Bored by Classification ConvNets? End-to-end Learning of other Computer Vision Tasks

Size: px
Start display at page:

Download "Bored by Classification ConvNets? End-to-end Learning of other Computer Vision Tasks"

Transcription

1 Bored by Classification ConvNets? End-to-end Learning of other Computer Vision Tasks Thomas Brox University of Freiburg Germany Research funded by ERC Starting Grant VideoLearn, the German Research Foundation, and the Deutsche Telekom Stiftung Thomas Brox

2 Outline Generative networks U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 2

3 Typical ConvNet architecture cat Classification network Thomas Brox 3

4 Typical ConvNet architecture cat cat Classification network Thomas Brox 4

5 Up-convolutional network Alexey Dosovitskiy CVPR 2015 New: Expanding network architecture Small gray office chair, side view cat Image generation Related work: Eigen et al. NIPS 2014: Network for depth map prediction Long et al. CVPR 2015: Network for semantic segmentation Thomas Brox 5

6 Generating chair images with a network Dosovitskiy et al., CVPR 2015 Thomas Brox 6

7 Training set 3D chair dataset Aubry et al. CVPR 2014 Rendering 809 chair styles From 62 viewpoints Source: Some of the rendered chairs Thomas Brox 7

8 Generating images of unseen views Training set split into two subsets: Source set: 62 viewpoints available (90% of all chair models) Target set: fewer viewpoints available (10% of all models) Thomas Brox 8

9 Generating images of unseen views 8 azimuths available 4 azimuths available 2 azimuths available 1 azimuth available Thomas Brox 9

10 Comparison to baselines Alexey Dosovitskiy CVPR 2015 Thomas Brox 10

11 Interpolation of chair styles Alexey Dosovitskiy CVPR 2015 Thomas Brox 11

12 Correspondences between chair instances Alexey Dosovitskiy CVPR 2015 Thomas Brox 12

13 Correspondences between chair instances Generate intermediate images with the network Track points with optical flow (LDOF) along the sequence Deformable Spatial Pyramid Matching (Kim et al. 2013) all easy difficult SIFT Flow (Liu et al. 2008) Ours Human performance Thomas Brox 13

14 Preview: Inverting ConvNets with ConvNets Up-convolutional network Image features e.g. from AlexNet Learn to re-generate the input image from its feature representation Related work: Mahendran & Vedaldi CVPR 2015 Zeiler & Fergus ECCV 2014 Alexey Dosovitskiy arxiv 2015 Thomas Brox 14

15 Reconstruction results Up-Conv. Mahendran & Vedaldi Autoencoder More reconstructions with up-convolutional network: Thomas Brox 15

16 Color and position are preserved in high layers input All FC8 Top 5 FC8 All but Top 5 FC8 Color experiment Position experiment Thomas Brox 16

17 Outline A generative network U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 17

18 U-Net: Image segmentation with a ConvNet Olaf Ronneberger MICCAI 2015 Philipp Fischer Similar to Fully Convolutional Network [Long et al., CVPR 2015] Original inspiration: Depth map prediction [Eigen et al., NIPS 2014] Thomas Brox 18

19 Binary segmentation Electron Microscopy ISBI 2012 Challenge Rank 1 Light microscopy cell tracking ISBI 2015 Challenge Rank 1 Thomas Brox 19

20 Multi-class semantic segmentation X-ray dental segmentation, ISBI 2015 Challenge, Rank 1 Intersection over union: 77.5% Second best: 46% Thomas Brox 20

21 Multi-instance segmentation Light microscopy, DIC-HeLa cell tracking ISBI 2015 Challenge: Rank 1 Thomas Brox 21

22 Outline A generative network U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 22

23 FlowNet: Estimating optical flow with a ConvNet Refinement: expanding architecture Thomas Brox 23

24 Helping the network with a correlation layer Joint work with the group of Daniel Cremers Philipp Fischer Alexey Dosovitskiy Eddy Ilg Philip Häusser Caner Hazirbas Vladimir Golkov Thomas Brox 24

25 Enough data to train such a network? Getting ground truth optical flow for realistic videos is hard Existing datasets are small: Frames with ground truth Middlebury 8 KITTI 194 Sintel 1041 Needed >10000 Thomas Brox 25

26 Realism is overrated: the flying chair dataset Rendered image Optical flow Thomas Brox 26

27 It works! Input images Ground truth FlowNetSimple FlowNetCorr Although the network has only seen flying chairs for training, it predicts good optical flow on Sintel Thomas Brox 27

