Newton s 3 rd Law Study Guide Chapter 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Newton s 3 rd Law Study Guide Chapter 7"

Transcription

1 1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle pushes on the water. What makes the kayak move forward? The water pushes forward on the paddle Section 7.1 Forces and Interactions 4. A force is always part of a(n)_mutual action that involves another force. 5. Describe the interaction forces between a nail and a hammer that hits it and explain why the hammer stops moving. The nail exerts an equal and opposite force on the hammer. The hammer stops because it has an unbalanced force Section 7.2 Newton s Third Law 6. State Newton s 3 rd Law Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first object 7. State the rule for deciding which force is the action force and which is the reaction force It makes no difference which force is called the action force. The other force is called the reaction force. 8. Action and reaction forces are equal in magintude and opposite in direction 9. Describe the reaction force for each of the following To walk, you push on the floor The floor pushes on you A dog wags its tail The tail wags the dog A car s tires push against the road The road pushes on the car s tires You push on a door The door pushes on you Your right hand pushes on your left hand Your left hand pushes on your right hand A baseball bat exerts a force on the ball The ball exerts a force on the bat 10. Use the words action force and reaction force to explain why a person walking on ice might not be able to move forward For a person to walk, it must be possible to apply an action force on the ice. The ice is not able to supply enough of a reaction force to push back on the person. Section 7.3 Identifying Action and Reaction 11. State the two steps for identifying a pair of action-reaction forces a. Determine which two objects are interacting b. If the action force is A on B, then the reaction force is B on A 12. When you drop your smart phone from the top of a building and it falls to the ground, a. The two interacting objects are:_a: smart phone and _B: earth b. The action of A on B is earth pulls phone c. The action of B on A is phone pulls on earth 13. Complete the following table and describe the reaction forces AND their direction A car s tires push backwards on the road Road pushes forward on car s tires A rocket pushes gas out behind Gas pushes forward on rocket A pool ball rolls into another ball and exerts Second ball exerts a force back on the first ball a force on it A swimmer pushes backwards on the water Water pushes forward on swimmer A helicopter s blades push down on the air Air pushes up on blades The earth pulls downward on a falling piano Piano pulls upward on earth 14. Describe the force interaction pair when a ball is falling towards the earth Earth pulls downward on the ball. The ball pulls upward on the earth. Section 7.4 Action and Reaction o n Different Masses 15. When you drop a pencil from your desk, the earth exerts a force on the pencil. How big is the force that the pencil exerts on the earth? The pencil exerts and equal and opposite force on the earth

2 16. State Newton s Second Law Acceleration is directly proportional to the force applied to an object and inversely proportional to its mass. The formula is a = F m 17. When a pencil falls towards the earth, the earth accelerates towards the pencil. Explain using Newton s Second Law why we don t feel the acceleration of the earth towards the pencil (use the formula in your explanation) Both the pencil and the earth feel the same force, but because the earth s mass is very large, its acceleration is very small. Using the formula for the pencil and for the earth, we see the earth accelerates less 18. When you throw a small ball, you exert a force on the ball and it accelerates. Newton s Third Law says that the ball exerts an equal force on you. Explain using Newton s Second Law why you don t go flying backwards as you throw. You both feel the same force, but because you have more mass, you accelerate less than the ball. 19. When a cannonball is fired from a cannon, the force that the cannon exerts on the ball is _equal and opposite to the force the ball exerts on the cannon. 20. Explain why the change in velocity of the cannonball is much greater than the change in velocity of the cannon: The cannon has MUCH more mass than the cannonball so it accelerates MUCH less than the cannonball 21. People used to think that rockets could not accelerate in space because there is no air to push against. Explain why this is not true (and compare it to the cannonball example). The rocket pushes on each molecule of gas, and just like the cannonball example, each molecule of gas pushes back on the rocket. Because there are so many molecules of gas, they exert a net force that moves the rocket forward. The air has no effect on the rocket. 22. What is lift? Lift is the upward force of air on an airplane s wings or helicopter s blades that allows it to fly. 23. If two different objects receive the same amount of force, how is it that they accelerate at different rates? If they have different accelerations with the same force, then they must have different masses. 24. Match the condition on the left to the result on the right c 1. Lift equals the helicopter s weight a. Helicopter moves downward b_2. Lift is greater than the helicopter s weight b. Helicopter moves upward a 3. Lift is less than the helicopter s weight c. Helicopter hovers in mid-air Section 7.5 Defining Systems 25. Explain why the force of the orange on the apple does NOT cancel the force of the orange on the apple and the orange accelerates The force applied by the apple is external to the orange system 26. Explain why the force of the orange on the apple DOES cancel the force of the apple on the orange and the orange DOES NOT accelerate The force of the apple on the orange is internal to the system. Only external forces can accelerate an object. 27. Inside a golf ball there are billions of atoms, all exerting action-reaction forces on each other. Explain why the ball does not accelerate on its own All the forces are internal, and do nothing to make the object accelerate.

