Context Free and Non Context Free Languages


 Jean Jennings
 2 years ago
 Views:
Transcription
1 Context Free and Non Context Free Languages
2 Part I: Pumping Theorem for Context Free Languages
3 Context Free Languages and Push Down Automata Theorems For Every Context Free Grammar there Exists an Equivalent Push Down Automata. For Every Push Down Automata There Exist an Equivalent Context Free Grammar. BIG QUESTION Given a Language L, Determine Whether or Not L is Context Free. Examples L = {a n b n n 0}  Context Free L = {a n b n c n n 0}  Not Context Free
4 Observations on Context Free Languages Every Regular Language is Context Free  2 Proofs Context Free Languages are Countable  2 Proofs
5 Pumping Theorem for Regular Languages Pumping Theorem: Let M = {Q, Σ, δ, q 0, F} be a DFSA and let x L(M ) with x Q. Then there are strings u,v, w such that x = uvw u v Q v 1 u v k w L(M ) k = 0,1, 2,
6 Pumping Theorem for Context Free Languages Pumping Theorem: Let L be a Context Free Grammar. There is an integer k 1 such that for all strings w L with w k, there exist strings u, v, x, y, z such that w = uvxyz ª v ε and y ε vxy k uv q xy q z L for all q 0
7 Example Proposition: L = {a n b n c n n 0} is Not Context Free Proof: Suppose L is Context Free. Let w = a n b n c n for n k. By the Pumping Theorem w = uvxyz ª v ε and y ε vxy k uv q xy q z L for all q 0 Case 1: v or y contain a single character  Impossible. Pump with q = 2. Not all symbols appear equally often. Case 2: v or y contain two different characters  Impossible. Pump with q = 2. A symbol will appear out of order.
8 Trees Definitions Height  Longest Path in a Tree Branching Factor = Maximum Number of Children for any Node Yield = Number of Leaf Nodes Theorem: Yield (Branching Factor) Height Proof: By Induction on Height.
9 Pumping Theorem for Context Free Languages Pumping Theorem: Let L be a Context Free Grammar. There is an integer k 1 such that for all strings w L with w k, there exist strings u, v, x, y, z such that w = uvxyz ª v ε or y ε vxy k uv q xy q z L for all q 0
10 Proof of Pumping Theorem for Context Free Languages Let G = { N, Σ,R,S} be a context free grammar, and let w L(G). If no nonterminal appears twice along a path in the parse tree for w, then NonTerminal Symbols w = Yield (Branching Factor) w > (Branching Factor) NonTerminal Symbols a nonterminal X must appear at least twice on the same path in the parse tree for w. Thus S u X z uv X yz uvxyz = w X vx y and X x Consequences S u X z ux z, so ux z L(G) S u X z uv X yz uv p X y p z uv p x y p z, so uv p x y p z L(G) v ε or y ε (Take the smallest parse tree for w.) NonTerminal Symbols vxy (Branching Factor)  X vx y v x y and no nonterminal appears twice.
11 Closure Properties of Regular Languages 1. The Union, Concatenation, and Star of Regular Languages is Regular Build the Corresponding NonDeterministic Finite State Automata 2. Every Finite Language is Regular L = s 1 s n 3. The Complement of a Regular Language is Regular Build the Complementary Deterministic Finite State Automata Exchange Accepting and NonAccepting States 4. The Intersection of Two Regular Languages is Regular L 1 L 2 = ( c c L 1 L2 ) c 5. The Difference of Two Regular Languages is Regular L 1 L 2 = L 1 L 2 c
12 Closure Properties of Context Free Languages 1. The Union of Two Context Free Languages is Context Free Build Union of Grammars S S 1 and S S 2 2. The Concatenation of Two Context Free Languages is Context Free Concatenate Two Grammars S S 1 S 2 3. The Kleene Star of Two Context Free Languages is Context Free Star Two Grammars S ε and S S S 1 4. The Reverse of Two Context Free Languages is Context Free Use Chomsky Normal Form Replace X BC by X C B
13 Non Closure Properties of Context Free Languages 1. The Intersection of Two Context Free Languages Need NOT be Context Free L 1 = {a n b n c m } and L 2 = {a n b m c m }  Context Free L 1 L 2 = {a p b p c p }  Not Context Free 2. The Complement of Two Context Free Languages Need NOT be Context Free L 1 L 2 = ( c c L 1 L2 ) c  Contradicts 1 3. The Difference of Two Context Free Languages Need NOT be Context Free L c = Σ L  Contradicts 2
