I529: Machine Learning in Bioinformatics (Spring 2013) Markov Models

Size: px
Start display at page:

Download "I529: Machine Learning in Bioinformatics (Spring 2013) Markov Models"

Transcription

1 I529: Machne Learnng n Bonformatcs (Sprng 213) Markov Models Yuzhen Ye School of Informatcs and Computng Indana Unversty, Bloomngton Sprng 213

2 Outlne Smple model (frequency & profle) revew Markov chan CpG sland queston 1 Model comparson by log lkelhood rato test Markov chan varants Kth order Inhomogeneous Markov chans Interpolated Markov models (IMM) Applcatons Gene fndng (Genemark & Glmmer) Taxonomc assgnment n metagenomcs (Phymm)

3 A DNA profle (matrx) TATAAA TATAAT TATAAA TATAAA TATAAA TATTAA TTAAAA TAGAAA T C A G 1 Sparse data pseudo-counts T C A G

4 Frequency & profle model Frequency model: the order of nucleotdes n the tranng sequences s gnored; Profle model: the tranng sequences are algned the order of nucleotdes n the tranng sequences s fully preserved Markov chan model: orders are partally ncorporated

5 Markov chan model Sometmes we need to model dependences between adjacent postons n the sequence There are certan regons n the genome, lke TATA wthn the regulatory area, upstream a gene. The pattern CG s less common than expected for random samplng. Such dependences can be modeled by Markov chans.

6 Markov chans A Markov chan s a sequence of random varables wth Markov property,.e., gven the present state, the future and the past are ndependent. A famous example of Markov chan s the drunkard's walk at each step, the poston may change by +1 or 1 wth equal probablty. Pr(5->4) = Pr(5->6) =.5, all other transton probabltes from 5 are. these probabltes are ndependent of whether the system was prevously n step 4 or 6.

7 1 st order Markov chan An nteger tme stochastc process, consstng of a set of m>1 states {s 1,,s m } and 1. An m dmensonal ntal dstrbuton vector ( p(s 1 ),.., p(s m )) 2. An m m transton probabltes matrx M= (a s s j ) For example, for DNA sequence: the states are {A, C, T, G} (m=4) p(a) the probablty of A to be the 1 st letter a AG the probablty that G follows A n a sequence.

8 1 st order Markov chan X 1 X 2 X n-1 X n For each nteger n, a Markov Chan assgns probablty to sequences (x 1 x n ) as follows: p(( x, x,... x )) = p( X = x ) p( X = x X = x ) 1 2 n = 2 n = px ( 1) = 2 n ax 1x

9 Matrx representaton A B C D A.95.2 B.5.2 C.5 1 D.3.8 The transton probabltes matrx M =(a st ) M s a stochastc matrx: a = t st 1 The ntal dstrbuton vector (u 1 u m ) defnes the dstrbuton of X 1 (p(x 1 =s )=u ).

10 Dgraph (drected graph) representaton.95 A A.95 B C.5 D.2 A B.5 B C D 1.8 C D 1 Each drected edge A B s assocated wth the postve transton probablty from A to B.

11 Classfcaton of Markov chan states States of Markov chans are classfed by the dgraph representaton (omttng the actual probablty values) A, C and D are recurrent states: they are n strongly connected components whch are snks n the graph. B s not recurrent t s a transent state A B C D Alternatve defntons: A state s s recurrent f t can be reached from any state reachable from s; otherwse t s transent.

12 Another example of recurrent and transent states A B C D A and B are transent states, C and D are recurrent states. Once the process moves from B to D, t wll never come back.

13 A 3-state Markov model of the weather Assume the weather can be: ran or snow (state 1), cloudy (state 2), or sunny (state 3) Assume the weather of any day t s characterzed by one of the three states The transton probabltes between the three states A = {a j } = Questons a 11 a 12 a 13 a 21 a 22 a 23 = a 31 a 32 a Gven the frst day s sunny, what s the probablty that the weather for the followng 7 days wll be sun-sun-ran-ran-sun-cloudy-sun? The probablty of the weather stayng n a state for d days? Rabner (1989)

14 CpG sland modelng In mammalan genomes, the dnucleotde CG often transforms to (methyl-c)g whch often subsequently mutates to TG. Hence CG appears less than expected from what s expected from the ndependent frequences of C and G alone. Due to bologcal reasons, ths process s sometmes suppressed n short stretches of genomes such as n the upstream regons of many genes. These areas are called CpG slands.

