Red River Catastrophe Project

Size: px
Start display at page:

Download "Red River Catastrophe Project"

Transcription

1 Newton s Third Law INVESTIGATION LESSON Author(s): Date to be taught: Week 1 Technology Lesson: Yes No Course Description: Lesson Source: Name: Physics Grade Level: 12 th Grade Honors or Regular: Regular Stanbrough, J.L. (2009, January 01). Physics 1 newton's third laws. Retrieved from Experiment 7: newton's third law. (n.d.). Retrieved from Accommodations for Learners with Special Needs (ELL, Special Ed, 504, GT, learning styles, etc.): Give clear definitions of vocabulary Check over lab set-up and apparatus when they are working in lab Check over data after the gather before they can do calculations Group students in a cooperative learning environment to help one another Concepts: As a result of the lesson, students will become familiar with Newton s third law. The students will already have covered vectors and equilibrium. Here the students will gain a better understanding of how their bridges will fell the force of the hanging weights. Definitions: Newton s 3 rd Law if two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1. Objectives: SWBAT, explain Newton s Third Law based on the activity that they did SWBAT, relate Newton s Third Law to their bridge project since they will be hanging weights from the bridge to create an equal and opposite force. Texas Essential Knowledge and Skills (TEKS): Physics (c) Knowledge and skills. (1) Scientific processes. The student conducts investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. These investigations must involve actively

2 obtaining and analyzing data with physical equipment, but may also involve experimentation in a simulated environment as well as field observations that extend beyond the classroom. The student is expected to: (A) Demonstrate safe practices during laboratory and field investigations (2) Scientific processes. The student uses a systematic approach to answer scientific laboratory and field investigative questions. The student is expected to: (E) design and implement investigative procedures, including making observations, asking welldefined questions, formulating testable hypotheses, identifying variables, selecting appropriate equipment and technology, and evaluating numerical answers for reasonableness; (F) Demonstrate the use of course apparatus, equipment, techniques, and procedures, including slotted and hooked lab masses meter sticks, scientific calculators, graphing technology, computers (I) identify and quantify causes and effects of uncertainties in measured data; (J) Organize and evaluate data and make inferences from data, including the use of tables, charts, and graphs; (K) communicate valid conclusions supported by the data through various methods such as lab reports, labeled drawings, graphic organizers, journals, summaries, oral reports, and technologybased reports; and (L) Express and manipulate relationships among physical variables quantitatively, including the use of graphs, charts, and equations. (3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to: (A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student; (F) Express and interpret relationships symbolically in accordance with accepted theories to make predictions and solve problems mathematically, including problems requiring proportional reasoning and graphical vector addition. (4) Science concepts. The student knows and applies the laws governing motion in a variety of situations. The student is expected to: (D) Calculate the effect of forces on objects, including the law of inertia, the relationship between force and acceleration, and the nature of force pairs between objects; (5) Science concepts. The student knows the nature of forces in the physical world. The student is expected to: (A) Research and describe the historical development of the concepts of gravitational forces; (B) Describe and calculate how the magnitude of the gravitational force between two objects depends on their masses and the distance between their centers; CCRS: I. Nature of Science: Scientific Ways of Learning and Thinking A. Cognitive skills in science 4. Rely on reproducible observations of empirical evidence when constructing, analyzing, and evaluating explanations of natural events and processes B. Scientific inquiry 1. Design and conduct scientific investigations in which hypotheses are formulated and tested. C. Collaborative and safe working practices 1. Collaborate on joint projects 3. Demonstrate skill in the safe use of a wide variety of apparatuses, equipment, techniques, and procedures.

3 E. Effective communication of scientific information 1. Use several modes of expression to describe or characterize natural patterns and phenomena. These modes of expression include narrative, numerical, graphical, pictorial, symbolic, and kinesthetic. 2. Use essential vocabulary of the discipline being studied. III. Foundation Skills: Scientific Applications of Communication A. Scientific writing 1. Use correct application of writing practices in scientific communication VIII. Physics B. Vectors 1. Understand how vectors are used to represent physical quantities 2. Demonstrate knowledge of vector mathematics using a graphical representation 3. Demonstrate knowledge of vector mathematics using a numerical representation. C. Forces and motion 2. Understand forces Materials List: Each group will need the following: Two force probes and a LabPro Logger Pro A skateboard (use the round red skateboard) and string Two Spring Scales Two Pasco Carts with force probe holders attached Masses to place on the carts to increase mass Advanced Preparations: Safety: Get copies of lab. Have students set up apparatus the first day of lab. Closed toed shoes are required in lab.