3 Cart Section 7.6Horse and Cart Problem Horse F friction F horse F cart F road A horse is pulling on a cart, accelerating the cart forward. 1. a) Make a force diagram for the cart to the left of the picture. b) Make a force diagram for the horse to the right of the picture. 2. Is the force exerted on the cart by the horse greater than the force exerted on the horse by the cart? How do you know? The forces are equal and opposite due to Newton s Third Law 3. Is the force exerted on the cart by the horse greater than the force of friction on the cart exerted by the ground? How do you know? Yes, since the cart is accelerating, then it must have an unbalanced force. The force by the horse on the cart must be greater than the force of friction on the cart 4. Is it true to say that the net force exerted on the cart is in the forward direction? How do you know? Yes, an object accelerates in the direction of the net force on it. 5. Is it true to say that the net force exerted on the cart is zero? How do you know? No, because the cart is accelerating, the net force cannot be zero. 6. Is it true to say that the net force of each Newton s third law pair is zero? How do you know? Yes, because the forces are equal and opposite. The sum of two equal and opposite vectors is zero. 7. Is the force of friction on the horse less than the force of friction on the cart? How do you know? Yes, because the horse is able to cause the cart to accelerate. The push by the road on the horse must be less than the resistance by the road on the cart.

4 Concept Checks 1. Can an action force exist without a reaction force? No, according to Newton s Third Law 2. When a hammer exerts a force on a nail, how does this amount of force compare with that of the nail on the hammer? It is equal and opposite 3. When you walk on a floor, what pushes you along? The floor pushes back 4. State Newton s third law of motion. For every force there is an equal and opposite force. 5. Consider hitting a baseball with a bat. If we call the force the bat exerts against the ball the action force, identify the reaction force. The reaction force is the force of the ball on the bat 6. If a bat hits a ball with 1000 N of force, can the ball exert less than 1000 N of force on the bat? More than 1000 N? The ball exerts a force of 1000N on the bat. 7. If the world pulls you downward against your chair, what is the reaction force? The reaction force is the chair pushing up on you 8. When a cannon is fired, are the forces on the cannonball and on the cannon equal in magnitude? Are the accelerations of the two equal? No 9. When a cannon is fired, why do the cannonball and cannon have very different accelerations? The cannon has much more mass than the cannonball and accelerates much less due to Newton s second law 10. Identify the force that propels a rocket. The rocket pushes backwards on the gas and the gas pushes forwards on the rocket 11. How does a helicopter get its lifting force? The rotors push down on the air and the air pushes back up on the rotors 13. When can two kicks on a soccer ball produce a net force of zero on the ball? When they are on opposite sides and in opposite directions AND they are equal in magnitude 14. Why don t the enormous number of interatomic forces inside a baseball accelerate the baseball? Internal forces do nothing to accelerate an object. An object requires and external force to accelerate 18. If you hit a wall with a force of 200 N, how much force does the wall exert on you? 200N 21. Three sets of double boxes rest on a table. Rank the following from greatest to least. a. the normal force that the table exerts on the sets A = B = C b. the normal force exerted by the bottom block on the top block B > C > A 22. A van exerts a force on trailers of different masses m. All velocities v are constant. Compared with the force exerted on the trailer, rank the magnitude of force the trailer exerts on the van. Or are all pairs of forces equal in magnitude? A = B = C 25. Your weight is the result of the gravitational force of Earth on your body. What is the corresponding reaction force? Your body pulls up on the earth 28. If you walk on a log that is floating in the water, the log moves backward. Why? The backward force of your push on the log is greater than the forward push of the water on the log 29. Why is it easier to walk on a carpeted floor than on a smooth, polished floor? (Explain in terms of action/reaction forces) The carpet can produce a greater reaction force due to greater friction 36. A small car bumps into a van at rest in a parking lot. Upon which vehicle is the force of impact greater? Same Which vehicle undergoes the greater change in acceleration? Defend your answer. The car accelerates

