) 0 (oundary condition (16)) y 1 + Ly 1 = 0, (25) y 2 1 y 1y 1 = 0, (26) (ecause the condition y 1 ( ) 0 implies that y( ) L, where L is constant. Also from Fig. 1 and (10), it follows that v < 0 and L > 0). Taking the square of (25) and sustituting into (26), we otain y 1 = L 2 y 1. (27) In order to solve (27), we propose the following change of variale z = y 1, (28) in such a way that (27) adopts the form Equation (29) has the known solution z = L 2 z. (29) z(x) = A exp(lx) + B exp( Lx), (30) where A and B are constants. To avoid that z, when x (from (16), (22), and (28) is clear that z 0 for that limit), we choose A = 0 so that (30) adopts the simpler form also, from (28) and (31), we otain z(x) = B exp( Lx), (31) y 1 = B exp( Lx), (32) therefore, after integrating the aove equation, we otain y 1 = B L exp( Lx) + c 1. (33) The condition y 1 ( ) = 0 (see (16) and (22)) leads to c 1 = 0, therefore after integrating (34), is otained y 1 = B exp( Lx), (34) L y(x) = B L 2 exp( Lx) + c 2. (35) Since y(0) = 0, then c 2 = (B/L 2 ), and (35) ecomes y(x) = B (exp( Lx) 1). (36) L2 Finally, the condition y( ) L is satisfied y choosing B = L 3, so that and y(x) = L(1 exp( Lx)). (37) On the other hand, from (37), we deduce that y (0) = L 2, (38) y (0) = L 3. (39) The sustitution of (38) and (39) into (19) leads to a general relation etween K and the asymptotic form of the solution given y y = L KL 3 + L 2 = 1. (40) For the case K = 0 [4,5], (40) and (37) adopt the form respectively. L = 1, (41) y(x) = 1 exp( x), 0 x, (42)
4 54 4. U. FILOBELLONINO et al Discussion The sustitution of (37) into (14) reveals that (37) is, indeed, an exact general solution not just an approximation; although our process was aimed to find an asymptotic solution that would satisfy oundary conditions (15), (16), and (19). As a matter of fact, for the particular case of inviscid flow K = 0 ((41) and (42)) was reported in [4,5] as a rare closed exact solution for (14). F IGURE 5. Streamlines for K = 0. F IGURE 3. Function y(x) for several values of K. It is noteworthy that (40) relates the asymptotic form of the solution y = L with the constant K, and the latter is related to the fluid viscosity (see (20)); so that, in principle, (40) determines in advance the asymptotic value of the solution, from the value of the viscosity. Similarly, (39) and (40) provide a general way to determine the value of y 00 (0) in terms of K. These values are often difficult to calculate and in the literature can e found tales that provide some values ut just for a few values of K [4]. Figure 3 and Fig. 4 show functions y(x) and y 0 (x) respectively for various values of K; these functions determine the velocity field through (10) and (11). Figure 5 shows a sketch for several streamlines when K = Conclusion An important task is to find analytic expressions that provide a good description of the solution to the nonlinear differential equations like (14). For instance, the flow induced y a stretching sheet is adequately descried y (37) and (40). An important result for practical applications it follows that (40) relates the asymptotic form of the solution y = L, with the fluid viscosity, so that in principle (40) determines in advance the asymptotic value of the solution from the value of the viscosity. This work showed, y means of a simple procedure, that some nonlinear differential equations may e solved in exact form taking as a guide the search for an asymptotic solution of the same equation. Is clear that this procedure could e useful, at least, to find approximate solutions for some equations. F IGURE 4. Function y 0 (x) for several values of K. 1. W.F. Hughes and J.A. Brighton, Dina mica De Los Fluidos (Mc Graw Hill. 1967). 2. V. Aliakar, A. Alizadeh Pahlavan and K. Sadaghy, Nonlinear Sciences and Numerical Simulation, Elsevier (2007) M.M. Rashidi and D.D. Gangi, J. Homotopy perturation method for solving flow in the extrusion processes.ije Transactions A: Basics 23 (2010) C.Y. Wang, Chemical Engineering Science 23 (2002) L.J. Crane, Flow past a stretching plate. Zeitschrift fuer Angewandte Mathematik und Physik 21 (1970) J. Vleggar, Chemical Engineering Science 32 (1977) B.R. Munson, D.F. Young and T.H. Okiishi, Fundamentals of Fluid Mechanics (John Wiley and Sons, Inc. Copyright 2002). 8. H.I. Anderson, Acta Mech. 158 (2002) C.Y. Wang, Nonlinear Anal. Real World Appl. 10 (2009)
5 A HANDY EXACT SOLUTION FOR FLOW DUE TO A STRETCHING BOUNDARY WITH PARTIAL SLIP T. Fang, J. Zhang, and S. Yao, Commun Nonlinear Sci. Numer. Simul. 14 (2009) F. Simmons, Ecuaciones Diferenciales con Aplicaciones y Notas Históricas (Mc Graw Hill. 1977).
Controllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationReview of the Present Status of Rotor Aerodynamics
WIND ENERGY Wind Energ., 1, 46±69 (1998) Review Article Review of the Present Status of Rotor Aerodynamics H. Snel,* Netherlands Energy Research Foundation, Petten, The Netherlands Key words: aerodynamics;
More information(1) I. INTRODUCTION (2)
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010 3243 Distance Regularized Level Set Evolution and Its Application to Image Segmentation Chunming Li, Chenyang Xu, Senior Member, IEEE,
More informationA UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS. Dedicated to Constantine Dafermos on the occasion of his 70 th birthday
A UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA Dedicated to Constantine Dafermos on the occasion of his 7 th birthday Abstract.