4 5Es: ENGAGEMENT What the Teacher Will Do Have the students play a game of tug-of-war. Students can go outside and play a quick game of tug-of-war to get their mind thinking about the forces that are being exerted. There are many situations where objects interact with each other. In this investigation we want to compare the forces exerted by the objects on each other. Probing/Eliciting Questions What forces are we experiencing when we play tug-of-war? What factors might determine the forces between the objects? Is there some general law which relates these forces? Is there some general law which relates these forces? Time: Minutes Student Responses and Misconceptions [Force on each other] [Force of the rope] [Mass of the object] [Distance between the objects] [One of Newton s Law] [For every action, there is an equal and opposite reaction] We will begin our study of interaction forces by examining the forces each person exerts on the other in a tug-of-war. Evaluation/Decision Point Assessment Students will be able to state Newton s Third Law. They will realize that the lab will be about equal and opposite forces exerted on each other. Student Outcomes Students will be able to relate Newton s Third Law to the lab and to their bridges.

5 EXPLORATION What the Teacher Will Do Explain to the students the lab. The majority of the work will be left to the students. The students will be finding out Newton s Third Law on their own by the Investigations. Probing/Eliciting Questions Ask the student s questions as you walk around the labdifferent groups of students will have different questions. Some questions are as follow: Why is there an equal and opposite reaction? How does Investigation 1 differ from Investigation 2? Students may also have questions about the LoggerPro software. Time: Minutes Student Responses and Misconceptions Evaluation/Decision Point Assessment Students will complete lab. Student Outcomes Students will have an idea of how their lab defines Newton s Third Law. Also, students will be able to see how this relates to their bridges.

6 EXPLANATION What the Teacher Will Do The fundamental law governing interaction forces between objects is Newton's Third Law, which can be stated: If one object exerts a force on a second object, then the second object exerts a force back on the first object which is equal in magnitude and opposite in direction to that exerted on it by the first object. Go over Investigation 1. Probing/Eliciting Questions How did the two pulls compare to each other? [Equal] Time: Minutes Student Responses and Misconceptions Was one significantly different from the other? [About the same] How did your observations compare to your predictions? [Our predictions are the same] Go over Investigation 2. How did the two pulls compare to each other? [Equal] Was one significantly different from the other? [About the same] How did your observations compare to your predictions? [Our predictions are the same] Evaluation/Decision Point Assessment Students correctly answered the questions. Student Outcomes Students completed lab and correctly answered the questions.

7 ELABORATION What the Teacher Will Do Probing/Eliciting Questions Do your observations in Investigations 1 and 2 support Newton's Third Law of motion? Time: Minutes Student Responses and Misconceptions [Yes, because of an equal and opposite reaction] When you pull on an object with a force probe, does the probe measure the force it exerts on the object or the force exerted on the probe by the object? (Does this distinction have any meaning?) Explain. Lead the class in a discussion about how this will relate to their bridges. IF TIME PERMITS: Talk about collisions. What about unbalanced forces and the result of unbalanced forces? How does this relate to our bridge project? [Unbalanced forces will have different results] [The force on the bridge] [Since we are hanging weights in the center of the bridge, we will experience force in the middle] Newton actually formulated the third law by studying the interaction forces between objects when they collide. It is difficult to fully understand the significance of this law without first studying collisions. Evaluation/Decision Point Assessment Students had thorough discussion on bridges and how Newton s Law relates. EVALUATION Student Outcomes Students will be able to see how the two Investigations and Newton s Third Law relate to their bridge projects. Time: Minutes What the Teacher Will Do & Evaluation/Decision Point Assessment Have students complete Newton s Third Law Quiz. Students will discuss the questions in their groups and then discuss the answers as a class. (