5 more because it has less mass. They both feel the same force. 45. Your teacher challenges you and your best friend to each pull on a pair of scales attached to the ends of a horizontal rope, in tug-of-war fashion, so that the readings on the scales will differ. Can this be done? Explain. The readings on the scale can never be different because Newton s Third Law says that every action force has an equal and opposite reaction force. Extra Credit Problems. Do these on this page or on a separate sheet of paper. SHOW YOUR WORK TO GET CREDIT 1. What will be the acceleration of recoil when a 60-kg person on rollerskates pushes against a wall with a force of 30 N? 0.5 m/s 2 2. Two people attempt a tug-of-war on lowfriction ice. One person has four times the mass of the other. Relative to the acceleration of the heavier person, what will be the acceleration of the lighter person? 4 times 3. What is the net force on a falling 100-N barrel hitting a pavement with 5000 N of force? 4900N 4. A 70-kg skydiver is falling at her terminal speed. Show that she exerts a 700-N downward force on the air as she falls.

Conceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand:

Conceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand: This lecture will help you understand: Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION Forces and Interactions Summary of Newton s Laws Vectors Forces and Interactions Interaction

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION Newton s Laws of Motion I was only a scalar until you came along and gave me direction. Barbara Wolfe This lecture will help you understand:

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

More information

Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.

Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted

More information

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

More information

Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s Laws: Explaining Motion Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

Name Period Chapter 10 Study Guide

Name Period Chapter 10 Study Guide Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

More information

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

Newton s Third Law of Motion: Symmetry in Forces

Newton s Third Law of Motion: Symmetry in Forces Newton s Third Law of Motion: Symmetry in Forces By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative Commons

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

LAWS OF FORCE AND MOTION

LAWS OF FORCE AND MOTION reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

Describe the relationship between gravitational force and distance as shown in the diagram.

Describe the relationship between gravitational force and distance as shown in the diagram. Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

More information

1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2 Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

5 Newton s Third Law of Motion

5 Newton s Third Law of Motion 5 Newton s Third Law of Motion The heavy weight champion can hit the massive bag with considerable force. But with the same punch he can only exert a tiny force on the tissue paper in midair. Why is this?

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

ACTIVITY 1: Gravitational Force and Acceleration

ACTIVITY 1: Gravitational Force and Acceleration CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Newton s Laws of Motion. Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211)

Newton s Laws of Motion. Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211) Newton s Laws of Motion Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211) Contents of the Presentation Newton s First law of Motion Balance and Unbalanced Force Newton s Second law of Motion Free Falling

More information

Newton s Laws of Motion

Newton s Laws of Motion Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

More information

E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion

E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

More information

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion

Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Suggested Videos for Chapter 4 Prelecture Videos Newton s Laws Forces Video Tutor Solutions Force and Newton s Laws of Motion Class Videos

More information

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces. When an object is pushed or pulled, we say that a force is exerted on it. Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

More information

1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Mass, energy, power and time are scalar quantities which do not have direction.