14 Closure Properties of Context Free and Regular Languages 1. The Intersection of a Context Free Language and a Regular Language is Context Free L(M ) = L 1 and L(N) = L 2, then L(M N ) = L 1 L 2 where F = F 1 F 2 Only One Stack 2. The Difference Between a Context Free Language and a Regular Language is Context Free c L 1 L 2 = L 1 L 2 Complement of a Regular Language is Regular
15 Examples 1. Removing a Finite Number of Strings F from a Context Free Language L Generates a Context Free Language L F is Context Free because F is Regular 2. L = {w {a,b,c} Number of a's = Number of b 's = Number c' s} is NOT Context Free L {a b c } = {an b n c n } Context Free Regular Not Context Free
16 Part II: Deterministic Context Free Languages
17 Deterministic Push Down Automata Deterministic PDA M = {Q, Σ, Γ,δ, q 0, F}  Σ = Input Symbols Γ = Stack Symbols  Q = States  q 0 = Initial State  F = Final (Accepting) States Q  δ :Q Σ {ε} Γ = Q Γ = Deterministic Transition Functions pop push  Transition to Next State and Next Stack is Unique  No Transitions Out of an Accepting State Must Consume either an Input Symbol or Symbols from the Stack Must Accept when Can Accept
18 Deterministic Context Free Languages Deterministic Context Free Language Language Accepted by a Deterministic Push Down Automata End of String Symbol $ Required Example L = a {a n b n n 0} Need End of String Symbol
19 Closure Properties of Regular Languages 1. Union 2. Concatenation 3. Star 4. Complement 5. Intersection 6. Difference
20 Closure Properties of Deterministic Context Free Languages Closure Complement Proof: See Appendix D.2  Tedious and Unenlightening Non Closure Union Intersection
21 CounterExample: Intersection L 1 = {a i b j c k i = j}  Deterministic Context Free L 2 = {a i b j c k j = k}  Deterministic Context Free L 1 L 2 = {a n b n c n }  Not Context Free
22 CounterExample: Union L 1 = {a i b j c k i j}  Deterministic Context Free L 2 = {a i b j c k j k}  Deterministic Context Free L = L 1 L 2 = {a i b j c k i j or j k}  Union L c = {a i b j c k i = j = k} {(a,b,c) out of order}  Complement L = L c a b c = {a n b n c n n 0}  Intersection with Regular Expression  But Not Context Free L Deterministic Context Free L c Deterministic Context Free L Context Free Contradiction
23 CounterExample: Union and Ambiguity Inherently Ambiguous Language  NO Unambiguous Grammar. {a i b j c k i = j or j = k} = {a i b i c k } {a i b k c k } Ambiguous Grammar from Union of Two Unambiguous Grammars S S 1 S S 2 S 1 S 1 c S 2 as 2 S 1 A S 2 B A a Ab B b Bc A ε B ε {a i b i c k } {ai b j c j } {a i b i c i }
24 Part III: Hierarchy of Languages
25 Hierarchy of Languages Theorem: The following Languages are Proper Subsets of Each Other: Regular Deterministic Context Free Inherently Unambiguous Context Free Context Free Proof: See the Following Theorems.
26 Theorems 1. There Exist Context Free Languages that are Not Deterministic Context Free. 1a. There Exist Non Deterministic Push Down Automata for which there is no Equivalent Deterministic Push Down Automata. 2. Every Determinist Context Free Language is a Context Free Language. 2a. Every Deterministic Push Down Automata can be Simulated by a Non Deterministic Push Down Automata.
27 Theorem: Every Determinist Context Free Language L is a Context Free Language. Proof: Let M be a Deterministic PDA that recognize L$. Build a PDA M = M 1 M 2 to recognize L: M 1 = M without $ transitions  Do NOT mark any state of M 1 as Accepting M 2 M with only the ε transitions (Reads no input symbols) For each $ transition in M, insert an ε transition from M 1 to M 2 For each accepting state A in M, make A an accepting state of M 2 M recognizes L$ M recognize L.
28 Theorem: There Exist Context Free Languages that are Not Deterministic Context Free Languages. Proof: Consider L = {a i b j c k i j or j k}  Context Free L c = {a i b j c k i = j = k} {(a,b,c) out of order}  Complement L = L c a b c = {a n b n c n n 0}  Intersection of L c with Regular Language L Deterministic Context Free L c Deterministic Context Free L c Context Free L Context Free. Contradiction
29 More Theorems 1. Every Regular Language is Deterministic Context Free. 1a. Every Finite State Automaton is a Deterministic Push Down Automaton 2. There Exist Deterministic Context Free Languages that are NOT Regular. 2a. There Exist Deterministic Push Down Automata for which there is no Equivalent Finite State Automaton.
