Absolute Maxima and Minima

Size: px
Start display at page:

Download "Absolute Maxima and Minima"

Transcription

1 Absolute Maxima and Minima Definition. A function f is said to have an absolute maximum on an interval I at the point x 0 if it is the largest value of f on that interval; that is if f( x ) f() x for all x in I. 0 A function f is said to have an absolute minimum on an interval I at the point x 0 if it is the smallest value of f on that interval; that is if f( x ) f() x for all x in I. 0 If f has either an absolute maximum or an absolute minimum on an interval I at the point x 0, we say that it has an absolute extremum at that point.

2 Absolute maximum on the interval [-8, 8] Absolute minimum on the interval [-8, 8]

3 Two facts appear in the previous example. 1. The function f was continuous on a closed interval (a finite interval and its end points), and it had an absolute maximum and an absolute minimum. 2. The absolute maximum and minimum occurred either at an end point or at a local maximum or minimum point. The two properties of f in part 1. above turn out to be critical. In general the existence of absolute maxima and minima will depend on the nature of the function f and the type of interval. The previous example demonstrates the following theorem.

4 Theorem. If f(x) is a continuous function on a closed interval [a, b], then f always has an absolute maximum and an absolute minimum value on [a, b]. This is a difficult theorem to prove, but it is intuitively clear. It says intuitively that if you put a pencil at f(a), and then draw a curve ending at f(b), without lifting the pencil from the paper, then that curve will have a highest and a lowest height. The previous example also illustrates the proper procedure to find the absolute maximum and minimum values in this case.

5 To Find the Absolute maximum and minimum value of a continuous function f on a closed interval [a, b]. 1. Locate all critical points in the interval [a, b] 2. Evaluate f at all of the critical points and at the points a and b. 3. The largest value found in step 2 is the absolute maximum of f on [a, b] and the corresponding point is the point where that maximum is achieved. A similar statement is true for the absolute minimum.

6 Example. Find the absolute extrema of In the interval [ 1, 1] f() x = 3x 9x Solution x 2 3 f () x = 4x 3 x = x (4x 3) = (4 3) x The derivative of f does not exist at x = 0, and is 0 at the point x = 3/4. Thus we must consider the four points 1, 0, ¾, 1. The values of the function at these four points are respectively: f ( 1) = 3+ 9= 12 3 f (0) = 0 f = f (1) = 3 9= 6 Thus the absolute maximum is 12 and it occurs at the left hand endpoint, and the absolute minimum is 6.133, occurring at x = ¾.

7 Example. Find the absolute extrema of in the interval [ 1, 1]. f() x = sin( x) cos( x) Solution. f () x = cos( x) + sin( x) This function is 0 at the point x = π and at every point that 4 differs from this point by a multiple of π. Thus x = π 4 is the only such point within the desired interval. We must therefore consider the points 1, π/4, and 1. f ( 1) = 1.38 π f = f (1) = Thus the absolute maximum is and it occurs at π/4, and the absolute minimum is 0.301, occurring at x = 1.

8 This is the graph of that function.

9 Example. Find the absolute extrema of In the interval [0, 6]. f() x = 8x x2 Solution. f () x = 8 2x This function is 0 at the point x = 4. Thus we must check the three points 0, 4, 6. At these points the value of f is resp. f (0) = 0 f (4) = 32 16= 16 f (6) = 48 36= 12 Thus the absolute maximum is 16 and occurs at x = 4, and the absolute minimum is 0, occurring at x = 0.

10 Here is the graph.

11 Example. Find the absolute extrema of In the interval [ 2, 1]. f() x = 2x3 3x2 12x Solution. f () x = 6x2 6x 12= 6( x2 x 2) = 6( x 2)( x+ 1) The derivative of f is 0 at the points x = 2 and x = 1. However, only one of these points is in the desired interval, namely x = 1. Thus we must check the three points 2, 1, 1. At these points the value of f is resp. f ( 2) = 2( 8) 3(4) 12( 2) = 4 f ( 1) = = 7 f (1) = = 13 Thus the absolute maximum is 7 and occurs at x = 1, and the absolute minimum is 13, occurring at x = 1.