Mass, energy, power and time are scalar quantities which do not have direction. Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

More information

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

More information

(green chalkboard on screen) VO Newton s Third Law of Motion is also known as the Law of Interaction or Action-Reaction.

(green chalkboard on screen) VO Newton s Third Law of Motion is also known as the Law of Interaction or Action-Reaction. Physics 404 - Newton s Third Law and Projectile Motion (Read objectives on screen.) Did you know that it is impossible to touch something or someone without being touched back? That s what Newton s Third

More information

Force and Motion Test

Force and Motion Test Force and Motion Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (1 point each) 1. Your best guess of how an experiment might turn out

More information

2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions

2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions SUMMARY Newton s Second Law of Motion Newton s second law of motion relates the acceleration of an object to the mass of the object and the net force acting on it. The equation is a = F net or F m net

More information

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

Newton's First and Second Laws

Newton's First and Second Laws Name -------------- Class _ Date ------ Newton's First and Second Laws KEY IDEAS As you read this section, keep these questions What makes an object's motion change? What is inertia? What affects how much

More information

Big Science Idea. Forces. Name. When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move.

Big Science Idea. Forces. Name. When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. Forces Worksheet 1 Name Forces When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. When you drop something, it is pulled to the ground by gravity. A PUSH

More information

More of Newton s Laws

More of Newton s Laws More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

More information

Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics. Newton s Laws Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Isaac Newton is famous for three laws. They are about the way things move. He didn t write the laws. Other people called them Newton s Laws of Motion. Newton s First Law The first

More information

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time. I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

More information

Our Dynamic Universe

Our Dynamic Universe North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia 2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

More information

Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

More information

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

More information

Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids. Science Level 4. Newton s Laws Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

More information

Unit 2 Force and Motion

Unit 2 Force and Motion Force and Motion Unit 2 Force and Motion Learning Goal (TEKS): Identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces. This means: We are

More information

F13--HPhys--Q5 Practice

F13--HPhys--Q5 Practice Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

More information

Friction and Newton s 3rd law

Friction and Newton s 3rd law Lecture 4 Friction and Newton s 3rd law Pre-reading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both

More information

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap. This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

More information

UNIT 2D. Laws of Motion

UNIT 2D. Laws of Motion Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

More information

Newton s Third Law, Momentum, Center of Mass

Newton s Third Law, Momentum, Center of Mass Team: Newton s Third Law, Momentum, Center of Mass Newton s Third Law is a deep statement on the symmetry of interaction between any two bodies in the universe. How is the pull of the earth on the moon

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude. Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

More information

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

More information

Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy. Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Newton s Laws Force and Motion

Newton s Laws Force and Motion CLIL Project Physics in English Anno scolastico 2013-2014 Newton s Laws Force and Motion Lecture 2 Classe 3 a A Linguistico Istituto Superiore Marini-Gioia - AMALFI Content of the unit: Newton s Laws DYNAMIC

More information

Section 3 Friction: A Force That Opposes Motion

Section 3 Friction: A Force That Opposes Motion Section 3 Friction: A Force That Opposes Motion Key Concept Friction is a force that can balance other forces to prevent motion. Friction is also a force that, when unbalanced, can change the velocity

More information

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

5.1 The First Law: The Law of Inertia

5.1 The First Law: The Law of Inertia The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

More information

Newton's third law relates action and reaction forces.

Newton's third law relates action and reaction forces. Forces and Motion Ch. 2.3 Newton's third law relates action and reaction forces. Newton made an important observation that explains the motion of the jellyfish. He noticed that forces always act in pairs.

More information

Force Concept Inventory

Force Concept Inventory Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

The first force can be referred to as the action force and the second force can be referred to as the reaction force.

The first force can be referred to as the action force and the second force can be referred to as the reaction force. Phys 11: 4.3 Newton s Third Law of Motion Newton s third Law of Motion deals with what happens when one object exerts a force on another. What Newton explains is that when one body (body A) exerts a force

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information