8 Newton's Third Law To every action there is always opposed an equal reaction, or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. If you press a stone with your finger, the finger is also pressed by the stone. If a horse draws a stone tied to a rope, the horse (if I may say so) will be equally drawn back towards the stone.... Isaac Newton Principia (1686) OVERVIEW We would like to turn our attention to the mutual forces of interaction between two or more objects. This will lead us to a very general law known as Newton's Third Law which relates the forces of interaction exerted by two objects on each other. You will be asked to make some predictions about interaction forces and then be given the opportunity to test these predictions. Investigation 1 Prediction 1 Suppose that you have a tug-of-war with someone who is the same size and weight as you. You both pull as hard as you can, and it is a stand-off. One of you might move a little in one direction or the other, but mostly you are both at rest. Predict the relative magnitudes of the forces between person 1 and person 2. Put an X on your prediction! person 1 exerts a larger force on person 2 the people exert the same force on each other person 2 exerts a larger force on person 1 Activity 1 1. Plug the two force probes into Channel 1 and 2 of the LabPro. Put the eyehooks (top of red box) on the force probes. Make sure both force probes are switched to the same range. 2. Open the Logger Pro. 3. When you are ready to start, Zero both of the force probes. (Click on Zero under the Experiment menu) Then hook a short loop of string between them, hit Start and begin a gentle tug-of-war. Pull back and forth while watching the graphs. Do not pull too hard, since this might damage the force probes. It may be more instructive to make one of the forces negative so you can see them both. If so, under the Experiment menu, go to Setup Sensors, LabPro1, Ch 1, Reverse Direction. 4. Repeat with different people pulling on each side. 5. Sketch one set of graphs on the axes above, or print the graphs and affix them over the axes.

9 Questions (a) How did the two pulls compare to each other? (b) Was one significantly different from the other? (c) How did your observations compare to your predictions? Investigation 2 Prediction 2 Suppose now that you have a tug-of-war with someone who is much smaller and lighter than you. As before, you both pull as hard as you can, and it is a stand-off. One of you might move a little in one direction or the other, but mostly you are both at rest. Predict the relative magnitudes of the forces between person 1 and person 2. Put an X on your prediction! person 1 exerts a larger force on person 2 the people exert the same force on each other person 2 exerts a larger force on person 1 Activity 2 In this activity you will test your prediction about the interaction forces when you are pulling someone on roller skates or a skateboard along the floor. 1. You will use the Spring Scales and the roller cart (or your own skates) for this part. Do not use the Force Probes, you will damage them. Make sure you zero the scales. Hook the two Spring Scales together and pull someone along on the board. Questions (a) How did the two pulls compare to each other? (b) Was one significantly different from the other? (c) How did your observations compare to your predictions?

10 Comment: The fundamental law governing interaction forces between objects is Newton's Third Law. Which can be stated: If one object exerts a force on a second object, then the second object exerts a force back on the first object which is equal in magnitude and opposite in direction to that exerted on it by the first object. Follow Up Questions (a) Do your observations in Investigations 1 and 2 support Newton's Third Law of motion? (b) When you pull on an object with a force probe, does the probe measure the force it exerts on the object or the force exerted on the probe by the object? (Does this distinction have any meaning?) Explain. Comment: Newton actually formulated the third law by studying the interaction forces between objects when they collide. It is difficult to fully understand the significance of this law without first studying collisions.

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition

More information

Explore 3: Crash Test Dummies

Explore 3: Crash Test Dummies Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

More information

Educational Innovations

Educational Innovations Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.

More information

Pulleys, Work, and Energy

Pulleys, Work, and Energy Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triple-pulley assemblies apparatus from

More information

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry. North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Explore 2: Gathering Momentum

Explore 2: Gathering Momentum Explore : Gathering Momentum Type of Lesson: Learning Goal & Instructional Objectives: Content with Process: Focus on constructing knowledge through active learning. In this investigation, students calculate

More information

9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* 9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

More information

LAB 06: Impulse, Momentum and Conservation

LAB 06: Impulse, Momentum and Conservation LAB 06: Impulse, Momentum and Conservation PURPOSE Investigate the relation between applied force and the change in momentum Investigate how the momentum of objects change during collisions BACKGROUND

More information

Mixing Warm and Cold Water

Mixing Warm and Cold Water Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students

More information

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to customize this lesson by supplementing

More information

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

More information

Unit: Charge Differentiated Task Light it Up!

