CH 9. Quadratic Equations and Functions


 Matthew Hunt
 2 years ago
 Views:
Transcription
1 9.1: Graph 9.2: Graph 9.3: Solve Quadratic Equations by Graphing 9.4: Use Square Roots to Solve Quadratic Equations 9.5: Solve Quadratic Equations by Completing the Square 9.6: Solve Quadratic Equations by Quadratic Formula 9.7: Interpret the Discriminant 9.8: Compare Linear, Exponential, and Quadratic Models Prerequisite Skills 1. The xcoordinate of a point where a graph crosses the xaxis is a(n). 2. A(n) is a function of the form where, and. 3. Evaluate the expression. a. b. c. KEY VOCABULARY Quadratic function Vertex Quadratic equation Parabola Axis of symmetry Completing the square Parent quadratic function Minimum value Quadratic formula Maximum value Discriminant Page 1
2 9.1 Graph A quadratic function is a nonlinear function that can be written in the standard form where. Every quadratic function has a Ushaped graph called a parabola. In this lesson, you will graph quadratic function where. Parent Quadratic Function The most basic quadratic function in the family of quadratic functions, called the parent quadratic function, is. The graph of is shown below. The lowest or highest point on a parabola is the vertex. The vertex of the graph of is (0, 0) The line that passes through the vertex and divides the parabola into two symmetric parts is called the axis of symmetry. The axis of symmetry for the graph of is the yaxis,. Graph STEP 1 Make a table of values for. x STEP 2 y Plot the points from the table. STEP 3 Draw the smooth curve through the points STEP 4 Compare the graph of and. Both graphs open up and have the same vertex, (0, 0), and axis of symmetry,. The graph of is narrower than the graph of because the graph of is vertical stretch (by factor of 3) of the graph of. Graph STEP 1 Make a table of values for. x y 0 STEP 2 Plot the points from the table. STEP 3 Draw the smooth curve through the points. STEP 4 Compare the graph of and. Both graphs have the same vertex, (0, 0), and axis of symmetry,. However, the graph of is wider than the graph of and it opens down. This is because the graph of is vertical shrink (by factor of ) with a reflection in the xaxis of the graph of. Page 2
3 GRAPHING QUADRATIC FUNCTIONS Example 1 and 2 suggest the following general result: a parabola opens up when the coefficient of is positive and opens down when the coefficient of is negative. Graph STEP 1 Make a table of values for. x STEP 2 y Plot the points from the table. STEP 3 Draw the smooth curve through the points STEP 4 Compare the graph of and. Both graphs open up and have the same axis of symmetry,. However, the vertex of the graph of, (0, 5) is different than the graph of, (0, 0), because the graph of is vertical translation (of 5 units up) of the graph of. Ex) Graph the function. Compare the graph with the graph of. Page 3
4 Graph STEP 1 Make a table of values for. x y 4 4 STEP 2 STEP 3 Plot the points from the table. Draw the smooth curve through the points STEP 4 Compare the graph of and. Both graphs open up and have the same axis of symmetry,. However, the graph of is wider and has a lower vertex than the graph of, because the graph of is vertical shrink and a vertical translation of the graph of. Ex) Graph the function. Compare the graph with the graph of. Page 4
5 Page 5
6 Ex) A solar though has a reflective parabolic surface that is used to collect solar energy. The sun s rays are reflected from the surface toward a pipe that carries water. The heated water produces steam that is used to produce electricity. The graph of the function models the cross section of the reflective surface where x and y are measured in meter. Use the graph to find the domain and range of the function in this situation. Ex) A cross section of the parabolic surface of the antenna shown can be modeled by the graph of the function where x and y are measured in meters. a. Find the domain and range of the function in this situation. Page 6
