Notes on the Periodically Forced Harmonic Oscillator

Size: px
Start display at page:

Download "Notes on the Periodically Forced Harmonic Oscillator"

Transcription

1 Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the linear second order nonhomogeneous differential equation my + by + ky = cos(ωt) (1) where m >, b, and k >. We can solve this problem completely; the goal of these notes is to study the behavior of the solutions, and to point out some special cases. The parameter b is the damping coefficient (also known as the coefficient of friction). We consider the cases b = (undamped) and b > (damped) separately. Undamped (b = ). When b =, we have the equation or convenience, define my + ky = cos(ωt). () ω = k m. This is the natural frequency of the undamped, unforced harmonic oscillator. To solve (), we must consider two cases: ω ω and ω = ω..1 ω ω By using the method of undetermined coefficients, we find the solution of () to be y(t) = c 1 cos(ω t) + c sin(ω t) + m(ω ω cos(ωt), (3) ) where, as usual, c 1 and c are arbitrary constants. Note that the amplitude of y p becomes larger as ω approaches ω. This suggests that something other than a purely sinusoidal function may result when ω = ω. 1

2 1 ω=3.5 Beats and Resonance ω= ω= ω=3 (resonance) t igure 1: Solutions to () for several values of ω. The initial conditions are y() = and y () =. The solid curves are the actual solutions, while the dashed lines show the envelope (or modulation) of the amplitude. Beats. Let us consider the initial conditions y() = and y () =. We must have c 1 = /(m(ω ω )) and c =, which gives y(t) = m(ω ω )(cos(ωt) cos(ω t)). in (3). By using some trigonometric identities, we may rewrite this as ( ) ( ) y(t) = m(ω ω ) sin (ω + ω)t (ω ω)t sin. (4) Now, if ω ω, we can think of this expression as the product of ( ) ( ) (ω + ω)t sin and m(ω ω ) sin (ω ω)t. Since ω ω, ω ω is small, the first expression has a much higher frequency than the second. We see that the solution given in (4) is a high frequency oscillation, with an amplitude that is modulated by a low frequency oscillation. In igure 1, we consider an example where = 1, m = 1, and ω = 3. In the first three graphs, the solid lines are y(t) given by (4), and the dashed lines show the envelope or modulation of the amplitude of the solution. Note that the vertical scale is different in each graph: the amplitude increases as ω approaches ω. Remember that the solutions in igure 1 are for the special initial conditions y() = and y () =. Beats occur with other initial conditions, but the function that modulates the amplitude of the high frequency oscillation will not be a simple sine function. igure shows a solution to () with ω = 3.5, but with y() = 1 and y () =.

3 Beats with Nonzero Initial Conditions t igure : Solution to () for ω = 3.5, with the initial conditions y() = 1 and y () =.. ω = ω : Resonance When ω = ω in (), the method of undetermined coefficients tells us that y p (t) = A cos(ω t) + B sin(ω t) can not be the particular solution, because each term also solves the homogeneous equation. In this case, we multiply the guess by t to obtain y p (t) = At cos(ω t) + Bt sin(ω t). This means that the particular solution is an oscillation whose amplitude grows linearly with t. This phenomenon is known as resonance. When we substitute y p into () and simplify, we obtain mω A sin(ω t) + mω B cos(ω t) = cos(ω t). (The terms containing a factor of t automatically cancel.) or this equation to hold for all t, we must have A = and B = /(mω ). Thus the general solution to () when ω = ω is y(t) = c 1 cos(ω t) + c sin(ω t) + mω t sin(ω t). Special Case. or the special initial conditions y() = and y () =, we obtain c 1 = c =, and so y(t) = t sin(ω t)/(ω ). This solution is the fourth graph shown in igure 1 (with m = 1 and ω = 3). 3 Damped (b > ). To solve (1) with the method of undetermined coefficients, we first guess y p (t) = A cos(ωt) + B sin(ωt). We then check that neither term in y p solves the homogeneous equation. When b >, there are three possible forms for the homogeneous solution (underdamped, critically damped, and overdamped), but in all cases, the homogeneous solutions decay to zero as t increases, so neither term in y p can be a solution to the homogeneous equation. So our first guess for y p will work. Substituting this guess into (1) and choosing the coefficients to make y p a solutions yields (ω ω y p (t) = ) m m (ω ω ) + b ω cos(ωt) + ωb m (ω ω ) + b sin(ωt) (5) ω Recall that an expression of the form A cos(ωt) + B sin(ωt) may be written as R cos(ωt φ), where R = A + B and tan φ = B/A. (R is the amplitude and φ is the phase angle.) With this, we have y p (t) = cos(ωt φ), (6) m (ω ω ) + b ω 3