30 More Theorems 1. Every Deterministic Context Free Grammar has an Unambiguous Grammar. 2. There Exist Inherently Unambiguous Context Free Languages that are NOT Deterministic.
31 Theorem: Every Deterministic Context Free Grammar L has an Unambiguous Grammar. Proof: Recall: For Every Push Down Automata M There Exist an Equivalent Context Free Grammar G. Therefore M Recognizes L$ G Generates L$ But M Deterministic G is Unambiguous (Tedious  See Appendix D.2) Hence Replacing $ by ε in G G generates L
32 Hierarchy of Languages Theorem: The following Languages are Proper Subsets of Each Other: Regular Deterministic Context Free Inherently Unambiguous Context Free Context Free Proof: See the Previous Theorems.
33 Hierarchy of Languages  Examples Deterministic Context Free, but NOT Regular L = {a n b n n 0} Inherently Unambiguous but NOT Deterministic Context Free L = {a n b n c m d m,n 0} {a n b m c m e m, n 0} Context Free but NOT Inherently Unambiguous L = {a i b j c k (i, j,k 0) and (i = j or j = k)} = {a i b i c k } {a i b k c k } Not Context Free L = {a n b n c n n 0}
Deterministic PushDown Store Automata
Deterministic PushDown tore Automata 1 ContextFree Languages A B C D... A w 0 w 1 D...E The languagea n b n : a b ab 2 Finitetate Automata 3 Pushdown Automata Pushdown automata (pda s) is an fsa with
More informationAutomata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
More informationPushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Contextfree languages are defined by contextfree
More informationRegular Expressions. Languages. Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2
Regular Expressions Languages Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2 1 String Recognition Machine Given a string and a definition of
More information6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
More informationFormal Languages and Automata Theory  Regular Expressions and Finite Automata 
Formal Languages and Automata Theory  Regular Expressions and Finite Automata  Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
More informationÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 15 april 2003. Master Edition
ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK 5 april 23 Master Edition CONTEXT FREE LANGUAGES & PUSHDOWN AUTOMATA CONTEXTFREE GRAMMARS, CFG Problems Sudkamp Problem. (3.2.) Which language generates the grammar
More informationAutomata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 20092010 winter semester Last modified:
More informationIntroduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
More informationCPS 140  Mathematical Foundations of CS Dr. S. Rodger Section: Properties of ContextFree Languages èhandoutè Section 3.5 Which of the following languages are CFL? æ L=fa n b n c j j 0 énçjg æ L=fa n
More informationFinite Automata and Formal Languages
Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Lecture 14 May 19th 2011 Overview of today s lecture: Turing Machines Pushdown Automata Overview of the Course Undecidable and Intractable Problems
More informationReading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
More informationINSTITUTE OF AERONAUTICAL ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : FORMAL LANGUAGES AND AUTOMATA THEORY Code : A40509 Class : II B. Tech II
More information(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
More informationCompiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F021 Compiler overview source code lexical analysis tokens intermediate code generation
More informationAutomata and Formal Languages
Automata and Formal Languages Winter 20092010 Yacov HelOr 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
More informationTheory of Computation
Theory of Computation For Computer Science & Information Technology By www.thegateacademy.com Syllabus Syllabus for Theory of Computation Regular Expressions and Finite Automata, ContextFree Grammar s
More informationCS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 20122013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
More informationHonors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
More informationScanner. tokens scanner parser IR. source code. errors
Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme
More informationC H A P T E R Regular Expressions regular expression
7 CHAPTER Regular Expressions Most programmers and other powerusers of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun
More informationFast nondeterministic recognition of contextfree languages using two queues
Fast nondeterministic recognition of contextfree languages using two queues Burton Rosenberg University of Miami Abstract We show how to accept a contextfree language nondeterministically in O( n log
More informationDeterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
More informationFormal Grammars and Languages
Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,
More informationOn Winning Conditions of High Borel Complexity in Pushdown Games
Fundamenta Informaticae (2005) 1 22 1 IOS Press On Winning Conditions of High Borel Complexity in Pushdown Games Olivier Finkel Equipe de Logique Mathématique U.F.R. de Mathématiques, Université Paris
More informationFinite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
More informationASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605
ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605 (1) (a) (0 + 1) 010 (finite automata below). (b) First observe that the following regular expression generates the binary strings with an even
More informationRegular Expressions with Nested Levels of Back Referencing Form a Hierarchy
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety
More informationAutomata and Rational Numbers
Automata and Rational Numbers Jeffrey Shallit School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 Canada shallit@cs.uwaterloo.ca http://www.cs.uwaterloo.ca/~shallit 1/40 Representations
More informationSRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN
Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June
More informationRegular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
More informationLights and Darks of the StarFree Star
Lights and Darks of the StarFree Star Edward Ochmański & Krystyna Stawikowska Nicolaus Copernicus University, Toruń, Poland Introduction: star may destroy recognizability In (finitely generated) trace
More informationRegular Languages and Finite Automata
Regular Languages and Finite Automata A C Norman, Lent Term 1996 Part IA 1 Introduction This course is short, but it is present in Part 1A because of the way it introduces links between many different
More information1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by MenGen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since
More informationThe Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turingrecognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
More informationComputing Functions with Turing Machines
CS 30  Lecture 20 Combining Turing Machines and Turing s Thesis Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata
More informationωautomata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ωautomata ωautomata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of nonterminating executions of a program. in arithmetic,
More informationRegular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries  some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
More informationIncreasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger rodger@cs.duke.edu Jinghui Lim Stephen Reading ABSTRACT The introduction of educational
More informationMotivation. Automata = abstract computing devices. Turing studied Turing Machines (= computers) before there were any real computers
Motivation Automata = abstract computing devices Turing studied Turing Machines (= computers) before there were any real computers We will also look at simpler devices than Turing machines (Finite State
More informationFinite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
More informationOHJ2306 Fall 2011 Introduction to Theoretical Computer Science
1 OHJ2306 Fall 2011 Introduction to Theoretical Computer Science 2 3 Organization & timetable Lectures: prof. Tapio Elomaa, M.Sc. Timo Aho Tue and Thu 14 16 TB220 Aug. 30 Dec. 8, 2011 Exceptions: Thu
More informationCS 164 Programming Languages and Compilers Handout 8. Midterm I
Mterm I Please read all instructions (including these) carefully. There are six questions on the exam, each worth between 15 and 30 points. You have 3 hours to work on the exam. The exam is closed book,
More informationLecture 2: Regular Languages [Fa 14]
Caveat lector: This is the first edition of this lecture note. Please send bug reports and suggestions to jeffe@illinois.edu. But the Lord came down to see the city and the tower the people were building.
More informationPART I. THE REAL NUMBERS
PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS
More informationA First Investigation of Sturmian Trees
A First Investigation of Sturmian Trees Jean Berstel 2, Luc Boasson 1 Olivier Carton 1, Isabelle Fagnot 2 1 LIAFA, CNRS Université Paris 7 2 IGM, CNRS Université de MarnelaVallée Atelier de Combinatoire,
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationCardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
More informationBottomUp Parsing. An Introductory Example
BottomUp Parsing Bottomup parsing is more general than topdown parsing Just as efficient Builds on ideas in topdown parsing Bottomup is the preferred method in practice Reading: Section 4.5 An Introductory
More informationA Brief History of Strahler Numbers
A Brief History of Strahler Numbers Javier Esparza Michael Luttenberger Maximilian Schlund Technical University of Munich Robert E. Horton (945) Robert E. Horton (945) Which is the main stream of a stream
More informationLearning Analysis by Reduction from Positive Data
Learning Analysis by Reduction from Positive Data František Mráz 1, Friedrich Otto 1, and Martin Plátek 2 1 Fachbereich Mathematik/Informatik, Universität Kassel 34109 Kassel, Germany {mraz,otto}@theory.informatik.unikassel.de
More informationFundamentele Informatica II
Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear
More informationComputer Architecture Syllabus of Qualifying Examination
Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo
More informationModel 2.4 Faculty member + student
Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email
More informationSOLUTIONS TO ASSIGNMENT 1 MATH 576
SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts
More informationClassification/Decision Trees (II)
Classification/Decision Trees (II) Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Right Sized Trees Let the expected misclassification rate of a tree T be R (T ).