28 Results on various datasets Middlebury KITTI Sintel Clean Sintel Final Flying Chairs EpicFlow DeepFlow LDOF FlowNetS FlowNetS+v FlowNetS+ft FlowNetS+ft+v FlowNetC FlowNetC+v FlowNetC+ft FlowNetC+ft+v Networks can compete with state-of-the-art conventional optical flow estimation methods Thomas Brox 28

29 Can handle large displacements Input images Ground truth FlowNetSimple FlowNetCorr DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015) Thomas Brox 29

30 Sometimes wrong direction Input images Ground truth FlowNetSimple FlowNetCorr DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015) Thomas Brox 30

31 Often captures fine details Input images Ground truth FlowNetSimple FlowNetCorr DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015) Thomas Brox 31

32 Results on Flying chairs test set Input images Ground truth EpicFlow (Revaud et al. CVPR 2015) FlowNetCorr Thomas Brox 32

33 Runs with 10fps on the GPU Thomas Brox 33

34 Summary A generative network U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 34

35 Tip of the day Thomas Brox 35

Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016

Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods End-to-end Learning based Methods Discussion Optical Flow Goal: Pixel motion

More information

arxiv:1505.04597v1 [cs.cv] 18 May 2015

arxiv:1505.04597v1 [cs.cv] 18 May 2015 U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, and Thomas Brox arxiv:1505.04597v1 [cs.cv] 18 May 2015 Computer Science Department and BIOSS Centre for

More information

Pedestrian Detection with RCNN

Pedestrian Detection with RCNN Pedestrian Detection with RCNN Matthew Chen Department of Computer Science Stanford University mcc17@stanford.edu Abstract In this paper we evaluate the effectiveness of using a Region-based Convolutional

More information

Module 5. Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016

Module 5. Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016 Module 5 Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016 Previously, end-to-end.. Dog Slide credit: Jose M 2 Previously, end-to-end.. Dog Learned Representation Slide credit: Jose

More information

Image and Video Understanding

Image and Video Understanding Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material

More information

Convolutional Feature Maps

Convolutional Feature Maps Convolutional Feature Maps Elements of efficient (and accurate) CNN-based object detection Kaiming He Microsoft Research Asia (MSRA) ICCV 2015 Tutorial on Tools for Efficient Object Detection Overview

More information

Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite

Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite Philip Lenz 1 Andreas Geiger 2 Christoph Stiller 1 Raquel Urtasun 3 1 KARLSRUHE INSTITUTE OF TECHNOLOGY 2 MAX-PLANCK-INSTITUTE IS 3

More information

Compacting ConvNets for end to end Learning

Compacting ConvNets for end to end Learning Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,

More information

Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection

Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection CSED703R: Deep Learning for Visual Recognition (206S) Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 3 Object detection

More information

CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015

CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 CS 1699: Intro to Computer Vision Deep Learning Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 Today: Deep neural networks Background Architectures and basic operations Applications Visualizing

More information

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Visual Geometry Group, University of Oxford {karen,az}@robots.ox.ac.uk Abstract We investigate architectures

More information

Image Classification for Dogs and Cats

Image Classification for Dogs and Cats Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science kzhou3@ualberta.ca Abstract

More information

Bert Huang Department of Computer Science Virginia Tech

Bert Huang Department of Computer Science Virginia Tech This paper was submitted as a final project report for CS6424/ECE6424 Probabilistic Graphical Models and Structured Prediction in the spring semester of 2016. The work presented here is done by students

More information

arxiv:1312.6034v2 [cs.cv] 19 Apr 2014

arxiv:1312.6034v2 [cs.cv] 19 Apr 2014 Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps arxiv:1312.6034v2 [cs.cv] 19 Apr 2014 Karen Simonyan Andrea Vedaldi Andrew Zisserman Visual Geometry Group,

More information

Deformable Part Models with CNN Features

Deformable Part Models with CNN Features Deformable Part Models with CNN Features Pierre-André Savalle 1, Stavros Tsogkas 1,2, George Papandreou 3, Iasonas Kokkinos 1,2 1 Ecole Centrale Paris, 2 INRIA, 3 TTI-Chicago Abstract. In this work we

More information

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual

More information

Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree.

Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree. Visual search: what's next? Cees Snoek University of Amsterdam The Netherlands Euvision Technologies The Netherlands Problem statement US flag Tree Aircraft Humans Dog Smoking Building Basketball Table

More information

3D Model based Object Class Detection in An Arbitrary View

3D Model based Object Class Detection in An Arbitrary View 3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

Semantic Recognition: Object Detection and Scene Segmentation

Semantic Recognition: Object Detection and Scene Segmentation Semantic Recognition: Object Detection and Scene Segmentation Xuming He xuming.he@nicta.com.au Computer Vision Research Group NICTA Robotic Vision Summer School 2015 Acknowledgement: Slides from Fei-Fei

More information

Lecture 6: Classification & Localization. boris. ginzburg@intel.com

Lecture 6: Classification & Localization. boris. ginzburg@intel.com Lecture 6: Classification & Localization boris. ginzburg@intel.com 1 Agenda ILSVRC 2014 Overfeat: integrated classification, localization, and detection Classification with Localization Detection. 2 ILSVRC-2014

More information

Color Segmentation Based Depth Image Filtering

Color Segmentation Based Depth Image Filtering Color Segmentation Based Depth Image Filtering Michael Schmeing and Xiaoyi Jiang Department of Computer Science, University of Münster Einsteinstraße 62, 48149 Münster, Germany, {m.schmeing xjiang}@uni-muenster.de

More information

Fast R-CNN. Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th. Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083.

Fast R-CNN. Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th. Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083. Fast R-CNN Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083. ECS 289G 001 Paper Presentation, Prof. Lee Result 1 67% Accuracy

More information

Stochastic Pooling for Regularization of Deep Convolutional Neural Networks

Stochastic Pooling for Regularization of Deep Convolutional Neural Networks Stochastic Pooling for Regularization of Deep Convolutional Neural Networks Matthew D. Zeiler Department of Computer Science Courant Institute, New York University zeiler@cs.nyu.edu Rob Fergus Department

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008. COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions

More information

LIBSVX and Video Segmentation Evaluation

LIBSVX and Video Segmentation Evaluation CVPR 14 Tutorial! 1! LIBSVX and Video Segmentation Evaluation Chenliang Xu and Jason J. Corso!! Computer Science and Engineering! SUNY at Buffalo!! Electrical Engineering and Computer Science! University

More information

High Quality Image Magnification using Cross-Scale Self-Similarity

High Quality Image Magnification using Cross-Scale Self-Similarity High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg

More information

First-Person Activity Recognition: What Are They Doing to Me?

First-Person Activity Recognition: What Are They Doing to Me? IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, June 23 First-Person Activity Recognition: What Are They Doing to Me? M. S. Ryoo and Larry Matthies Jet Propulsion Laboratory,

More information

Marr Revisited: 2D-3D Alignment via Surface Normal Prediction

Marr Revisited: 2D-3D Alignment via Surface Normal Prediction Marr Revisited: 2D-3D Alignment via Surface Normal Prediction Aayush Bansal Bryan Russell2 Abhinav Gupta Carnegie Mellon University 2 Adobe Research http://www.cs.cmu.edu/ aayushb/marrrevisited/ Input&Image&

More information

Taking Inverse Graphics Seriously

Taking Inverse Graphics Seriously CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best

More information

Classifying Manipulation Primitives from Visual Data

Classifying Manipulation Primitives from Visual Data Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if

More information

arxiv:1506.03365v2 [cs.cv] 19 Jun 2015

arxiv:1506.03365v2 [cs.cv] 19 Jun 2015 LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop Fisher Yu Yinda Zhang Shuran Song Ari Seff Jianxiong Xiao arxiv:1506.03365v2 [cs.cv] 19 Jun 2015 Princeton

More information

Learning and transferring mid-level image representions using convolutional neural networks

Learning and transferring mid-level image representions using convolutional neural networks Willow project-team Learning and transferring mid-level image representions using convolutional neural networks Maxime Oquab, Léon Bottou, Ivan Laptev, Josef Sivic 1 Image classification (easy) Is there

More information

Tracking performance evaluation on PETS 2015 Challenge datasets

Tracking performance evaluation on PETS 2015 Challenge datasets Tracking performance evaluation on PETS 2015 Challenge datasets Tahir Nawaz, Jonathan Boyle, Longzhen Li and James Ferryman Computational Vision Group, School of Systems Engineering University of Reading,

