Bored by Classification ConvNets? End-to-end Learning of other Computer Vision Tasks
|
|
|
- Kerry Fields
- 9 years ago
- Views:
Transcription
1 Bored by Classification ConvNets? End-to-end Learning of other Computer Vision Tasks Thomas Brox University of Freiburg Germany Research funded by ERC Starting Grant VideoLearn, the German Research Foundation, and the Deutsche Telekom Stiftung Thomas Brox
2 Outline Generative networks U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 2
3 Typical ConvNet architecture cat Classification network Thomas Brox 3
4 Typical ConvNet architecture cat cat Classification network Thomas Brox 4
5 Up-convolutional network Alexey Dosovitskiy CVPR 2015 New: Expanding network architecture Small gray office chair, side view cat Image generation Related work: Eigen et al. NIPS 2014: Network for depth map prediction Long et al. CVPR 2015: Network for semantic segmentation Thomas Brox 5
6 Generating chair images with a network Dosovitskiy et al., CVPR 2015 Thomas Brox 6
7 Training set 3D chair dataset Aubry et al. CVPR 2014 Rendering 809 chair styles From 62 viewpoints Source: Some of the rendered chairs Thomas Brox 7
8 Generating images of unseen views Training set split into two subsets: Source set: 62 viewpoints available (90% of all chair models) Target set: fewer viewpoints available (10% of all models) Thomas Brox 8
9 Generating images of unseen views 8 azimuths available 4 azimuths available 2 azimuths available 1 azimuth available Thomas Brox 9
10 Comparison to baselines Alexey Dosovitskiy CVPR 2015 Thomas Brox 10
11 Interpolation of chair styles Alexey Dosovitskiy CVPR 2015 Thomas Brox 11
12 Correspondences between chair instances Alexey Dosovitskiy CVPR 2015 Thomas Brox 12
13 Correspondences between chair instances Generate intermediate images with the network Track points with optical flow (LDOF) along the sequence Deformable Spatial Pyramid Matching (Kim et al. 2013) all easy difficult SIFT Flow (Liu et al. 2008) Ours Human performance Thomas Brox 13
14 Preview: Inverting ConvNets with ConvNets Up-convolutional network Image features e.g. from AlexNet Learn to re-generate the input image from its feature representation Related work: Mahendran & Vedaldi CVPR 2015 Zeiler & Fergus ECCV 2014 Alexey Dosovitskiy arxiv 2015 Thomas Brox 14
15 Reconstruction results Up-Conv. Mahendran & Vedaldi Autoencoder More reconstructions with up-convolutional network: Thomas Brox 15
16 Color and position are preserved in high layers input All FC8 Top 5 FC8 All but Top 5 FC8 Color experiment Position experiment Thomas Brox 16
17 Outline A generative network U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 17
18 U-Net: Image segmentation with a ConvNet Olaf Ronneberger MICCAI 2015 Philipp Fischer Similar to Fully Convolutional Network [Long et al., CVPR 2015] Original inspiration: Depth map prediction [Eigen et al., NIPS 2014] Thomas Brox 18
19 Binary segmentation Electron Microscopy ISBI 2012 Challenge Rank 1 Light microscopy cell tracking ISBI 2015 Challenge Rank 1 Thomas Brox 19
20 Multi-class semantic segmentation X-ray dental segmentation, ISBI 2015 Challenge, Rank 1 Intersection over union: 77.5% Second best: 46% Thomas Brox 20
21 Multi-instance segmentation Light microscopy, DIC-HeLa cell tracking ISBI 2015 Challenge: Rank 1 Thomas Brox 21
22 Outline A generative network U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 22
23 FlowNet: Estimating optical flow with a ConvNet Refinement: expanding architecture Thomas Brox 23
24 Helping the network with a correlation layer Joint work with the group of Daniel Cremers Philipp Fischer Alexey Dosovitskiy Eddy Ilg Philip Häusser Caner Hazirbas Vladimir Golkov Thomas Brox 24
25 Enough data to train such a network? Getting ground truth optical flow for realistic videos is hard Existing datasets are small: Frames with ground truth Middlebury 8 KITTI 194 Sintel 1041 Needed >10000 Thomas Brox 25
26 Realism is overrated: the flying chair dataset Rendered image Optical flow Thomas Brox 26
27 It works! Input images Ground truth FlowNetSimple FlowNetCorr Although the network has only seen flying chairs for training, it predicts good optical flow on Sintel Thomas Brox 27
28 Results on various datasets Middlebury KITTI Sintel Clean Sintel Final Flying Chairs EpicFlow DeepFlow LDOF FlowNetS FlowNetS+v FlowNetS+ft FlowNetS+ft+v FlowNetC FlowNetC+v FlowNetC+ft FlowNetC+ft+v Networks can compete with state-of-the-art conventional optical flow estimation methods Thomas Brox 28