12 Function in the interval [ 2, 3] Function in the interval [ 2, 1]

13 Example. Find the absolute extrema of In the interval [ 3, 3]. f() x = 6 4x Solution. The derivative of f is never 0, since it is equal to 4 if x < 3/2, and to 4 when x > 3/2. The derivative fails to exist at 3/2, so this is a critical point in the desired interval. We must therefore test at the three points 3, 3/2, and 3. 3 f ( 3) = 6+ 12= 18 f 2 = 6 6= 0 f (3) = 6 12= 6 Thus the absolute maximum is 18 and it occurs at x = 3, and the absolute minimum is 0, occurring at x = 3/2.

14 Here is the graph.

15 Absolute maxima and minima on infinite or non closed intervals If an interval is not open or not finite, then there may be no absolute maximum or minimum. The following diagrams illustrate this problem. f(x) = 1/x has no absolute maximum or minimum in (0, 1). It has an absolute minimum of 1 in (0, 1], but no absolute maximum.

16 x = π/2 x = π/2 f(x) = tan(x) has no absolute maximum or minimum in the open interval ( π/2, π/2).

17 f() x 1 = 1+ x 2 has no absolute minimum in the open interval (, ), but has an absolute maximum at x = 0.

18 f() x = x3 has no absolute maximum or minimum in the interval (, ).

19 f() x = x2 has no absolute maximum in the interval (, ), but has an absolute minimum at x = 0. It also has no absolute maximum in the interval ( 1, 1).

20 There are, however, conditions where something can be said. Theorem. Suppose that a function f is continuous on an interval I (of any kind) and has exactly one relative extremum in that interval at a point x 0. If the point x 0 is a relative maximum, then it is an absolute maximum. If it is a relative minimum, then it is an absolute minimum. We will not try to prove this, but instead will illustrate it with a diagram. Relative maximum If it is eventually higher, it must pass through a relative minimum.

21 Example. Let f() x = x 3 3x Find all absolute extrema (if any) for f on the interval (0, ). Solution. f () x = 3x2 6x= 3( xx 2) This function is zero at 0 and 2, and only x = 2 is in the given interval. This is the only critical point of the function in (0, ). Since f () x = 6x 6= 6( x 1) and this is greater than 0 at 2, we know that there is a relative minimum at x = 2, and by the theorem, this must be an absolute minimum. There is no absolute maximum since lim f() x =+ x

22 This is confirmed by the graph.

23 Example. Let x 2 f() x = (1 + x 2 ) Find all absolute extrema (if any) for f on the interval (, ). Solution. (1 2 )(2 ) 2 f () x = + x x x (2 x) = 2x (1 + x 22 ) (1 + x 22 ) Which is zero only at x = 0. The derivative is positive for x > 0 and negative for x < 0, so by the first derivative test, 0 is a local minimum. Since this is the only critical point in the interval, it is an absolute minimum. We also see that the function is always between 0 and 1 and lim f() x = 1. The function never reaches 1, so there is no x ± absolute maximum.

24 The graph confirms this.

25 For curves defined by parametric equations, where the parametric interval is a closed interval [a, b] also have absolute maxima and minima, in fact their graph is contained in a finite rectangle. Example. Let x(t) = t 3sin(t) and y(t) =4 3cos(t), for t in the interval [0, 10]. What are the highest and lowest points on this curve?

26 We know that curve occur where dy 0. dt = dy dy = dt and so the stationary points of the dx dx dt Thus absolute maxima or minima must occur either at the end points of the parametric interval or at these stationary points. In the previous example, dy 3sin() t 0 dt = = at π, 2 π, and 3 π. If we check these points and 0 and 10, we have values 1, 7, 1, 7, 6.517, resp. Thus the absolute maximum of 7 is reached at points π, and 3 π. The absolute minimum of 1 is reached at 0 and 2 π.