More information

Scalable Object Detection by Filter Compression with Regularized Sparse Coding

Scalable Object Detection by Filter Compression with Regularized Sparse Coding Scalable Object Detection by Filter Compression with Regularized Sparse Coding Ting-Hsuan Chao, Yen-Liang Lin, Yin-Hsi Kuo, and Winston H Hsu National Taiwan University, Taipei, Taiwan Abstract For practical

More information

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow 02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve

More information

CNN Based Object Detection in Large Video Images. WangTao, wtao@qiyi.com IQIYI ltd. 2016.4

CNN Based Object Detection in Large Video Images. WangTao, wtao@qiyi.com IQIYI ltd. 2016.4 CNN Based Object Detection in Large Video Images WangTao, wtao@qiyi.com IQIYI ltd. 2016.4 Outline Introduction Background Challenge Our approach System framework Object detection Scene recognition Body

More information

Pallas Ludens. We inject human intelligence precisely where automation fails. Jonas Andrulis, Daniel Kondermann

Pallas Ludens. We inject human intelligence precisely where automation fails. Jonas Andrulis, Daniel Kondermann Pallas Ludens We inject human intelligence precisely where automation fails Jonas Andrulis, Daniel Kondermann Chapter One: How it all started The Challenge of Reference and Training Data Generation Scientific

More information

Deep Convolutional Inverse Graphics Network

Deep Convolutional Inverse Graphics Network Deep Convolutional Inverse Graphics Network Tejas D. Kulkarni* 1, William F. Whitney* 2, Pushmeet Kohli 3, Joshua B. Tenenbaum 4 1,2,4 Massachusetts Institute of Technology, Cambridge, USA 3 Microsoft

More information

Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?

Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? Erjin Zhou zej@megvii.com Zhimin Cao czm@megvii.com Qi Yin yq@megvii.com Abstract Face recognition performance improves rapidly

More information

Contextual Marketing with CoreMedia LiveContext

Contextual Marketing with CoreMedia LiveContext www.coremedia.com Contextual Marketing with CoreMedia LiveContext For Use with SAP Web Channel Experience Management 2.0 CoreMedia business solutions guides are intended to support online professionals

More information

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information

More information

Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University

Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University Presented by: Harish CS-525 First presentation Abstract This article presents

More information

SIGNAL INTERPRETATION

SIGNAL INTERPRETATION SIGNAL INTERPRETATION Lecture 6: ConvNets February 11, 2016 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology CONVNETS Continued from previous slideset

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006

Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006 Practical Tour of Visual tracking David Fleet and Allan Jepson January, 2006 Designing a Visual Tracker: What is the state? pose and motion (position, velocity, acceleration, ) shape (size, deformation,

More information

Do Convnets Learn Correspondence?

Do Convnets Learn Correspondence? Do Convnets Learn Correspondence? Jonathan Long Ning Zhang Trevor Darrell University of California Berkeley {jonlong, nzhang, trevor}@cs.berkeley.edu Abstract Convolutional neural nets (convnets) trained

More information

ENHANCED WEB IMAGE RE-RANKING USING SEMANTIC SIGNATURES

ENHANCED WEB IMAGE RE-RANKING USING SEMANTIC SIGNATURES International Journal of Computer Engineering & Technology (IJCET) Volume 7, Issue 2, March-April 2016, pp. 24 29, Article ID: IJCET_07_02_003 Available online at http://www.iaeme.com/ijcet/issues.asp?jtype=ijcet&vtype=7&itype=2

More information

What Makes a Great Picture?

What Makes a Great Picture? What Makes a Great Picture? Robert Doisneau, 1955 With many slides from Yan Ke, as annotated by Tamara Berg 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Photography 101 Composition Framing

More information

Getting Started with Caffe Julien Demouth, Senior Engineer

Getting Started with Caffe Julien Demouth, Senior Engineer Getting Started with Caffe Julien Demouth, Senior Engineer What is Caffe? Open Source Framework for Deep Learning http://github.com/bvlc/caffe Developed by the Berkeley Vision and Learning Center (BVLC)

More information

Efficient Storage, Compression and Transmission

Efficient Storage, Compression and Transmission Efficient Storage, Compression and Transmission of Complex 3D Models context & problem definition general framework & classification our new algorithm applications for digital documents Mesh Decimation

More information

Advanced X-ray Tomography:

Advanced X-ray Tomography: Advanced X-ray Tomography: Building Bridges between Computational Science and Real-World Experiments Friday, November 29, 2013 K. Joost Batenburg Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