Unit: Charge Differentiated Task Light it Up! The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

LAB 4: MOMENTUM AND COLLISIONS

LAB 4: MOMENTUM AND COLLISIONS 1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine action-reaction force pairs To examine collisions and relate the law of conservation

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Chapter 7 Newton s Laws of Motion

Chapter 7 Newton s Laws of Motion Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

Dynamics Track. Mechanical Force, Impulse and Momentum

Dynamics Track. Mechanical Force, Impulse and Momentum Dynamics Track Mechanical Force, Impulse and Momentum An object subjected to unbalanced forces undergoes acceleration, which changes the velocity of the object in question. This change in motion can be

More information

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Barbie Bungee Jump. High School Physics

Barbie Bungee Jump. High School Physics Barbie Bungee Jump High School Physics Kris Bertelsen Augusta Middle/High School Concept: The change in energy storage systems during a bungee jump activity demonstrates how energy can be transferred from

More information

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension 14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Science Stage 6 Skills Module 8.1 and 9.1 Mapping Grids

Science Stage 6 Skills Module 8.1 and 9.1 Mapping Grids Science Stage 6 Skills Module 8.1 and 9.1 Mapping Grids Templates for the mapping of the skills content Modules 8.1 and 9.1 have been provided to assist teachers in evaluating existing, and planning new,

More information

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

AIE: 85-86, 193, 217-218, 294, 339-340, 341-343, 412, 437-439, 531-533, 682, 686-687 SE: : 339, 434, 437-438, 48-454, 455-458, 680, 686

AIE: 85-86, 193, 217-218, 294, 339-340, 341-343, 412, 437-439, 531-533, 682, 686-687 SE: : 339, 434, 437-438, 48-454, 455-458, 680, 686 Knowledge and skills. (1) The student conducts laboratory investigations and fieldwork using safe, environmentally appropriate, and ethical practices. The student is expected to: (A) demonstrate safe practices

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

AP Physics Applying Forces

AP Physics Applying Forces AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

Unit 2 Force and Motion

Unit 2 Force and Motion Force and Motion Unit 2 Force and Motion Learning Goal (TEKS): Identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces. This means: We are

More information

CONNECTING LESSONS NGSS STANDARD

CONNECTING LESSONS NGSS STANDARD CONNECTING LESSONS TO NGSS STANDARDS 1 This chart provides an overview of the NGSS Standards that can be met by, or extended to meet, specific STEAM Student Set challenges. Information on how to fulfill

More information

MIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE

MIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE Science Practices Standard SP.1: Scientific Questions and Predictions Asking scientific questions that can be tested empirically and structuring these questions in the form of testable predictions SP.1.1

More information

Balanced and Unbalanced Forces

Balanced and Unbalanced Forces 1 Balanced and Unbalanced Forces Lesson Created by Carlos Irizarry, George B. Swift Specialty School, Chicago, Illinois Purpose To fully appreciate and make a connection to Newton s Laws, students must

More information

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

How to Write a Formal Lab Report

How to Write a Formal Lab Report Union College Physics and Astronomy How to Write a Formal Lab Report A formal lab report is essentially a scaled-down version of a scientific paper, reporting on the results of an experiment that you and

More information

Georgia Performance Standards Framework for Physical Science 8 th GRADE. Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines

Georgia Performance Standards Framework for Physical Science 8 th GRADE. Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines Subject Area: Physical Science Grade: 8 Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines S8P3. Students will investigate relationship between force, mass, and the motion of

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

ACTIVITY 6: Falling Objects

ACTIVITY 6: Falling Objects UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Lab for Deflection and Moment of Inertia

Lab for Deflection and Moment of Inertia Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #

More information

Name per due date mail box

Name per due date mail box Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

More information

Music Makers. paper clips

Music Makers. paper clips Fifth Grade Science Design Brief Music Makers Background: We know that sound is a form of energy produced and transmitted by vibrating matter and that pitch is determined by the frequency of a vibrating

More information

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction

More information

Paper Airplanes. Linsey Fordyce. Fall 2014. TEFB 413 Section # 504

Paper Airplanes. Linsey Fordyce. Fall 2014. TEFB 413 Section # 504 Model- Based Inquiry Learning Lesson Plan Paper Airplanes Linsey Fordyce Fall 2014 TEFB 413 Section # 504 1. BACKGROUND INFORMATION OF LESSON LESSON OBJECTIVES Students will investigate through model-

More information

Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A

Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Chapter 112. Texas Essential Knowledge and Skills for Science. Subchapter D. Other Science Courses

Chapter 112. Texas Essential Knowledge and Skills for Science. Subchapter D. Other Science Courses Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter D. Other Science Courses Statutory Authority: The provisions of this Subchapter D issued under the Texas Education Code, 7.102(c)(4),

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Linear Equations 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Tools: Geometer s Sketchpad Software Overhead projector with TI- 83

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

6. Block and Tackle* Block and tackle

6. Block and Tackle* Block and tackle 6. Block and Tackle* A block and tackle is a combination of pulleys and ropes often used for lifting. Pulleys grouped together in a single frame make up what is called a pulley block. The tackle refers