15 Questons about CpG slands We consder two questons (and some varants): Queston 1: Gven a short stretch of genomc data, does t come from a CpG sland? Queston 2: Gven a long pece of genomc data, does t contan CpG slands n t, where, and how long? We solve the frst queston by modelng sequences wth and wthout CpG slands as Markov Chans over the same states {A,C,G,T} but dfferent transton probabltes.

16 Markov models for (non) CpG slands a + st a - st The + model: Use transton matrx A + = (a + st ), = (the probablty that t follows s n a CpG sland) postve samples The - model: Use transton matrx A - = (a - st ), = (the probablty that t follows s n a non CpG sland sequence) negatve samples Wth these two models, to solve Queston 1 we need to decde whether a gven short sequence s more lkely to come from the + model or from the model. Ths s done by usng the defntons of Markov Chan, n whch the parameters are determned by tranng data.

17 Matrces of the transton probabltes A + (CpG slands): p + (x x -1 ) (rows sum to 1) X -1 A - (non-cpg slands): X A C G T A C G T X A C G T A X -1 C G T

18 Model comparson Gven a sequence x=(x 1.x L ), now compute the lkelhood rato If RATIO>1, CpG sland s more lkely. Actually the log of ths rato s computed. = + = + + = + = model) ( model) ( RATIO L L x x p x x p p p ) ( ) ( x x Note: p + (x 1 x ) s defned for convenence as p + (x 1 ). p - (x 1 x ) s defned for convenence as p - (x 1 ).

19 Log lkelhood rato test Takng logarthm yelds log Q = log p(x p(x x...x L L + ) ) = log p p + (x x (x x 1 1 ) ) If logq >, then + s more lkely (CpG sland). If logq <, then - s more lkely (non-cpg sland).

20 A toy example Sequence: CGACTGAACCG P(CGACTGAACCG +) =? P(CGACTGAACCG -) =? Log lkelhood rato?

21 Where do the parameters (transton probabltes) come from? Learnng from tranng data. Source: A collecton of sequences from CpG slands, and a collecton of sequences from non-cpg slands. Input: Tuples of the form (x 1,, x L, h), where h s + or - Output: Maxmum Lkelhood parameters (MLE) Count all pars (X =a, X -1 =b) wth label +, and wth label -, say the numbers are N ba,+ and N ba,-.

22 CpG sland: queston 2 Queston 2: Gven a long pece of genomc data, does t contan CpG slands n t, and where? For ths, we need to decde whch parts of a gven long sequence of letters s more lkely to come from the + model, and whch parts are more lkely to come from the model. We wll defne a Markov Chan over 8 states. A + A - C + G + T + C - G - T - The problem s that we don t know the sequence of states (hdden) whch are traversed, but just the sequence of letters (observaton). Hdden Markov Model!

23 Markov model varatons kth order Markov chans (Markov chans wth memory) Inhomogeneous Markov chans (vs homogeneous Markov chans) Interpolated Markov chans

24 kth order Markov Chan (a Markov chan wth memory k) ( ) ( ) ( ) = = = = = = = = n k k k k k n x X x X x X x X p x X x X p x x p,...,,,..., kth Markov Chan assgns probablty to sequences (x 1 x n ) as follows: Intal dstrbuton Transton probabltes

25 Inhomogeneous Markov chan for gene fndng X 1 X 2 X 3 X 4 X 5 X 6 X 7 a b c a b c Agan, the parameters (the transton probabltes, a, b, and c need to be learned from tranng samples)

26 Inhomogeneous Markov chan: predcton X 1 X 2 X 3 X 4 X 5 X 6 X 7 Readng frame 1 a b c a b c Readng frame 2 c a b c a b Readng frame 3 b c a b c a