More information

High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications

High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications Jakob Wasza 1, Sebastian Bauer 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab, Friedrich-Alexander University

More information

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28 Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object

More information

Discovering objects and their location in images

Discovering objects and their location in images Discovering objects and their location in images Josef Sivic Bryan C. Russell Alexei A. Efros Andrew Zisserman William T. Freeman Dept. of Engineering Science CS and AI Laboratory School of Computer Science

More information

arxiv:1604.08893v1 [cs.cv] 29 Apr 2016

arxiv:1604.08893v1 [cs.cv] 29 Apr 2016 Faster R-CNN Features for Instance Search Amaia Salvador, Xavier Giró-i-Nieto, Ferran Marqués Universitat Politècnica de Catalunya (UPC) Barcelona, Spain {amaia.salvador,xavier.giro}@upc.edu Shin ichi

More information

The Visual Internet of Things System Based on Depth Camera

The Visual Internet of Things System Based on Depth Camera The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed

More information

How To Use A Near Neighbor To A Detector

How To Use A Near Neighbor To A Detector Ensemble of -SVMs for Object Detection and Beyond Tomasz Malisiewicz Carnegie Mellon University Abhinav Gupta Carnegie Mellon University Alexei A. Efros Carnegie Mellon University Abstract This paper proposes

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong Jan 26, 2016 Today Administrivia A bigger picture and some common questions Object detection proposals, by Samer

More information

Task-driven Progressive Part Localization for Fine-grained Recognition

Task-driven Progressive Part Localization for Fine-grained Recognition Task-driven Progressive Part Localization for Fine-grained Recognition Chen Huang Zhihai He chenhuang@mail.missouri.edu University of Missouri hezhi@missouri.edu Abstract In this paper we propose a task-driven

More information

Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks

Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks 1 Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks Tomislav Hrkać, Karla Brkić, Zoran Kalafatić Faculty of Electrical Engineering and Computing University of

More information

Colour Image Segmentation Technique for Screen Printing

Colour Image Segmentation Technique for Screen Printing 60 R.U. Hewage and D.U.J. Sonnadara Department of Physics, University of Colombo, Sri Lanka ABSTRACT Screen-printing is an industry with a large number of applications ranging from printing mobile phone

More information

Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning

Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning : Intro. to Computer Vision Deep learning University of Massachusetts, Amherst April 19/21, 2016 Instructor: Subhransu Maji Finals (everyone) Thursday, May 5, 1-3pm, Hasbrouck 113 Final exam Tuesday, May

More information

MulticoreWare. Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan

MulticoreWare. Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan 1 MulticoreWare Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan Focused on Heterogeneous Computing Multiple verticals spawned from core competency Machine Learning

More information

How does the Kinect work? John MacCormick

How does the Kinect work? John MacCormick How does the Kinect work? John MacCormick Xbox demo Laptop demo The Kinect uses structured light and machine learning Inferring body position is a two-stage process: first compute a depth map (using structured

More information

Digital Image Increase

Digital Image Increase Exploiting redundancy for reliable aerial computer vision 1 Digital Image Increase 2 Images Worldwide 3 Terrestrial Image Acquisition 4 Aerial Photogrammetry 5 New Sensor Platforms Towards Fully Automatic

More information

VideoStory A New Mul1media Embedding for Few- Example Recogni1on and Transla1on of Events

VideoStory A New Mul1media Embedding for Few- Example Recogni1on and Transla1on of Events VideoStory A New Mul1media Embedding for Few- Example Recogni1on and Transla1on of Events Amirhossein Habibian, Thomas Mensink, Cees Snoek ISLA, University of Amsterdam Problem statement Recognize and

More information

Immersive Medien und 3D-Video

Immersive Medien und 3D-Video Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut Ralf Schäfer schaefer@hhi.de http://ip.hhi.de Immersive Medien und 3D-Video page 1 Outline Immersive Media Examples Interactive Media

More information

A Prototype For Eye-Gaze Corrected

A Prototype For Eye-Gaze Corrected A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive

More information

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles mjhustc@ucla.edu and lunbo

More information

Simultaneous Deep Transfer Across Domains and Tasks

Simultaneous Deep Transfer Across Domains and Tasks Simultaneous Deep Transfer Across Domains and Tasks Eric Tzeng, Judy Hoffman, Trevor Darrell UC Berkeley, EECS & ICSI {etzeng,jhoffman,trevor}@eecs.berkeley.edu Kate Saenko UMass Lowell, CS saenko@cs.uml.edu