7 9.2 Graph You can use the properties below to graph any quadratic function. Properties of the Graph of Quadratic Function The graph of is a parabola that: Opens up if and opens down if. Is narrower than the graph of if and wider if. Has an axis of symmetry of. Has a vertex with an xcoordinate of. Has a yintercept of c. so, the point (0, c) is on the parabola. Ex) Find the axis of symmetry and the vertex, from the given function. Graph STEP 1 Determine whether the parabola opens up or down. Because a > 0, the parabola opens up. STEP 2 STEP 3 Find and draw the axis of symmetry: Find and plot the vertex. The xcoordinate, substitute 1 for x in the function and simplify. ( ) ( ) So, the vertex is ( ) ( ). STEP 4 Plot two points. Choose two xvalues less than the xcoordinate of the vertex. Then find the corresponding yvalues. STEP 5 STEP 6 x 0 y 2 11 Reflect the points plotted in Step 4, in the axis of symmetry. Draw a parabola through the plotted points. Page 7
8 Minimum and Maximum Values For, the ycoordinate of the vertex is the minimum value of the function if or the maximum value of the function if. Ex) Tell whether the given function has a minimum value or a maximum value. Then find the minimum or maximum value. ( ) ( ) Page 8
9 9.3 Solve Quadratic Equations By Graphing A quadratic equation is an equation that can be written in the standard form where. In Chapter 8, you used factoring to solve a quadratic equation. You can also use graphing to solve a quadratic equation. Notice that the solutions of the equation are the xintercepts of the graph of the related function. Solve by Factoring Solve by Graphing ( )( ) To solve, graph. From the graph you can see that the xintercepts are 1 and 5. To solve a quadratic equation by graphing, first write the equation in standard form,. Then graph the related function. The xintercepts of the graph are the solutions, or roots, of. Number of Solutions of a Quadratic Equation A quadratic equation has two solutions if the graph of its related function has two xintercepts. A quadratic equation has one solution if the graph of its related function has one xintercept. A quadratic equation has no real solution if the graph of its related function has no x intercepts. Ex) Find the solutions of given equation (graph). Page 9
10 9.4 Use Square Roots to Solve Quadratic Equations To use square roots to solve a quadratic equation of the form, first isolate on one side to obtain. Then use the following information about the solutions of to solve the equation. Solve by Taking Square Roots If d > 0, then has two solutions: If d = 0, then has one solution: If d < 0, then has no solution. Ex) Solve quadratic equations a. b. c. d. e. f. g. SIMPLIFYING SQUARE ROOTS In cases where you need to take the square root of a fraction whose numerator and denominator are perfect squares, the radical can be written as a fraction. For example, can be written as because ( ). Ex) Solve a quadratic equation. a. ( ) b. ( ) c. ( ) Page 10
11 9.5 Solve Quadratic Equations by Completing the Square For an expression of the form, you can add a constant c to the expression so that the expression is a perfect square trinomial. This process is called completing the square COMPLETING THE SQUARE Words To complete the square for the expression, add the square of half the coefficient of the term bx. Algebra ( ) = ( ) Ex) Find the value of c that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial. 1) 2) 3) 4) SOLVING EQUATIONS The method of completing the square can be used to solve any quadratic equation. To use completing the square to solve a quadratic equation, you must write the equation in the form. Ex) Solve the equation by completing the square. 1) Page 11
12 2) 3) 4) 5) Word Problem You decide to use chalkboard paint to create a chalkboard on a door. You want the chalkboard to have a uniform border as shown. You have enough chalkboard paint to cover 6 square feet. Find the width of the border to the nearest inch. Page 12
13 9.6 Solve Quadratic Equations by the Quadratic Formula By completing the square for the quadratic equation, you can develop a formula that gives the solutions of any quadratic equation in standard form. This formula is called the quadratic formula. The Quadratic Formula The solutions of the quadratic equation are where and. Ex) Solve the equation. 1) 2) 3) 4) 5) Page 13
14 CONCEPT SUMMARY Methods for Solving Quadratic Equations Method Lesson(s) When to Use Factoring 9.4~9.8 Use when a quadratic equation can be factored easily. Graphing 10.3 Use when approximate solutions are adequate. Finding square roots Completing the square Use when solving an equation that can be written in the form. Can be used for any quadratic equation but is simplest to apply when and b is an even number. Quadratic formula 10.6 Can be used for any quadratic equation. Ex) Tell what method you would use to solve the quadratic equation. Explain your choice(s). 1) 2) 3) 4) 5) 6) Page 14