29 Can handle large displacements Input images Ground truth FlowNetSimple FlowNetCorr DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015) Thomas Brox 29
30 Sometimes wrong direction Input images Ground truth FlowNetSimple FlowNetCorr DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015) Thomas Brox 30
31 Often captures fine details Input images Ground truth FlowNetSimple FlowNetCorr DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015) Thomas Brox 31
32 Results on Flying chairs test set Input images Ground truth EpicFlow (Revaud et al. CVPR 2015) FlowNetCorr Thomas Brox 32
33 Runs with 10fps on the GPU Thomas Brox 33
34 Summary A generative network U-Net: Multi-instance segmentation FlowNet: Estimating optical flow Thomas Brox 34
35 Tip of the day Thomas Brox 35
Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016
Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods End-to-end Learning based Methods Discussion Optical Flow Goal: Pixel motion
arxiv:1505.04597v1 [cs.cv] 18 May 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, and Thomas Brox arxiv:1505.04597v1 [cs.cv] 18 May 2015 Computer Science Department and BIOSS Centre for
Pedestrian Detection with RCNN
Pedestrian Detection with RCNN Matthew Chen Department of Computer Science Stanford University [email protected] Abstract In this paper we evaluate the effectiveness of using a Region-based Convolutional
Module 5. Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016
Module 5 Deep Convnets for Local Recognition Joost van de Weijer 4 April 2016 Previously, end-to-end.. Dog Slide credit: Jose M 2 Previously, end-to-end.. Dog Learned Representation Slide credit: Jose
Image and Video Understanding
Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material
Convolutional Feature Maps
Convolutional Feature Maps Elements of efficient (and accurate) CNN-based object detection Kaiming He Microsoft Research Asia (MSRA) ICCV 2015 Tutorial on Tools for Efficient Object Detection Overview
Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite
Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite Philip Lenz 1 Andreas Geiger 2 Christoph Stiller 1 Raquel Urtasun 3 1 KARLSRUHE INSTITUTE OF TECHNOLOGY 2 MAX-PLANCK-INSTITUTE IS 3
Compacting ConvNets for end to end Learning
Compacting ConvNets for end to end Learning Jose M. Alvarez Joint work with Lars Pertersson, Hao Zhou, Fatih Porikli. Success of CNN Image Classification Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,
Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection
CSED703R: Deep Learning for Visual Recognition (206S) Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection Bohyung Han Computer Vision Lab. [email protected] 2 3 Object detection
CS 1699: Intro to Computer Vision. Deep Learning. Prof. Adriana Kovashka University of Pittsburgh December 1, 2015
CS 1699: Intro to Computer Vision Deep Learning Prof. Adriana Kovashka University of Pittsburgh December 1, 2015 Today: Deep neural networks Background Architectures and basic operations Applications Visualizing
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Visual Geometry Group, University of Oxford {karen,az}@robots.ox.ac.uk Abstract We investigate architectures
Image Classification for Dogs and Cats
Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science [email protected] Abstract
Bert Huang Department of Computer Science Virginia Tech
This paper was submitted as a final project report for CS6424/ECE6424 Probabilistic Graphical Models and Structured Prediction in the spring semester of 2016. The work presented here is done by students
arxiv:1312.6034v2 [cs.cv] 19 Apr 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps arxiv:1312.6034v2 [cs.cv] 19 Apr 2014 Karen Simonyan Andrea Vedaldi Andrew Zisserman Visual Geometry Group,
Deformable Part Models with CNN Features
Deformable Part Models with CNN Features Pierre-André Savalle 1, Stavros Tsogkas 1,2, George Papandreou 3, Iasonas Kokkinos 1,2 1 Ecole Centrale Paris, 2 INRIA, 3 TTI-Chicago Abstract. In this work we
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected]
Steven C.H. Hoi School of Information Systems Singapore Management University Email: [email protected] Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual
Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree.