More information

NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect

NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect SIGGRAPH 2013 Shaping the Future of Visual Computing NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect NVIDIA

More information

Human behavior analysis from videos using optical flow

Human behavior analysis from videos using optical flow L a b o r a t o i r e I n f o r m a t i q u e F o n d a m e n t a l e d e L i l l e Human behavior analysis from videos using optical flow Yassine Benabbas Directeur de thèse : Chabane Djeraba Multitel

More information

Applications of Deep Learning to the GEOINT mission. June 2015

Applications of Deep Learning to the GEOINT mission. June 2015 Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics

More information

Understanding Deep Image Representations by Inverting Them

Understanding Deep Image Representations by Inverting Them Understanding Deep Image Representations by Inverting Them Aravindh Mahendran University of Oxford aravindh@robots.ox.ac.uk Andrea Vedaldi University of Oxford vedaldi@robots.ox.ac.uk Abstract Image representations,

More information

Fast Accurate Fish Detection and Recognition of Underwater Images with Fast R-CNN

Fast Accurate Fish Detection and Recognition of Underwater Images with Fast R-CNN Fast Accurate Fish Detection and Recognition of Underwater Images with Fast R-CNN Xiu Li 1, 2, Min Shang 1, 2, Hongwei Qin 1, 2, Liansheng Chen 1, 2 1. Department of Automation, Tsinghua University, Beijing

More information

Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow

Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow Narayanan Sundaram, Thomas Brox, and Kurt Keutzer University of California at Berkeley {narayans,brox,keutzer}@eecs.berkeley.edu

More information

Introduction to Robotics Analysis, Systems, Applications

Introduction to Robotics Analysis, Systems, Applications Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH

More information

Service-Oriented Visualization of Virtual 3D City Models

Service-Oriented Visualization of Virtual 3D City Models Service-Oriented Visualization of Virtual 3D City Models Authors: Jan Klimke, Jürgen Döllner Computer Graphics Systems Division Hasso-Plattner-Institut, University of Potsdam, Germany http://www.hpi3d.de

More information

University of Arkansas Libraries ArcGIS Desktop Tutorial. Section 2: Manipulating Display Parameters in ArcMap. Symbolizing Features and Rasters:

University of Arkansas Libraries ArcGIS Desktop Tutorial. Section 2: Manipulating Display Parameters in ArcMap. Symbolizing Features and Rasters: : Manipulating Display Parameters in ArcMap Symbolizing Features and Rasters: Data sets that are added to ArcMap a default symbology. The user can change the default symbology for their features (point,

More information

Pedestrian Detection using R-CNN

Pedestrian Detection using R-CNN Pedestrian Detection using R-CNN CS676A: Computer Vision Project Report Advisor: Prof. Vinay P. Namboodiri Deepak Kumar Mohit Singh Solanki (12228) (12419) Group-17 April 15, 2016 Abstract Pedestrian detection

More information

A Dynamic Convolutional Layer for Short Range Weather Prediction

A Dynamic Convolutional Layer for Short Range Weather Prediction A Dynamic Convolutional Layer for Short Range Weather Prediction Benjamin Klein, Lior Wolf and Yehuda Afek The Blavatnik School of Computer Science Tel Aviv University beni.klein@gmail.com, wolf@cs.tau.ac.il,

More information

4D Cardiac Reconstruction Using High Resolution CT Images

4D Cardiac Reconstruction Using High Resolution CT Images 4D Cardiac Reconstruction Using High Resolution CT Images Mingchen Gao 1, Junzhou Huang 1, Shaoting Zhang 1, Zhen Qian 2, Szilard Voros 2, Dimitris Metaxas 1, and Leon Axel 3 1 CBIM Center, Rutgers University,

More information

Big Data in the Mathematical Sciences

Big Data in the Mathematical Sciences Big Data in the Mathematical Sciences Wednesday 13 November 2013 Sponsored by: Extract from Campus Map Note: Walk from Zeeman Building to Arts Centre approximately 5 minutes ZeemanBuilding BuildingNumber38

More information

Denoising Convolutional Autoencoders for Noisy Speech Recognition

Denoising Convolutional Autoencoders for Noisy Speech Recognition Denoising Convolutional Autoencoders for Noisy Speech Recognition Mike Kayser Stanford University mkayser@stanford.edu Victor Zhong Stanford University vzhong@stanford.edu Abstract We propose the use of