27 Gene fndng usng nhomogeneous Markov chan Consder sequence x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9. where x s a nucleotde let p 1 = a x1x2 b x2 x3 c x3x4 a x4x5 b x5x6c x6x7. p 2 = c x1x2 a x2x3 b x3x4 c x4x5 a x5x6 b x6x7. p 3 = b x1x2 c x2x3 a x3x4 b x4x5 c x5x6 a x6x7. then probablty that th readng frame s the codng frame s: P = p p 1 + p 2 + p 3 Genemark (gene fnder for bacteral genomes)

28 Selectng the order of a Markov chan For Markov models, what order to choose? Hgher order, more memory (hgher predctve value), but means more parameters to learn The hgher the order, the less relable the parameter estmates. E.g., we have a DNA sequence of 1 kbp 2 nd order Markov chan, 4 3 =64 parameters, 1562 tmes on average for each hstory 5 th order, 4 6 =496 parameters, 24 tmes on average 8 th order, 4 9 =65536 parameters, 1.5 tmes on average

29 Interpolated Markov models (IMMs) IMMs are called varable-order Markov models A IMM uses a varable number of states to compute the probablty of the next state smple lnear nterpolaton P (x x n,,x 1 )= P (x )+ 1 P (x x 1 )+ + n P (x x n,,x 1 ) general lnear nterpolaton P (x x n,,x 1 )= P (x )+ 1 (x )P (x x 1 )+ + n (x n,,x 1 )P (x x n,,x 1 )

30 GLIMMER Glmmer s a system for fndng genes n mcrobal DNA, especally the genomes of bactera, archaea, and vruses eukaryotc verson of Glmmer: GlmmerHMM Glmmer (Gene Locator and Interpolated Markov ModelER) uses IMMs to dentfy the codng. Glmmer verson 3.2 s the current verson of the system ( glmmer/) Glmmer3 makes several algorthmc changes to reduce the number of false postve predctons and to mprove the accuracy of start-ste predctons

31 IMM n GLIMMER A lnear combnaton of 8 dfferent Markov chans, from 1st through 8th-order, weghtng each model accordng to ts predctve power. Glmmer uses 3-perodc nonhomogenous Markov models n ts IMMs. Score of a sequence s the product of nterpolated probabltes of bases n the sequence IMM tranng Longer context s always better; only reason not to use t s undersamplng n tranng data. If sequence occurs frequently enough n tranng data, use t,.e., λ = 1 Otherwse, use frequency and χ 2 sgnfcance to set λ.

32 Clusterng metagenomc sequences wth IMMs IMMs are used to classfy metagenomc sequences based on patterns of DNA dstnct to a clade (a speces, genus, or hgher-level phylogenetc group). Durng tranng, the IMM algorthm constructs probablty dstrbutons representng observed patterns of nucleotdes that characterze each speces. Nat Methods 29, 6(9):

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

Lecture 2 Sequence Alignment. Burr Settles IBS Summer Research Program 2008 bsettles@cs.wisc.edu www.cs.wisc.edu/~bsettles/ibs08/

Lecture 2 Sequence Alignment. Burr Settles IBS Summer Research Program 2008 bsettles@cs.wisc.edu www.cs.wisc.edu/~bsettles/ibs08/ Lecture 2 Sequence lgnment Burr Settles IBS Summer Research Program 2008 bsettles@cs.wsc.edu www.cs.wsc.edu/~bsettles/bs08/ Sequence lgnment: Task Defnton gven: a par of sequences DN or proten) a method

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP) 6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

More information

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching) Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton

More information

Logistic Regression. Steve Kroon

Logistic Regression. Steve Kroon Logstc Regresson Steve Kroon Course notes sectons: 24.3-24.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Implementation of Deutsch's Algorithm Using Mathcad

Implementation of Deutsch's Algorithm Using Mathcad Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

More information

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6 PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 petr.nazarov@crp-sante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

Generalizing the degree sequence problem

Generalizing the degree sequence problem Mddlebury College March 2009 Arzona State Unversty Dscrete Mathematcs Semnar The degree sequence problem Problem: Gven an nteger sequence d = (d 1,...,d n ) determne f there exsts a graph G wth d as ts