Visual search: what's next? Cees Snoek University of Amsterdam The Netherlands Euvision Technologies The Netherlands Problem statement US flag Tree Aircraft Humans Dog Smoking Building Basketball Table
3D Model based Object Class Detection in An Arbitrary View
3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/
A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow
, pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices
Semantic Recognition: Object Detection and Scene Segmentation
Semantic Recognition: Object Detection and Scene Segmentation Xuming He [email protected] Computer Vision Research Group NICTA Robotic Vision Summer School 2015 Acknowledgement: Slides from Fei-Fei
Lecture 6: Classification & Localization. boris. [email protected]
Lecture 6: Classification & Localization boris. [email protected] 1 Agenda ILSVRC 2014 Overfeat: integrated classification, localization, and detection Classification with Localization Detection. 2 ILSVRC-2014
Color Segmentation Based Depth Image Filtering
Color Segmentation Based Depth Image Filtering Michael Schmeing and Xiaoyi Jiang Department of Computer Science, University of Münster Einsteinstraße 62, 48149 Münster, Germany, {m.schmeing xjiang}@uni-muenster.de
Fast R-CNN. Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th. Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083.
Fast R-CNN Author: Ross Girshick Speaker: Charlie Liu Date: Oct, 13 th Girshick, R. (2015). Fast R-CNN. arxiv preprint arxiv:1504.08083. ECS 289G 001 Paper Presentation, Prof. Lee Result 1 67% Accuracy
Stochastic Pooling for Regularization of Deep Convolutional Neural Networks
Stochastic Pooling for Regularization of Deep Convolutional Neural Networks Matthew D. Zeiler Department of Computer Science Courant Institute, New York University [email protected] Rob Fergus Department
Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.
COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions
LIBSVX and Video Segmentation Evaluation
CVPR 14 Tutorial! 1! LIBSVX and Video Segmentation Evaluation Chenliang Xu and Jason J. Corso!! Computer Science and Engineering! SUNY at Buffalo!! Electrical Engineering and Computer Science! University
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
Marr Revisited: 2D-3D Alignment via Surface Normal Prediction
Marr Revisited: 2D-3D Alignment via Surface Normal Prediction Aayush Bansal Bryan Russell2 Abhinav Gupta Carnegie Mellon University 2 Adobe Research http://www.cs.cmu.edu/ aayushb/marrrevisited/ Input&Image&
Taking Inverse Graphics Seriously
CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best
Classifying Manipulation Primitives from Visual Data
Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if
arxiv:1506.03365v2 [cs.cv] 19 Jun 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop Fisher Yu Yinda Zhang Shuran Song Ari Seff Jianxiong Xiao arxiv:1506.03365v2 [cs.cv] 19 Jun 2015 Princeton
Learning and transferring mid-level image representions using convolutional neural networks
Willow project-team Learning and transferring mid-level image representions using convolutional neural networks Maxime Oquab, Léon Bottou, Ivan Laptev, Josef Sivic 1 Image classification (easy) Is there
Tracking performance evaluation on PETS 2015 Challenge datasets
Tracking performance evaluation on PETS 2015 Challenge datasets Tahir Nawaz, Jonathan Boyle, Longzhen Li and James Ferryman Computational Vision Group, School of Systems Engineering University of Reading,
Scalable Object Detection by Filter Compression with Regularized Sparse Coding
Scalable Object Detection by Filter Compression with Regularized Sparse Coding Ting-Hsuan Chao, Yen-Liang Lin, Yin-Hsi Kuo, and Winston H Hsu National Taiwan University, Taipei, Taiwan Abstract For practical
Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang
Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform
Feature Tracking and Optical Flow
02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve
CNN Based Object Detection in Large Video Images. WangTao, [email protected] IQIYI ltd. 2016.4
CNN Based Object Detection in Large Video Images WangTao, [email protected] IQIYI ltd. 2016.4 Outline Introduction Background Challenge Our approach System framework Object detection Scene recognition Body
Pallas Ludens. We inject human intelligence precisely where automation fails. Jonas Andrulis, Daniel Kondermann
Pallas Ludens We inject human intelligence precisely where automation fails Jonas Andrulis, Daniel Kondermann Chapter One: How it all started The Challenge of Reference and Training Data Generation Scientific
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network Tejas D. Kulkarni* 1, William F. Whitney* 2, Pushmeet Kohli 3, Joshua B. Tenenbaum 4 1,2,4 Massachusetts Institute of Technology, Cambridge, USA 3 Microsoft
Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?
Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? Erjin Zhou [email protected] Zhimin Cao [email protected] Qi Yin [email protected] Abstract Face recognition performance improves rapidly
Contextual Marketing with CoreMedia LiveContext
www.coremedia.com Contextual Marketing with CoreMedia LiveContext For Use with SAP Web Channel Experience Management 2.0 CoreMedia business solutions guides are intended to support online professionals
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information
Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University
Character Animation from 2D Pictures and 3D Motion Data ALEXANDER HORNUNG, ELLEN DEKKERS, and LEIF KOBBELT RWTH-Aachen University Presented by: Harish CS-525 First presentation Abstract This article presents
SIGNAL INTERPRETATION
SIGNAL INTERPRETATION Lecture 6: ConvNets February 11, 2016 Heikki Huttunen [email protected] Department of Signal Processing Tampere University of Technology CONVNETS Continued from previous slideset
Simple and efficient online algorithms for real world applications
Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,
Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006
Practical Tour of Visual tracking David Fleet and Allan Jepson January, 2006 Designing a Visual Tracker: What is the state? pose and motion (position, velocity, acceleration, ) shape (size, deformation,
Do Convnets Learn Correspondence?
Do Convnets Learn Correspondence? Jonathan Long Ning Zhang Trevor Darrell University of California Berkeley {jonlong, nzhang, trevor}@cs.berkeley.edu Abstract Convolutional neural nets (convnets) trained
What Makes a Great Picture?
What Makes a Great Picture? Robert Doisneau, 1955 With many slides from Yan Ke, as annotated by Tamara Berg 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Photography 101 Composition Framing
Getting Started with Caffe Julien Demouth, Senior Engineer
Getting Started with Caffe Julien Demouth, Senior Engineer What is Caffe? Open Source Framework for Deep Learning http://github.com/bvlc/caffe Developed by the Berkeley Vision and Learning Center (BVLC)
Efficient Storage, Compression and Transmission
Efficient Storage, Compression and Transmission of Complex 3D Models context & problem definition general framework & classification our new algorithm applications for digital documents Mesh Decimation
High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications
High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications Jakob Wasza 1, Sebastian Bauer 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab, Friedrich-Alexander University
Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28
Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object
Discovering objects and their location in images
Discovering objects and their location in images Josef Sivic Bryan C. Russell Alexei A. Efros Andrew Zisserman William T. Freeman Dept. of Engineering Science CS and AI Laboratory School of Computer Science
arxiv:1604.08893v1 [cs.cv] 29 Apr 2016
Faster R-CNN Features for Instance Search Amaia Salvador, Xavier Giró-i-Nieto, Ferran Marqués Universitat Politècnica de Catalunya (UPC) Barcelona, Spain {amaia.salvador,xavier.giro}@upc.edu Shin ichi
The Visual Internet of Things System Based on Depth Camera
The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed
How To Use A Near Neighbor To A Detector
Ensemble of -SVMs for Object Detection and Beyond Tomasz Malisiewicz Carnegie Mellon University Abhinav Gupta Carnegie Mellon University Alexei A. Efros Carnegie Mellon University Abstract This paper proposes
CAP 6412 Advanced Computer Vision
CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong Jan 26, 2016 Today Administrivia A bigger picture and some common questions Object detection proposals, by Samer
Task-driven Progressive Part Localization for Fine-grained Recognition
Task-driven Progressive Part Localization for Fine-grained Recognition Chen Huang Zhihai He [email protected] University of Missouri [email protected] Abstract In this paper we propose a task-driven
Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks
1 Tattoo Detection for Soft Biometric De-Identification Based on Convolutional NeuralNetworks Tomislav Hrkać, Karla Brkić, Zoran Kalafatić Faculty of Electrical Engineering and Computing University of
Colour Image Segmentation Technique for Screen Printing
60 R.U. Hewage and D.U.J. Sonnadara Department of Physics, University of Colombo, Sri Lanka ABSTRACT Screen-printing is an industry with a large number of applications ranging from printing mobile phone
Administrivia. Traditional Recognition Approach. Overview. CMPSCI 370: Intro. to Computer Vision Deep learning
: Intro. to Computer Vision Deep learning University of Massachusetts, Amherst April 19/21, 2016 Instructor: Subhransu Maji Finals (everyone) Thursday, May 5, 1-3pm, Hasbrouck 113 Final exam Tuesday, May
MulticoreWare. Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan
1 MulticoreWare Global Company, 250+ employees HQ = Sunnyvale, CA Other locations: US, China, India, Taiwan Focused on Heterogeneous Computing Multiple verticals spawned from core competency Machine Learning
How does the Kinect work? John MacCormick
How does the Kinect work? John MacCormick Xbox demo Laptop demo The Kinect uses structured light and machine learning Inferring body position is a two-stage process: first compute a depth map (using structured
Digital Image Increase
Exploiting redundancy for reliable aerial computer vision 1 Digital Image Increase 2 Images Worldwide 3 Terrestrial Image Acquisition 4 Aerial Photogrammetry 5 New Sensor Platforms Towards Fully Automatic
Immersive Medien und 3D-Video
Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut Ralf Schäfer [email protected] http://ip.hhi.de Immersive Medien und 3D-Video page 1 Outline Immersive Media Examples Interactive Media
A Prototype For Eye-Gaze Corrected
A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles [email protected] and lunbo
Simultaneous Deep Transfer Across Domains and Tasks
Simultaneous Deep Transfer Across Domains and Tasks Eric Tzeng, Judy Hoffman, Trevor Darrell UC Berkeley, EECS & ICSI {etzeng,jhoffman,trevor}@eecs.berkeley.edu Kate Saenko UMass Lowell, CS [email protected]
NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect
SIGGRAPH 2013 Shaping the Future of Visual Computing NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect NVIDIA
Human behavior analysis from videos using optical flow
L a b o r a t o i r e I n f o r m a t i q u e F o n d a m e n t a l e d e L i l l e Human behavior analysis from videos using optical flow Yassine Benabbas Directeur de thèse : Chabane Djeraba Multitel
Applications of Deep Learning to the GEOINT mission. June 2015
Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them Aravindh Mahendran University of Oxford [email protected] Andrea Vedaldi University of Oxford [email protected] Abstract Image representations,
Fast Accurate Fish Detection and Recognition of Underwater Images with Fast R-CNN
Fast Accurate Fish Detection and Recognition of Underwater Images with Fast R-CNN Xiu Li 1, 2, Min Shang 1, 2, Hongwei Qin 1, 2, Liansheng Chen 1, 2 1. Department of Automation, Tsinghua University, Beijing
Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow
Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow Narayanan Sundaram, Thomas Brox, and Kurt Keutzer University of California at Berkeley {narayans,brox,keutzer}@eecs.berkeley.edu
Introduction to Robotics Analysis, Systems, Applications
Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH
Service-Oriented Visualization of Virtual 3D City Models
Service-Oriented Visualization of Virtual 3D City Models Authors: Jan Klimke, Jürgen Döllner Computer Graphics Systems Division Hasso-Plattner-Institut, University of Potsdam, Germany http://www.hpi3d.de
University of Arkansas Libraries ArcGIS Desktop Tutorial. Section 2: Manipulating Display Parameters in ArcMap. Symbolizing Features and Rasters:
: Manipulating Display Parameters in ArcMap Symbolizing Features and Rasters: Data sets that are added to ArcMap a default symbology. The user can change the default symbology for their features (point,
Pedestrian Detection using R-CNN
Pedestrian Detection using R-CNN CS676A: Computer Vision Project Report Advisor: Prof. Vinay P. Namboodiri Deepak Kumar Mohit Singh Solanki (12228) (12419) Group-17 April 15, 2016 Abstract Pedestrian detection
A Dynamic Convolutional Layer for Short Range Weather Prediction
A Dynamic Convolutional Layer for Short Range Weather Prediction Benjamin Klein, Lior Wolf and Yehuda Afek The Blavatnik School of Computer Science Tel Aviv University [email protected], [email protected],
Denoising Convolutional Autoencoders for Noisy Speech Recognition
Denoising Convolutional Autoencoders for Noisy Speech Recognition Mike Kayser Stanford University [email protected] Victor Zhong Stanford University [email protected] Abstract We propose the use of
High Level Describable Attributes for Predicting Aesthetics and Interestingness
High Level Describable Attributes for Predicting Aesthetics and Interestingness Sagnik Dhar Vicente Ordonez Tamara L Berg Stony Brook University Stony Brook, NY 11794, USA [email protected] Abstract
Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance
2012 IEEE International Conference on Multimedia and Expo Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance Rogerio Feris, Sharath Pankanti IBM T. J. Watson Research Center
Analytics for Performance Optimization of BPMN2.0 Business Processes
Analytics for Performance Optimization of BPMN2.0 Business Processes Robert M. Shapiro, Global 360, USA Hartmann Genrich, GMD (retired), Germany INTRODUCTION We describe a new approach to process improvement
Fast R-CNN Object detection with Caffe
Fast R-CNN Object detection with Caffe Ross Girshick Microsoft Research arxiv code Latest roasts Goals for this section Super quick intro to object detection Show one way to tackle obj. det. with ConvNets
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
Data Mining and Predictive Analytics - Assignment 1 Image Popularity Prediction on Social Networks
Data Mining and Predictive Analytics - Assignment 1 Image Popularity Prediction on Social Networks Wei-Tang Liao and Jong-Chyi Su Department of Computer Science and Engineering University of California,
Support Vector Machines for Dynamic Biometric Handwriting Classification
Support Vector Machines for Dynamic Biometric Handwriting Classification Tobias Scheidat, Marcus Leich, Mark Alexander, and Claus Vielhauer Abstract Biometric user authentication is a recent topic in the
Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling
Convolutional Neural Networks with Intra-layer Recurrent Connections for Scene Labeling Ming Liang Xiaolin Hu Bo Zhang Tsinghua National Laboratory for Information Science and Technology (TNList) Department
R-CNN minus R. 1 Introduction. Karel Lenc http://www.robots.ox.ac.uk/~karel. Department of Engineering Science, University of Oxford, Oxford, UK.
LENC, VEDALDI: R-CNN MINUS R 1 R-CNN minus R Karel Lenc http://www.robots.ox.ac.uk/~karel Andrea Vedaldi http://www.robots.ox.ac.uk/~vedaldi Department of Engineering Science, University of Oxford, Oxford,
A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories
A Bayesian Framework for Unsupervised One-Shot Learning of Object Categories Li Fei-Fei 1 Rob Fergus 1,2 Pietro Perona 1 1. California Institute of Technology 2. Oxford University Single Object Object
Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models
Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models Mathieu Aubry 1, Daniel Maturana 2 Alexei A. Efros 3, Bryan C. Russell 4 Josef Sivic 1, 1 INRIA 2 Carnegie Mellon
Group Sparse Coding. Fernando Pereira Google Mountain View, CA [email protected]. Dennis Strelow Google Mountain View, CA strelow@google.
Group Sparse Coding Samy Bengio Google Mountain View, CA [email protected] Fernando Pereira Google Mountain View, CA [email protected] Yoram Singer Google Mountain View, CA [email protected] Dennis Strelow