4 where The general solution to (1) is the usual ( φ = arctan ωb m(ω ω ) y(t) = y h (t) + y p (t). As mentioned earlier, when b >, the homogeneous solution will decay to zero as t increases. or this reason, the homogeneous solution is sometimes called the transient solution, and y p is called the steady state response. ). Example. Consider the initial value problem y + y + 1y = cos(t), y() = 1/, y () = 4. We have m = 1, b =, k = 1, = 1 and ω =. We also find ω = k/m = 1. The homogeneous solution is y h (t) = c 1 e t cos(3t) + c e t sin(3t), and, using (5), we find the particular solution to be The solution to the initial value problem is y p (t) = 3 6 cos(t) sin(t). y(t) = 8 13 e t cos(3t) e t sin(3t) cos(t) sin(t). igure 3 shows y h, y p and y = y h + y p. 3.1 Amplitude of the steady state. Let us consider (6). The amplitude of the steady state is m (ω ω ) + b ω. We see that the amplitude depends on all the parameters in the differential equation. In particular, the amplitude of the steady state solution depends on the frequency ω of the forcing. Let s take = 1, m = 1, ω = 3, so we have 1 (ω 9) + b ω. The amplitude as a function of ω for several values of b is shown in igure 4. Note that as b gets smaller, the peak in the response becomes larger, and the location of the peak approaches ω. The graph of the amplitude when b =, for which the response blows up at ω, is included for comparison. 4

5 .5 y h (t) y p (t) y(t) t igure 3: Graphs of y h, y p and the full solution to (1) with parameter values m = 1, b =, k = 1, = 1, and with initial conditions y() = 1/ and y () = Amplitude of the Steady State b=1 b=.3.5. b=.15.1 b=4.5 b= ω igure 4: Amplitude of the steady state response as a function of ω for several values of b. The curve associated with b = has a vertical asymptote at ω = 3. 5

6 4 Brief Summary 1. The second order linear harmonic oscillator (damped or undamped) with sinusoidal forcing can be solved by using the method of undetermined coefficients.. In the undamped case, beats occur when the forcing frequency is close to (but not equal to) the natural frequency of the oscillator. 3. In the undamped case, resonance occurs when the forcing frequency is the same as the natural frequency of the oscillator. 4. In the damped case (b > ), the homogeneous solution decays to zero as t increases, so the steady state behavior is determined by the particular solution. 5. In the damped case, the steady state behavior does not depend on the initial conditions. 6. The amplitude and phase of the steady state solution depend on all the parameters in the problem. Words to Know: harmonic oscillator, damped, undamped, resonance, beats, transient, steady state, amplitude, phase 6

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

How To Solve A Linear Dierential Equation

How To Solve A Linear Dierential Equation Dierential Equations (part 2): Linear Dierential Equations (by Evan Dummit, 2012, v. 1.00) Contents 4 Linear Dierential Equations 1 4.1 Terminology.................................................. 1 4.2

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Overdamped system response

Overdamped system response Second order system response. Im(s) Underdamped Unstable Overdamped or Critically damped Undamped Re(s) Underdamped Overdamped system response System transfer function : Impulse response : Step response

More information

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( ) 34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using

More information

2.6 The driven oscillator

2.6 The driven oscillator 2.6. THE DRIVEN OSCILLATOR 131 2.6 The driven oscillator We would like to understand what happens when we apply forces to the harmonic oscillator. That is, we want to solve the equation M d2 x(t) 2 + γ

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its

(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its (1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:

More information

Step response of an RLC series circuit

Step response of an RLC series circuit School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Differential Equations and Linear Algebra Lecture Notes. Simon J.A. Malham. Department of Mathematics, Heriot-Watt University

Differential Equations and Linear Algebra Lecture Notes. Simon J.A. Malham. Department of Mathematics, Heriot-Watt University Differential Equations and Linear Algebra Lecture Notes Simon J.A. Malham Department of Mathematics, Heriot-Watt University Contents Chapter. Linear second order ODEs 5.. Newton s second law 5.2. Springs

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*

12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* + v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

3. Solve the equation containing only one variable for that variable.

3. Solve the equation containing only one variable for that variable. Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated

More information

Adding Sinusoids of the Same Frequency. Additive Synthesis. Spectrum. Music 270a: Modulation

Adding Sinusoids of the Same Frequency. Additive Synthesis. Spectrum. Music 270a: Modulation Adding Sinusoids of the Same Frequency Music 7a: Modulation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) February 9, 5 Recall, that adding sinusoids of

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Lecture Notes for Math250: Ordinary Differential Equations

Lecture Notes for Math250: Ordinary Differential Equations Lecture Notes for Math250: Ordinary Differential Equations Wen Shen 2011 NB! These notes are used by myself. They are provided to students as a supplement to the textbook. They can not substitute the textbook.