More information

Coefficient of Friction Using a Force Sensor and a Motion Sensor

Coefficient of Friction Using a Force Sensor and a Motion Sensor Physics Laboratory Manual n Loyd LABORATORY 7A Coefficient of Friction Using a Force Sensor and a Motion Sensor OBJECTIVES o Investigate the coefficient of static friction between a felt-covered wood block

More information

Calculate Gravitational Acceleration

Calculate Gravitational Acceleration Calculate Gravitational Acceleration Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, physics, science and technology Calculate Gravitational Acceleration Insert

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Biology: Foundation Edition Miller/Levine 2010

Biology: Foundation Edition Miller/Levine 2010 A Correlation of Biology: Foundation Edition Miller/Levine 2010 to the IDAHO CONTENT STANDARDS Science - Biology Grades 9-10 INTRODUCTION This document demonstrates how Prentice Hall s Biology: Foundation

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum

Physics Momentum and Impulse Car Safety Engineering (egg drop) Conservation of Momentum Physics Momentum and Impulse Car Safety Engineering (egg drop) Intro to Momentum Conservation of Momentum Impulse Student Experience Students brainstorm the meaning of momentum. Students use different

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

Introduction to Netlogo: A Newton s Law of Gravity Simulation

Introduction to Netlogo: A Newton s Law of Gravity Simulation Introduction to Netlogo: A Newton s Law of Gravity Simulation Purpose Netlogo is an agent-based programming language that provides an all-inclusive platform for writing code, having graphics, and leaving

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

Problem of the Month: Perfect Pair

Problem of the Month: Perfect Pair Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

More information

Physics Lab Report Guidelines

Physics Lab Report Guidelines Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed

More information

Providing science efficiently in Physics and Computer Science in Kyrgyzstan remote schools by using Simulation and Virtual Reality

Providing science efficiently in Physics and Computer Science in Kyrgyzstan remote schools by using Simulation and Virtual Reality Modern Computer Applications in Science and Education Providing science efficiently in Physics and Computer Science in Kyrgyzstan remote schools by using Simulation and Virtual Reality ANGELO MUSAIO, ROBERTO

More information

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY 1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

More information

Science Grade 1 Forces and Motion

Science Grade 1 Forces and Motion Science Grade 1 Forces and Motion Description: The students in this unit will use their inquiry skills to explore pushing, pulling, and gravity. They will also explore the different variables which affect

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

Multimedia & the World Wide Web

Multimedia & the World Wide Web Multimedia & the World Wide Web Winter 2014 Quarter HCI 201 section 201 Class Meeting Times: Tuesdays, 1:00 PM to 2:30 PM Thursdays, 1:00 PM to 2:30 PM Instructor: Sal J. Barry Email: sbarry5@cdm.depaul.edu

More information

Grade 7 Mathematics. Unit 2. Integers. Estimated Time: 15 Hours

Grade 7 Mathematics. Unit 2. Integers. Estimated Time: 15 Hours Grade 7 Mathematics Integers Estimated Time: 15 Hours [C] Communication [CN] Connections [ME] Mental Mathematics and Estimation [PS] Problem Solving [R] Reasoning [T] Technology [V] Visualization Grade

More information

Differentiated Instruction Lesson Plan Format

Differentiated Instruction Lesson Plan Format Differentiated Instruction Lesson Plan Format Lesson Title: Physics in Sports Content Area and Grade Level: 11-12 Author: Mary Gohring School District: Wessington Springs Email: mary.gohring@k12.sd.us

More information

Days. Day 1. Reflection Teacher Responsibilities. Lesson Plans

Days. Day 1. Reflection Teacher Responsibilities. Lesson Plans Days Day 1 Lesson Plans Call the students to the carpet by the number of letters in their names. If your name has less than 5 letters, come to the carpet. If your name has more than 5 letters, come to

More information

Depth-of-Knowledge Levels for Four Content Areas Norman L. Webb March 28, 2002. Reading (based on Wixson, 1999)

Depth-of-Knowledge Levels for Four Content Areas Norman L. Webb March 28, 2002. Reading (based on Wixson, 1999) Depth-of-Knowledge Levels for Four Content Areas Norman L. Webb March 28, 2002 Language Arts Levels of Depth of Knowledge Interpreting and assigning depth-of-knowledge levels to both objectives within

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

Physical Science Chapter 2. Forces

Physical Science Chapter 2. Forces Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

More information

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3 PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

More information

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a

More information