27

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124

Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124 Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/

More information

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

Two Fundamental Theorems about the Definite Integral

Two Fundamental Theorems about the Definite Integral Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

Click here for answers. f x CD 1 2 ( BC AC AB ) 1 2 C. (b) Express da dt in terms of the quantities in part (a). can be greater than.

Click here for answers. f x CD 1 2 ( BC AC AB ) 1 2 C. (b) Express da dt in terms of the quantities in part (a). can be greater than. CHALLENGE PROBLEM CHAPTER 3 A Click here for answers. Click here for solutions.. (a) Find the domain of the function f x s s s3 x. (b) Find f x. ; (c) Check your work in parts (a) and (b) by graphing f

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010 MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function.

Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function. Good Questions Limits 1. [Q] Let f be the function defined by f(x) = sin x + cos x and let g be the function defined by g(u) = sin u + cos u, for all real numbers x and u. Then, (a) f and g are exactly

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

A power series about x = a is the series of the form

A power series about x = a is the series of the form POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

More information

Scientific Programming

Scientific Programming 1 The wave equation Scientific Programming Wave Equation The wave equation describes how waves propagate: light waves, sound waves, oscillating strings, wave in a pond,... Suppose that the function h(x,t)

More information

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

7.6 Approximation Errors and Simpson's Rule

7.6 Approximation Errors and Simpson's Rule WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration

More information

An Introduction to Calculus. Jackie Nicholas

An Introduction to Calculus. Jackie Nicholas Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

3.3 Real Zeros of Polynomials

3.3 Real Zeros of Polynomials 3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

10 Polar Coordinates, Parametric Equations

10 Polar Coordinates, Parametric Equations Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

More information

Average rate of change

Average rate of change Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

f(x) = g(x), if x A h(x), if x B.

f(x) = g(x), if x A h(x), if x B. 1. Piecewise Functions By Bryan Carrillo, University of California, Riverside We can create more complicated functions by considering Piece-wise functions. Definition: Piecewise-function. A piecewise-function

More information

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2 . Problem Show that using an ɛ δ proof. sin() lim = 0 Solution: One can see that the following inequalities are true for values close to zero, both positive and negative. This in turn implies that On the

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply Introduction and Basics Tet Regions By Clicking on the Worksheet you are in an active Math Region In order to insert a tet region either go to INSERT -TEXT REGION or simply start typing --the first time

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Definition of derivative

Definition of derivative Definition of derivative Contents 1. Slope-The Concept 2. Slope of a curve 3. Derivative-The Concept 4. Illustration of Example 5. Definition of Derivative 6. Example 7. Extension of the idea 8. Example

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

MATH 221 FIRST SEMESTER CALCULUS. fall 2009

MATH 221 FIRST SEMESTER CALCULUS. fall 2009 MATH 22 FIRST SEMESTER CALCULUS fall 2009 Typeset:June 8, 200 MATH 22 st SEMESTER CALCULUS LECTURE NOTES VERSION 2.0 (fall 2009) This is a self contained set of lecture notes for Math 22. The notes were

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

1 The EOQ and Extensions

1 The EOQ and Extensions IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 9, 2004 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions This section is devoted to

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

Student name: Earlham College. Fall 2011 December 15, 2011

Student name: Earlham College. Fall 2011 December 15, 2011 Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use

More information

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

MATH 221 FIRST SEMESTER CALCULUS. fall 2007

MATH 221 FIRST SEMESTER CALCULUS. fall 2007 MATH 22 FIRST SEMESTER CALCULUS fall 2007 Typeset:December, 2007 2 Math 22 st Semester Calculus Lecture notes version.0 (Fall 2007) This is a self contained set of lecture notes for Math 22. The notes

More information

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy. ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

More information

Planar Curve Intersection

Planar Curve Intersection Chapter 7 Planar Curve Intersection Curve intersection involves finding the points at which two planar curves intersect. If the two curves are parametric, the solution also identifies the parameter values

More information