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Finding Equations of Sinusoidal Functions From Real-World Data

Finding Equations of Sinusoidal Functions From Real-World Data Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT

More information

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function

More information

So far, we have looked at homogeneous equations

So far, we have looked at homogeneous equations Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy

More information

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

More information

Higher Order Equations

Higher Order Equations Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Second Order Systems

Second Order Systems Second Order Systems Second Order Equations Standard Form G () s = τ s K + ζτs + 1 K = Gain τ = Natural Period of Oscillation ζ = Damping Factor (zeta) Note: this has to be 1.0!!! Corresponding Differential

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Chapter 29 Alternating-Current Circuits

Chapter 29 Alternating-Current Circuits hapter 9 Alternating-urrent ircuits onceptual Problems A coil in an ac generator rotates at 6 Hz. How much time elapses between successive emf values of the coil? Determine the oncept Successive s are

More information

Module P5.3 Forced vibrations and resonance

Module P5.3 Forced vibrations and resonance F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P5.3 Forced vibrations and resonance 1 Opening items 1.1 Module introduction 1.2 Fast track questions 1.3 Ready to study? 2 Driven

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information

2.2 Magic with complex exponentials

2.2 Magic with complex exponentials 2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

More information

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1 MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

More information

Simple Vibration Problems with MATLAB (and Some Help from MAPLE) Original Version by Stephen Kuchnicki

Simple Vibration Problems with MATLAB (and Some Help from MAPLE) Original Version by Stephen Kuchnicki Simple Vibration Problems with MATLAB (and Some Help from MAPLE) Original Version by Stephen Kuchnicki December 7, 29 Contents Preface ix 1 Introduction 1 2 SDOF Undamped Oscillation 3 3 A Damped SDOF

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

FACTORING ANGLE EQUATIONS:

FACTORING ANGLE EQUATIONS: FACTORING ANGLE EQUATIONS: For convenience, algebraic names are assigned to the angles comprising the Standard Hip kernel. The names are completely arbitrary, and can vary from kernel to kernel. On the

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

Lecture 8 : Dynamic Stability

Lecture 8 : Dynamic Stability Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

1.2 Second-order systems

1.2 Second-order systems 1.2. SECOND-ORDER SYSTEMS 25 if the initial fluid height is defined as h() = h, then the fluid height as a function of time varies as h(t) = h e tρg/ra [m]. (1.31) 1.2 Second-order systems In the previous

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

! n. Problems and Solutions Section 1.5 (1.66 through 1.74)

! n. Problems and Solutions Section 1.5 (1.66 through 1.74) Problems and Solutions Section.5 (.66 through.74).66 A helicopter landing gear consists of a metal framework rather than the coil spring based suspension system used in a fixed-wing aircraft. The vibration

More information

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Week 13 Trigonometric Form of Complex Numbers

Week 13 Trigonometric Form of Complex Numbers Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

More information

Structural Dynamics, Dynamic Force and Dynamic System

Structural Dynamics, Dynamic Force and Dynamic System Structural Dynamics, Dynamic Force and Dynamic System Structural Dynamics Conventional structural analysis is based on the concept of statics, which can be derived from Newton s 1 st law of motion. This

More information

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3 MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

More information

Review of First- and Second-Order System Response 1

Review of First- and Second-Order System Response 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First- and Second-Order System Response 1 1 First-Order Linear System Transient

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations 1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR DIFFERENTIAL EQUATIONS MTH 4465 3 Credit Hours Student Level: This course is open to students on the college level in the sophomore

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Math 267 - Practice exam 2 - solutions

Math 267 - Practice exam 2 - solutions C Roettger, Fall 13 Math 267 - Practice exam 2 - solutions Problem 1 A solution of 10% perchlorate in water flows at a rate of 8 L/min into a tank holding 200L pure water. The solution is kept well stirred

More information

Student name: Earlham College. Fall 2011 December 15, 2011

Student name: Earlham College. Fall 2011 December 15, 2011 Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