More information

High Level Describable Attributes for Predicting Aesthetics and Interestingness

High Level Describable Attributes for Predicting Aesthetics and Interestingness High Level Describable Attributes for Predicting Aesthetics and Interestingness Sagnik Dhar Vicente Ordonez Tamara L Berg Stony Brook University Stony Brook, NY 11794, USA tlberg@cs.stonybrook.edu Abstract

More information

Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance

Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance 2012 IEEE International Conference on Multimedia and Expo Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance Rogerio Feris, Sharath Pankanti IBM T. J. Watson Research Center

More information

Analytics for Performance Optimization of BPMN2.0 Business Processes

Analytics for Performance Optimization of BPMN2.0 Business Processes Analytics for Performance Optimization of BPMN2.0 Business Processes Robert M. Shapiro, Global 360, USA Hartmann Genrich, GMD (retired), Germany INTRODUCTION We describe a new approach to process improvement

More information

Fast R-CNN Object detection with Caffe

Fast R-CNN Object detection with Caffe Fast R-CNN Object detection with Caffe Ross Girshick Microsoft Research arxiv code Latest roasts Goals for this section Super quick intro to object detection Show one way to tackle obj. det. with ConvNets

More information

CS635 Spring 2010. Department of Computer Science Purdue University

CS635 Spring 2010. Department of Computer Science Purdue University Structured Light Based Acquisition (Part 1) CS635 Spring 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Passive vs. Active Acquisition Passive + Just take pictures

More information

What more can we do with videos?

What more can we do with videos? What more can we do with videos? Occlusion and Mo6on Reasoning for Tracking & Human Pose Es6ma6on Karteek Alahari Inria Grenoble Rhone- Alpes Joint work with Anoop Cherian, Yang Hua, Julien Mairal, Cordelia

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

Data Mining and Predictive Analytics - Assignment 1 Image Popularity Prediction on Social Networks

Data Mining and Predictive Analytics - Assignment 1 Image Popularity Prediction on Social Networks Data Mining and Predictive Analytics - Assignment 1 Image Popularity Prediction on Social Networks Wei-Tang Liao and Jong-Chyi Su Department of Computer Science and Engineering University of California,

More information

Support Vector Machines for Dynamic Biometric Handwriting Classification

Support Vector Machines for Dynamic Biometric Handwriting Classification Support Vector Machines for Dynamic Biometric Handwriting Classification Tobias Scheidat, Marcus Leich, Mark Alexander, and Claus Vielhauer Abstract Biometric user authentication is a recent topic in the

More information

Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling

Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling Ming Liang Xiaolin Hu Bo Zhang Tsinghua National Laboratory for Information Science and Technology (TNList) Department

More information

R-CNN minus R. 1 Introduction. Karel Lenc http://www.robots.ox.ac.uk/~karel. Department of Engineering Science, University of Oxford, Oxford, UK.

R-CNN minus R. 1 Introduction. Karel Lenc http://www.robots.ox.ac.uk/~karel. Department of Engineering Science, University of Oxford, Oxford, UK. LENC, VEDALDI: R-CNN MINUS R 1 R-CNN minus R Karel Lenc http://www.robots.ox.ac.uk/~karel Andrea Vedaldi http://www.robots.ox.ac.uk/~vedaldi Department of Engineering Science, University of Oxford, Oxford,

More information

A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories

A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories Li Fei-Fei 1 Rob Fergus 1,2 Pietro Perona 1 1. California Institute of Technology 2. Oxford University Single Object Object

More information

Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models

Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models Mathieu Aubry 1, Daniel Maturana 2 Alexei A. Efros 3, Bryan C. Russell 4 Josef Sivic 1, 1 INRIA 2 Carnegie Mellon

More information

Group Sparse Coding. Fernando Pereira Google Mountain View, CA pereira@google.com. Dennis Strelow Google Mountain View, CA strelow@google.

Group Sparse Coding. Fernando Pereira Google Mountain View, CA pereira@google.com. Dennis Strelow Google Mountain View, CA strelow@google. Group Sparse Coding Samy Bengio Google Mountain View, CA bengio@google.com Fernando Pereira Google Mountain View, CA pereira@google.com Yoram Singer Google Mountain View, CA singer@google.com Dennis Strelow

More information