More information

Interpreting Patterns and Analysis of Acute Leukemia Gene Expression Data by Multivariate Statistical Analysis

Interpreting Patterns and Analysis of Acute Leukemia Gene Expression Data by Multivariate Statistical Analysis Interpretng Patterns and Analyss of Acute Leukema Gene Expresson Data by Multvarate Statstcal Analyss ChangKyoo Yoo * and Peter A. Vanrolleghem BIOMATH, Department of Appled Mathematcs, Bometrcs and Process

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Product Quality and Safety Incident Information Tracking Based on Web

Product Quality and Safety Incident Information Tracking Based on Web Product Qualty and Safety Incdent Informaton Trackng Based on Web News 1 Yuexang Yang, 2 Correspondng Author Yyang Wang, 2 Shan Yu, 2 Jng Q, 1 Hual Ca 1 Chna Natonal Insttute of Standardzaton, Beng 100088,

More information

Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem

Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME, ISSUE, FEBRUARY ISSN 77-866 Logcal Development Of Vogel s Approxmaton Method (LD- An Approach To Fnd Basc Feasble Soluton Of Transportaton

More information

Transition Matrix Models of Consumer Credit Ratings

Transition Matrix Models of Consumer Credit Ratings Transton Matrx Models of Consumer Credt Ratngs Abstract Although the corporate credt rsk lterature has many studes modellng the change n the credt rsk of corporate bonds over tme, there s far less analyss

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer

More information

Evaluating the generalizability of an RCT using electronic health records data

Evaluating the generalizability of an RCT using electronic health records data Evaluatng the generalzablty of an RCT usng electronc health records data 3 nterestng questons Is our RCT representatve? How can we generalze RCT results? Can we use EHR* data as a control group? *) Electronc

More information

Traffic State Estimation in the Traffic Management Center of Berlin

Traffic State Estimation in the Traffic Management Center of Berlin Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal peter.vortsch@ptv.de Peter Möhl, PTV AG,

More information

Dynamic Pricing for Smart Grid with Reinforcement Learning

Dynamic Pricing for Smart Grid with Reinforcement Learning Dynamc Prcng for Smart Grd wth Renforcement Learnng Byung-Gook Km, Yu Zhang, Mhaela van der Schaar, and Jang-Won Lee Samsung Electroncs, Suwon, Korea Department of Electrcal Engneerng, UCLA, Los Angeles,

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jean-perre.barrot@cnes.fr 1/Introducton The

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Keywords : classifier, Association rules, data mining, healthcare, Associative Classifiers, CBA, CMAR, CPAR, MCAR. GJCST Classification : H.2.

Keywords : classifier, Association rules, data mining, healthcare, Associative Classifiers, CBA, CMAR, CPAR, MCAR. GJCST Classification : H.2. Global Journal of Computer Scence and Technology Volume 11 Issue 22 Verson 1.0 Type: Double Blnd Peer Revewed Internatonal Research Journal Publsher: Global Journals Inc. (USA) Onlne ISSN: 0975-4172 &

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Single and multiple stage classifiers implementing logistic discrimination

Single and multiple stage classifiers implementing logistic discrimination Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul - PUCRS Av. Ipranga,

More information

Whch one should I mtate? Karl H. Schlag Projektberech B Dscusson Paper No. B-365 March, 996 I wsh to thank Avner Shaked for helpful comments. Fnancal support from the Deutsche Forschungsgemenschaft, Sonderforschungsberech

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

Realistic Image Synthesis

Realistic Image Synthesis Realstc Image Synthess - Combned Samplng and Path Tracng - Phlpp Slusallek Karol Myszkowsk Vncent Pegoraro Overvew: Today Combned Samplng (Multple Importance Samplng) Renderng and Measurng Equaton Random

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

Lecture 5,6 Linear Methods for Classification. Summary

Lecture 5,6 Linear Methods for Classification. Summary Lecture 5,6 Lnear Methods for Classfcaton Rce ELEC 697 Farnaz Koushanfar Fall 2006 Summary Bayes Classfers Lnear Classfers Lnear regresson of an ndcator matrx Lnear dscrmnant analyss (LDA) Logstc regresson