More informationSwitching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
More informationInterfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification
J. Fluid Mech. (26), vol. 55, pp. 149 173. c 26 Cambridge University Press doi:1.117/s2211257998 Printed in the United Kingdom 149 Interfacial conditions between a pure fluid and a porous medium: implications
More informationAn implicit level set method for modeling hydraulically driven fractures
Available online at www.sciencedirect.com Comput. Methods Appl. Mech. Engrg. 197 (28) 2858 2885 www.elsevier.com/locate/cma An implicit level set method for modeling hydraulically driven fractures Anthony
More informationFeature Detection with Automatic Scale Selection
Feature Detection with Automatic Scale Selection Tony Lindeberg Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science KTH (Royal Institute
More informationIEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1 ActiveSet Newton Algorithm for Overcomplete NonNegative Representations of Audio Tuomas Virtanen, Member,
More informationNonlinear Balance and Potential Vorticity Thinking at Large Rossby Number
Nonlinear Balance and Potential Vorticity Thinking at Large Rossby Number D. J. Raymond Physics Department and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801
More informationTechniques for the reconstruction of a distribution from a finite number of its moments
Chemical Engineering Science 6 (7) 89 94 www.elsevier.com/locate/ces Techniques for the reconstruction of a distribution from a finite number of its moments V. John a, I. Angelov b, A.A. Öncül c, D. Thévenin
More informationA Case Study in Approximate Linearization: The Acrobot Example
A Case Study in Approximate Linearization: The Acrobot Example Richard M. Murray Electronics Research Laboratory University of California Berkeley, CA 94720 John Hauser Department of EESystems University
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationFeedback Control of a Nonholonomic Carlike Robot
Feedback Control of a Nonholonomic Carlike Robot A. De Luca G. Oriolo C. Samson This is the fourth chapter of the book: Robot Motion Planning and Control JeanPaul Laumond (Editor) Laboratoire d Analye
More informationTwodimensional turbulence: a physicist approach
Physics Reports 362 (2002) 1 62 Twodimensional turbulence: a physicist approach PatrickTabeling Laboratoire de Physique Statistique, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris, France Received
More informationFast Greeks by algorithmic differentiation
The Journal of Computational Finance (3 35) Volume 14/Number 3, Spring 2011 Fast Greeks by algorithmic differentiation Luca Capriotti Quantitative Strategies, Investment Banking Division, Credit Suisse
More informationSelling assets: When is the whole worth more than the sum of its parts?
Selling assets: When is the whole worth more than the sum of its parts? Robert Marquez University of California, Davis Rajdeep Singh University of Minnesota October, 214 Abstract When is it better to sell
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More informationAn Introduction to Tensors for Students of Physics and Engineering
NASA/TM 2002211716 An Introduction to Tensors for Students of Physics and Engineering Joseph C. Kolecki Glenn Research Center, Cleveland, Ohio September 2002 The NASA STI Program Office... in Profile
More informationMUSTHAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS
MUSTHAVE MATH TOOLS FOR GRADUATE STUDY IN ECONOMICS William Neilson Department of Economics University of Tennessee Knoxville September 29 289 by William Neilson web.utk.edu/~wneilson/mathbook.pdf Acknowledgments
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More informationSampling 50 Years After Shannon
Sampling 50 Years After Shannon MICHAEL UNSER, FELLOW, IEEE This paper presents an account of the current state of sampling, 50 years after Shannon s formulation of the sampling theorem. The emphasis is
More informationOnedimensional wave turbulence
Physics Reports 398 (4) 65 www.elsevier.com/locate/physrep Onedimensional wave turbulence Vladimir Zakharov a;b,frederic Dias c;, Andrei Pushkarev d a Landau Institute for Theoretical Physics, Moscow,
More informationSome open problems and research directions in the mathematical study of fluid dynamics.
Some open problems and research directions in the mathematical study of fluid dynamics. Peter Constantin Department of Mathematics The University of Chicago Abstract This is an essay in the literal sense:
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationReynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence
Flow, Turbulence and Combustion 63: 443 477, 1999. 2000 Kluwer Academic Publishers. Printed in the Netherlands. 443 Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence
More informationWhen action is not least
When action is not least C. G. Gray a GuelphWaterloo Physics Institute and Department of Physics, University of Guelph, Guelph, Ontario N1GW1, Canada Edwin F. Taylor b Department of Physics, Massachusetts
More informationFEEDBACK CONTROL OF A NONHOLONOMIC CARLIKE ROBOT
FEEDBACK CONTROL OF A NONHOLONOMIC CARLIKE ROBOT Alessandro De Luca Giuseppe Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Via Eudossiana 8, 84 Rome, Italy {deluca,oriolo}@labrob.ing.uniroma.it
More informationHighDimensional Image Warping
Chapter 4 HighDimensional Image Warping John Ashburner & Karl J. Friston The Wellcome Dept. of Imaging Neuroscience, 12 Queen Square, London WC1N 3BG, UK. Contents 4.1 Introduction.................................
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More information