15 In the quadratic formula, the expression associated equation. is called the discriminant of the Discriminant Because the discriminant is under the radical symbol, the value of the discriminant can be used to determine the number of solutions of a quadratic equation and the number of x intercepts of the graph of the related function. KEY CONCEPT Using the Discriminant of Value of the discriminant Number of solutions Two solutions One solution No solution Graph of Two xintercepts One xintercept No xintercept Ex) Tell whether the equation has two solutions, one solution, or no solution. 1) 2) 3) Page 15
16 4) 5) 6) 7) Ex) Find the number of xintercepts of the graph of the function. 1) 2) 3) 4) Page 16
17 9.7 Solve Systems with Quadratic Equations You have solved systems of linear equations using the graphandcheck method and using the substitution method. You can use both of these techniques to solve a system of equations involving nonlinear equations, such as quadratic equations. Recall that the substitution method consists of the following three steps. STEP 1 STEP 2 STEP 3 Solve one of the equations for one of its variables. Substitute the expression from Step 1 into the other equation and solve for the other variable. Substitute the value from Step 2 into one of the original equations and solve. POINT OF INTERSECTION When you graph a system of equations, the graphs intersect at each solution of the system. For a system consisting of a linear equation and a quadratic equation the number of intersections, and therefore solutions, can be zero, one, or two. KEY CONCEPT Systems With One Linear Equation and One Quadratic Equation There are three possibilities for the number of points of intersection No Solution One Solution Two Solution Page 17
18 Ex) Use the substitution method to solve the system 1) 2) 3) 4) Page 18
19 9.8 Compare Linear, Exponential, and Quadratic Models So far you have studied linear functions, exponential functions, and quadratic functions. You can use these functions to model data. KEY CONCEPT Linear, Exponential, and Quadratic Functions Linear Function Exponential Function Quadratic Function Ex) Use a graph to tell whether the ordered pairs represent a linear function, an exponential function, or a quadratic function. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Page 19
20 ( ) ( ) ( ) ( ) ( ) DIFFERENCES AND RATIOS A table of values represents a linear function if the differences of successive yvalues are all equal. A table of values represents an exponential function if the ratios of successive yvalues are all equal. In both cases, the increments between successive xvalues need to be equal. Use differences or ratios to tell whether the table of values represents a linear function, an exponential function, or a quadratic function. Extend the table to find the yvalue for the next xvalue. 1) x y Page 20
21 2) x y WRITING AN EQUATION When you decide that a set of ordered pairs represents a linear, an exponential, or a quadratic function, you can write an equation for the function. In this lesson, when you write an equation for a quadratic function, the equation will have the form Ex) Tell whether the table of values represents a linear function, an exponential function, or a quadratic function. Then write an equation for the function. 1) x y ) x y ) x y Page 21
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationSection 2.1 Intercepts; Symmetry; Graphing Key Equations
Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the xaxis. 2. The xcoordinate of a point
More information2.1 QUADRATIC FUNCTIONS AND MODELS. Copyright Cengage Learning. All rights reserved.
2.1 QUADRATIC FUNCTIONS AND MODELS Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic functions. Write quadratic functions in standard form and use the results
More information7.1 Graphs of Quadratic Functions in Vertex Form
7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationThis unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide.
COLLEGE ALGEBRA UNIT 2 WRITING ASSIGNMENT This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide. 1) What is the
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationThe domain is all real numbers. The range is all real numbers greater than or equal to the minimum value, or {y y 1.25}.