More information

How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S

How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S S C H E D A E I N F O R M A T I C A E VOLUME 0 0 On Mean Squared Error of Herarchcal Estmator Stans law Brodowsk Faculty of Physcs, Astronomy, and Appled Computer Scence, Jagellonan Unversty, Reymonta

More information

Portfolio Loss Distribution

Portfolio Loss Distribution Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

More information

Fragility Based Rehabilitation Decision Analysis

Fragility Based Rehabilitation Decision Analysis .171. Fraglty Based Rehabltaton Decson Analyss Cagdas Kafal Graduate Student, School of Cvl and Envronmental Engneerng, Cornell Unversty Research Supervsor: rcea Grgoru, Professor Summary A method s presented

More information

Availability-Based Path Selection and Network Vulnerability Assessment

Availability-Based Path Selection and Network Vulnerability Assessment Avalablty-Based Path Selecton and Network Vulnerablty Assessment Song Yang, Stojan Trajanovsk and Fernando A. Kupers Delft Unversty of Technology, The Netherlands {S.Yang, S.Trajanovsk, F.A.Kupers}@tudelft.nl

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Design of Output Codes for Fast Covering Learning using Basic Decomposition Techniques

Design of Output Codes for Fast Covering Learning using Basic Decomposition Techniques Journal of Computer Scence (7): 565-57, 6 ISSN 59-66 6 Scence Publcatons Desgn of Output Codes for Fast Coverng Learnng usng Basc Decomposton Technques Aruna Twar and Narendra S. Chaudhar, Faculty of Computer

More information

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks Bulletn of Mathematcal Bology (21 DOI 1.17/s11538-1-9517-4 ORIGINAL ARTICLE Product-Form Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz

More information

Planning for Marketing Campaigns

Planning for Marketing Campaigns Plannng for Marketng Campagns Qang Yang and Hong Cheng Department of Computer Scence Hong Kong Unversty of Scence and Technology Clearwater Bay, Kowloon, Hong Kong, Chna (qyang, csch)@cs.ust.hk Abstract

More information

Loop Parallelization

Loop Parallelization - - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com

More information

Regression Models for a Binary Response Using EXCEL and JMP

Regression Models for a Binary Response Using EXCEL and JMP SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Prediction of Disability Frequencies in Life Insurance

Prediction of Disability Frequencies in Life Insurance Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Stochastic Protocol Modeling for Anomaly Based Network Intrusion Detection

Stochastic Protocol Modeling for Anomaly Based Network Intrusion Detection Stochastc Protocol Modelng for Anomaly Based Network Intruson Detecton Juan M. Estevez-Tapador, Pedro Garca-Teodoro, and Jesus E. Daz-Verdejo Department of Electroncs and Computer Technology Unversty of

More information

Power law distribution of dividends in horse races

Power law distribution of dividends in horse races EUROPHYSICS LETTERS 15 February 2001 Europhys. Lett., 53 (4), pp. 419 425 (2001) Power law dstrbuton of dvdends n horse races K. Park and E. Domany Department of Physcs of Complex Systems, Wezmann Insttute

More information

We are now ready to answer the question: What are the possible cardinalities for finite fields?

We are now ready to answer the question: What are the possible cardinalities for finite fields? Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the

More information

Brigid Mullany, Ph.D University of North Carolina, Charlotte

Brigid Mullany, Ph.D University of North Carolina, Charlotte Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte

More information

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Conversion between the vector and raster data structures using Fuzzy Geographical Entities Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,

More information

Intelligent stock trading system by turning point confirming and probabilistic reasoning

Intelligent stock trading system by turning point confirming and probabilistic reasoning Expert Systems wth Applcatons Expert Systems wth Applcatons 34 (2008) 620 627 www.elsever.com/locate/eswa Intellgent stock tradng system by turnng pont confrmng and probablstc reasonng Depe Bao *, Zehong