More informationAmbiguity, closure properties, Overview of ambiguity, and Chomsky s standard form
Ambiguity, closure properties, and Chomsky s normal form Overview of ambiguity, and Chomsky s standard form The notion of ambiguity Convention: we assume that in every substitution, the leftmost remaining
More informationPushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
More informationFinite Automata and Regular Languages
CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finitestate machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greekderived
More informationLecture 1: Time Complexity
Computational Complexity Theory, Fall 2010 August 25 Lecture 1: Time Complexity Lecturer: Peter Bro Miltersen Scribe: Søren Valentin Haagerup 1 Introduction to the course The field of Computational Complexity
More informationSOLUTION Trial Test Grammar & Parsing Deficiency Course for the Master in Software Technology Programme Utrecht University
SOLUTION Trial Test Grammar & Parsing Deficiency Course for the Master in Software Technology Programme Utrecht University Year 2004/2005 1. (a) LM is a language that consists of sentences of L continued
More information26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
More information4.6 The Primitive Recursive Functions
4.6. THE PRIMITIVE RECURSIVE FUNCTIONS 309 4.6 The Primitive Recursive Functions The class of primitive recursive functions is defined in terms of base functions and closure operations. Definition 4.6.1
More informationOpen and Closed Sets
Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.
More informationGROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.
Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the
More informationCS143 Handout 08 Summer 2008 July 02, 2007 BottomUp Parsing
CS143 Handout 08 Summer 2008 July 02, 2007 BottomUp Parsing Handout written by Maggie Johnson and revised by Julie Zelenski. Bottomup parsing As the name suggests, bottomup parsing works in the opposite
More informationChapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
More informationAutomata, languages, and grammars
Automata, languages, and grammars Cristopher Moore January 24, 2015 Abstract These lecture notes are intended as a supplement to Moore and Mertens The Nature of Computation, and are available to anyone
More informationCSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions
CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive
More informationCS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 ChurchTuring thesis Let s recap how it all started. In 1990, Hilbert stated a
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationAutomata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
More informationIntroduction to Theory of Computation
Introduction to Theory of Computation Prof. (Dr.) K.R. Chowdhary Email: kr.chowdhary@iitj.ac.in Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Tuesday 28 th
More informationA Problem With The Rational Numbers
Solvability of Equations Solvability of Equations 1. In fields, linear equations ax + b = 0 are solvable. Solvability of Equations 1. In fields, linear equations ax + b = 0 are solvable. 2. Quadratic equations
More informationA single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulatorbased machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
More informationComputability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 110.
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More information3. Equivalence Relations. Discussion
3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,
More informationPhiladelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course
More informationImplementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP
International Journal of Information and Computation Technology. ISSN 09742239 Volume 4, Number 1 (2014), pp. 7984 International Research Publications House http://www. irphouse.com /ijict.htm Implementation
More information6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
More information5.1 Commutative rings; Integral Domains
5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following
More informationTuring Machine and the Conceptual Problems of Computational Theory
Research Inventy: International Journal of Engineering And Science Vol.4, Issue 4 (April 204), PP 5360 Issn (e): 2278472, Issn (p):2396483, www.researchinventy.com Turing Machine and the Conceptual
More informationNFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions
NFAs with Tagged Transitions, their Conversion to Deterministic Automata and Application to Regular Expressions Ville Laurikari Helsinki University of Technology Laboratory of Computer Science PL 9700,
More informationA binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heaporder property
CmSc 250 Intro to Algorithms Chapter 6. Transform and Conquer Binary Heaps 1. Definition A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called
More informationT79.186 Reactive Systems: Introduction and Finite State Automata
T79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 11 Reactive Systems Reactive systems are a class of software
More informationClass Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433
Class Notes CS 3137 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 1. FIXED LENGTH CODES: Codes are used to transmit characters over data links. You are probably aware of the ASCII code, a fixedlength
More informationIntroduction Proof by unique factorization in Z Proof with Gaussian integers Proof by geometry Applications. Pythagorean Triples
Pythagorean Triples Keith Conrad University of Connecticut August 4, 008 Introduction We seek positive integers a, b, and c such that a + b = c. Plimpton 3 Babylonian table of Pythagorean triples (1800
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationk, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
More informationSoftware Analysis (POPA Sec , )
Software Analysis (POPA Sec. 2.2.2, 2.52.5.2) Klaus Ostermann Based on slides by Jurriaan Hage Overview Correctness proof Live Variables Analysis The While language with procedures Live Variables Analysis
More informationDivisor graphs have arbitrary order and size
Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G
More informationAn Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata
An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A twoway finite
More informationCHAPTER 5. Product Measures
54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationMildly Context Sensitive Grammar Formalisms
Mildly Context Sensitive Grammar Formalisms Petra Schmidt PfarrerLauerStrasse 23 66386 St. Ingbert petra.schmidt@edekasuedwest.de Overview 3 TreedjoiningGrammars 4 Co 7 8 9 CCG 9 LIG 10 TG 13 Linear
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationLecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
More information