Use a table of values to graph each equation. State the domain and range. 1. y = x 2 + 3x + 1 x y 3 1 2 1 1 1 0 1 1 5 2 11 Graph the ordered pairs, and connect them to create a smooth curve. The parabola
More informationPARABOLAS AND THEIR FEATURES
STANDARD FORM PARABOLAS AND THEIR FEATURES If a! 0, the equation y = ax 2 + bx + c is the standard form of a quadratic function and its graph is a parabola. If a > 0, the parabola opens upward and the
More informationLesson 9.1 Solving Quadratic Equations
Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One intercept and all nonnegative yvalues. b. The verte in the third quadrant and no intercepts. c. The verte
More information1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x and yintercepts of graphs of equations. Use symmetry to sketch graphs
More informationQuadratics  Graphs of Quadratics
9.11 Quadratics  Graphs of Quadratics Objective: Graph quadratic equations using the vertex, xintercepts, and yintercept. Just as we drew pictures of the solutions for lines or linear equations, we
More informationGRAPHING LINEAR EQUATIONS IN TWO VARIABLES
GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: SlopeIntercept Form: y = mx+ b In an equation
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationGraphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x value and L be the yvalues for a graph. 1. How are the x and yvalues related? What pattern do you see? To enter the
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationIntroduction to Quadratic Functions
Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationAlgebra 2 Chapter 1 Vocabulary. identity  A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity  A statement that equates two equivalent expressions. verbal model A word equation that represents a reallife problem. algebraic expression  An expression with variables.
More information3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models
3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.11 Polynomial Function A polynomial function of degree n, where n
More informationActually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is
QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.
More informationGraphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More informationALGEBRA I / ALGEBRA I SUPPORT
Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.
More informationMSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More informationSection 1.8 Coordinate Geometry
Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationNorwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction
1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K7. Students must demonstrate
More informationConcept: Quadratic Functions Name:
Concept: Quadratic Functions Name: You should have completed Equations Section 5 Part A: Problem Solving before beginning this handout. PART B: COMPUTER COMPONENT Instructions : Login to UMath X Hover
More informationAlgebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: AAPR.3: Identify zeros of polynomials
More information2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
More informationRationale/Lesson Abstract: Students will be able to solve a Linear Quadratic System algebraically and graphically.
Grade Level/Course: Algebra 1 Lesson/Unit Plan Name: Linear Quadratic Systems Rationale/Lesson Abstract: Students will be able to solve a Linear Quadratic System algebraically and graphically. Timeframe:
More informationPark Forest Math Team. Meet #5. Algebra. Selfstudy Packet
Park Forest Math Team Meet #5 Selfstudy Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationBrunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year. Goal The goal of the summer math program is to help students
More informationLAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1Semester 2 Grade Level: 1012 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More informationWarmUp Oct. 22. Daily Agenda:
Evaluate y = 2x 3x + 5 when x = 1, 0, and 2. Daily Agenda: Grade Assignment Go over Ch 3 Test; Retakes must be done by next Tuesday 5.1 notes / assignment Graphing Quadratic Functions 5.2 notes / assignment
More informationAlgebra II A Final Exam
Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationQuadratic Functions [Judy Ahrens, Pellissippi State Technical Community College]
Quadratic unctions [Judy Ahrens, Pellissippi State Technical Community College] A quadratic function may always e written in the form f(x)= ax + x + c, where a 0. The degree of the function is (the highest
More informationMyMathLab ecourse for Developmental Mathematics
MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and
More informationPacket 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2
Packet 1 for Unit Intercept Form of a Quadratic Function M Alg 1 Assignment A: Graphs of Quadratic Functions in Intercept Form (Section 4.) In this lesson, you will: Determine whether a function is linear
More informationAlgebra 1 Course Objectives
Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in
More information6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
More informationa) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2
Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0
More informationMath Review Large Print (18 point) Edition Chapter 2: Algebra
GRADUATE RECORD EXAMINATIONS Math Review Large Print (18 point) Edition Chapter : Algebra Copyright 010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,
More informationEXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS
To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires
More informationIn the Herb Business, Part III Factoring and Quadratic Equations
74 In the Herb Business, Part III Factoring and Quadratic Equations In the herbal medicine business, you and your partner sold 120 bottles of your best herbal medicine each week when you sold at your original
More informationBEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.
BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best
More informationA synonym is a word that has the same or almost the same definition of
SlopeIntercept Form Determining the Rate of Change and yintercept Learning Goals In this lesson, you will: Graph lines using the slope and yintercept. Calculate the yintercept of a line when given
More informationSolve Quadratic Equations by the Quadratic Formula. The solutions of the quadratic equation ax 2 1 bx 1 c 5 0 are. Standardized Test Practice
10.6 Solve Quadratic Equations by the Quadratic Formula Before You solved quadratic equations by completing the square. Now You will solve quadratic equations using the quadratic formula. Why? So you can
More information1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More informationSection summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2
Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2
More informationWeek 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.12.2, and Chapter
More information53 Polynomial Functions. not in one variable because there are two variables, x. and y
y. 53 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the
More informationAlgebra 2 YearataGlance Leander ISD 200708. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 YearataGlance Leander ISD 200708 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
More informationUnit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationMethods to Solve Quadratic Equations
Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a seconddegree
More informationAlgebra 2: Q1 & Q2 Review
Name: Class: Date: ID: A Algebra 2: Q1 & Q2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which is the graph of y = 2(x 2) 2 4? a. c. b. d. Short
More informationBookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina  Beaufort Lisa S. Yocco, Georgia Southern University
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationAlgebra 12. A. Identify and translate variables and expressions.
St. Mary's College High School Algebra 12 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used
More informationMath 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction
Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a
More informationDevelopmental Math Course Outcomes and Objectives
Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/PreAlgebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and
More informationSolving Systems of Equations with Absolute Value, Polynomials, and Inequalities
Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities Solving systems of equations with inequalities When solving systems of linear equations, we are looking for the ordered pair
More informationAlgebra 2/Trig Unit 2 Notes Packet Period: Quadratic Equations
Algebra 2/Trig Unit 2 Notes Packet Name: Date: Period: # Quadratic Equations (1) Page 253 #4 6 **Check on Graphing Calculator (GC)** (2) Page 253 254 #20, 26, 32**Check on GC** (3) Page 253 254 #10 12,
More informationGRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?
GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.
More informationGraphing Linear Equations in Two Variables
Math 123 Section 3.2  Graphing Linear Equations Using Intercepts  Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationAnswer Key Building Polynomial Functions
Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More informationMathematics Placement
Mathematics Placement The ACT COMPASS math test is a selfadaptive test, which potentially tests students within four different levels of math including prealgebra, algebra, college algebra, and trigonometry.
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationM 1310 4.1 Polynomial Functions 1
M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a
More informationExamples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationChapter 8. Quadratic Equations and Functions
Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More informationFACTORING QUADRATICS 8.1.1 through 8.1.4
Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten
More informationModule: Graphing Linear Equations_(10.1 10.5)
Module: Graphing Linear Equations_(10.1 10.5) Graph Linear Equations; Find the equation of a line. Plot ordered pairs on How is the Graph paper Definition of: The ability to the Rectangular Rectangular
More informationis the degree of the polynomial and is the leading coefficient.
Property: T. HrubikVulanovic email: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 HigherDegree Polynomial Functions... 1 Section 6.1 HigherDegree Polynomial Functions...
More informationMATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
More informationPrinciples of Math 12  Transformations Practice Exam 1
Principles of Math 2  Transformations Practice Exam www.math2.com Transformations Practice Exam Use this sheet to record your answers. NR. 2. 3. NR 2. 4. 5. 6. 7. 8. 9. 0.. 2. NR 3. 3. 4. 5. 6. 7. NR
More informationFlorida Algebra 1 EndofCourse Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
More informationax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )
SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More informationSouth Carolina College and CareerReady (SCCCR) Algebra 1
South Carolina College and CareerReady (SCCCR) Algebra 1 South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR) Mathematical Process
More informationSection 1.4 Graphs of Linear Inequalities
Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,
More information