HW6 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) November 14, 2013. Checklist: Section 7.8: 1c, 2, 7, 10, [16]

HW6 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) November 14, 2013. Checklist: Section 7.8: 1c, 2, 7, 10, [16] HW6 Solutions MATH D Fall 3 Prof: Sun Hui TA: Zezhou Zhang David November 4, 3 Checklist: Section 7.8: c,, 7,, [6] Section 7.9:, 3, 7, 9 Section 7.8 In Problems 7.8. thru 4: a Draw a direction field and

More information

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS Texas College Mathematics Journal Volume 6, Number 2, Pages 18 24 S applied for(xx)0000-0 Article electronically published on September 23, 2009 ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE

More information

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Student Manual *****

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Student Manual ***** SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Student Manual ***** A PROJECT DEVELOPED FOR THE UNIVERSITY CONSORTIUM ON INSTRUCTIONAL SHAKE TABLES http://wusceel.cive.wustl.edu/ucist/

More information

Find all of the real numbers x that satisfy the algebraic equation:

Find all of the real numbers x that satisfy the algebraic equation: Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when

More information

Chapter 2 Introduction to Rotor Dynamics

Chapter 2 Introduction to Rotor Dynamics Chapter 2 Introduction to Rotor Dynamics Rotor dynamics is the branch of engineering that studies the lateral and torsional vibrations of rotating shafts, with the objective of predicting the rotor vibrations

More information

CALCULATING THE RESPONSE OF AN OSCILLATOR TO ARBITRARY GROUND MOTION* By G~ORGE W. I-IouSl~ER

CALCULATING THE RESPONSE OF AN OSCILLATOR TO ARBITRARY GROUND MOTION* By G~ORGE W. I-IouSl~ER CALCULATING THE RESONSE OF AN OSCILLATOR TO ARBITRARY GROUND MOTION* By G~ORGE W. I-IouSl~ER IN COMUTING the response of a simple oscillator to arbitrary ground motion it is necessary to use arithmetical

More information

Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems

Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems SDOF Dynamics 3-1 This set of slides covers the fundamental concepts of structural dynamics of linear elastic single-degree-of-freedom

More information

Lesson 3 Using the Sine Function to Model Periodic Graphs

Lesson 3 Using the Sine Function to Model Periodic Graphs Lesson 3 Using the Sine Function to Model Periodic Graphs Objectives After completing this lesson you should 1. Know that the sine function is one of a family of functions which is used to model periodic

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Introduction Assignment

Introduction Assignment PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

More information

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3.

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3. On a class of Hill s equations having explicit solutions Michele Bartuccelli 1 Guido Gentile 2 James A. Wright 1 1 Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK. 2 Dipartimento

More information

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Performance. 13. Climbing Flight

Performance. 13. Climbing Flight Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic 1. Introduction There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant; abbreviated as sin, cos, tan, cot, sec, and csc respectively. These are functions of a single

More information

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

More information

Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

More information

The Membrane Equation

The Membrane Equation The Membrane Equation Professor David Heeger September 5, 2000 RC Circuits Figure 1A shows an RC (resistor, capacitor) equivalent circuit model for a patch of passive neural membrane. The capacitor represents

More information

MCR3U - Practice Test - Periodic Functions - W2012

MCR3U - Practice Test - Periodic Functions - W2012 Name: Date: May 25, 2012 ID: A MCR3U - Practice Test - Periodic Functions - W2012 1. One cycle of the graph of a periodic function is shown below. State the period and amplitude. 2. One cycle of the graph

More information

Complex Eigenvalues. 1 Complex Eigenvalues

Complex Eigenvalues. 1 Complex Eigenvalues Complex Eigenvalues Today we consider how to deal with complex eigenvalues in a linear homogeneous system of first der equations We will also look back briefly at how what we have done with systems recapitulates

More information

Partial Fractions: Undetermined Coefficients

Partial Fractions: Undetermined Coefficients 1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the

More information

10.450 Process Dynamics, Operations, and Control Lecture Notes - 11 Lesson 11. Frequency response of dynamic systems.

10.450 Process Dynamics, Operations, and Control Lecture Notes - 11 Lesson 11. Frequency response of dynamic systems. Lesson. Frequency response of dynamic systems..0 Context We have worked with step, pulse, and sine disturbances. Of course, there are many sine disturbances, because the applied frequency may vary. Surely

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

is the degree of the polynomial and is the leading coefficient.

is the degree of the polynomial and is the leading coefficient. Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...

More information