More information

Review of Hierarchical Models for Data Clustering and Visualization

Review of Hierarchical Models for Data Clustering and Visualization Revew of Herarchcal Models for Data Clusterng and Vsualzaton Lola Vcente & Alfredo Velldo Grup de Soft Computng Seccó d Intel lgènca Artfcal Departament de Llenguatges Sstemes Informàtcs Unverstat Poltècnca

More information

How To Find The Dsablty Frequency Of A Clam

How To Find The Dsablty Frequency Of A Clam 1 Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng 1, Fran Weber 1, Maro V. Wüthrch 2 Abstract: For the predcton of dsablty frequences, not only the observed, but also the ncurred but not yet

More information

Sample Design in TIMSS and PIRLS

Sample Design in TIMSS and PIRLS Sample Desgn n TIMSS and PIRLS Introducton Marc Joncas Perre Foy TIMSS and PIRLS are desgned to provde vald and relable measurement of trends n student achevement n countres around the world, whle keepng

More information

Implied (risk neutral) probabilities, betting odds and prediction markets

Implied (risk neutral) probabilities, betting odds and prediction markets Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT - We show that the well known euvalence between the "fundamental theorem of

More information

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

More information

Implementations of Web-based Recommender Systems Using Hybrid Methods

Implementations of Web-based Recommender Systems Using Hybrid Methods Internatonal Journal of Computer Scence & Applcatons Vol. 3 Issue 3, pp 52-64 2006 Technomathematcs Research Foundaton Implementatons of Web-based Recommender Systems Usng Hybrd Methods Janusz Sobeck Insttute

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications CMSC828G Prncples of Data Mnng Lecture #9 Today s Readng: HMS, chapter 9 Today s Lecture: Descrptve Modelng Clusterng Algorthms Descrptve Models model presents the man features of the data, a global summary

More information

Learning from Large Distributed Data: A Scaling Down Sampling Scheme for Efficient Data Processing

Learning from Large Distributed Data: A Scaling Down Sampling Scheme for Efficient Data Processing Internatonal Journal of Machne Learnng and Computng, Vol. 4, No. 3, June 04 Learnng from Large Dstrbuted Data: A Scalng Down Samplng Scheme for Effcent Data Processng Che Ngufor and Janusz Wojtusak part

More information

Georey E. Hinton. University oftoronto. Email: zoubin@cs.toronto.edu. Technical Report CRG-TR-96-1. May 21, 1996 (revised Feb 27, 1997) Abstract

Georey E. Hinton. University oftoronto. Email: zoubin@cs.toronto.edu. Technical Report CRG-TR-96-1. May 21, 1996 (revised Feb 27, 1997) Abstract The EM Algorthm for Mxtures of Factor Analyzers Zoubn Ghahraman Georey E. Hnton Department of Computer Scence Unversty oftoronto 6 Kng's College Road Toronto, Canada M5S A4 Emal: zoubn@cs.toronto.edu Techncal

More information

Efficient Reinforcement Learning in Factored MDPs

Efficient Reinforcement Learning in Factored MDPs Effcent Renforcement Learnng n Factored MDPs Mchael Kearns AT&T Labs mkearns@research.att.com Daphne Koller Stanford Unversty koller@cs.stanford.edu Abstract We present a provably effcent and near-optmal

More information

Adaptive Fractal Image Coding in the Frequency Domain

Adaptive Fractal Image Coding in the Frequency Domain PROCEEDINGS OF INTERNATIONAL WORKSHOP ON IMAGE PROCESSING: THEORY, METHODOLOGY, SYSTEMS AND APPLICATIONS 2-22 JUNE,1994 BUDAPEST,HUNGARY Adaptve Fractal Image Codng n the Frequency Doman K AI UWE BARTHEL

More information

Distributed Multi-Target Tracking In A Self-Configuring Camera Network

Distributed Multi-Target Tracking In A Self-Configuring Camera Network Dstrbuted Mult-Target Trackng In A Self-Confgurng Camera Network Crstan Soto, B Song, Amt K. Roy-Chowdhury Department of Electrcal Engneerng Unversty of Calforna, Rversde {cwlder,bsong,amtrc}@ee.ucr.edu

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information