LEARNING OBJECTIVES. Introduction 1/4/2013 CHAPTER. Linear Programming Models: Graphical and Computer Methods

Size: px
Start display at page:

Download "LEARNING OBJECTIVES. Introduction 1/4/2013 CHAPTER. Linear Programming Models: Graphical and Computer Methods"

Transcription

1 CHAPTER 2 Linear Programming Models: Graphical and Computer Methods PowerPoint presentation to accompany Balakrishnan/Render/Stair Managerial Decision Modeling with Spreadsheets, 3/e 2-1 LEARNING OBJECTIVES 1. Understand the basic assumptions and properties of linear programming (LP). 2. Use graphical procedures to solve LP problems with only two variables to understand how LP problems are solved. 3. Understand special situations such as redundancy, infeasibility, unboundedness, and alternate optimal solutions in LP problems. 4. Understand how to set up LP problems on a spreadsheet and solve them using Excel s Solver. 2-2 Introduction Management decisions involve the most effective use of resources Most widely used modeling technique is linear programming (LP) Deterministic models 2-3 1

2 Developing a LP Model All LP models can be viewed in terms of the three distinct steps 1. Formulation of simple mathematical expressions 2. Solution to identify an optimal (or best) solution to the model 3. Interpretation of the results and answer what if? questions 2-4 Properties of a LP Model 1. Seek to maximize of minimize a some quantity 2. Restrictions or constraints 3. Alternative courses of action 4. Linear equations or inequalities (=,, ) 2-5 LP Characteristics Feasible Region The set of points that satisfies all constraints Corner Point Property An optimal solution must lie at one or more corner points Optimal Solution The corner point with the best objective function value is optimal 2-6 2

3 Formulating a LP Model A product mix problem Decide how much to make of two or more products Objective is to maximize profit Limited resources Flair Furniture Best combination of tables and chairs 2-7 Decision Variables What we are solving for Two variables in the Flair problem Number of tables (T, Tables or X 1 ) Number of chairs (C, Chairs or X 2 ) Decision variables can be in different units of measurement 2-8 The Objective Function States the goal of a problem A single objective function Objective is often to maximize profit or minimize cost 2-9 3

4 The Objective Function For Flair Furniture Profit = ($7 profit per table) x (number of tables produced) + ($5 profit per chairs) x (numbers of chairs produced) Using decision variables T and C Maximize $7T + $5C 2-10 Constraints Restrictions or limits on our decisions As many as necessary Can be independent Flair has four constraints Carpentry time Painting time Number of chairs to make Number of tables to make 2-11 Constraints For carpentry time (3 hours per table) x (number of tables produced) + (3 hours per chair) x (number of chairs produced) There are 2,400 hours of time available 3T + 4C 2,

5 Constraints All four constraints Carpentry time 3T + 4C 2,400 Painting time 2T + 1C 1,000 Chairs sold C 450 Tables sold T 100 Interactions exist between variables 2-13 Nonnegativity and Integers Decision variables must be 0, so T 0, and C 0 Decision variables may have to be integers 2-14 Flair Model Matrix TABLES (T) CHAIRS (C) LIMIT Profit Contribution $7 $5 Carpentry 3 hrs 4 hrs 2,400 Painting 2 hrs 1 hr 1,000 Chairs 0 unit 1 unit 450 Tables 1 unit 0 unit

6 Guidelines Recognizing and defining decision variables Different variables, different units Use only the decision variables in the model Difficulties may point to a need for more variables or better definitions 2-16 Guidelines One expression, one entity One unit of measurement per expression Constraints are separate Translate expressions into words 2-17 Graphical Solution Complete model Maximize profit = $7T + $5C Subject to 3T + 4C 2,400(carpentry time) 2T + 1C 1,000(painting time) C 450 (maximum chairs allowed) T 100 (maximum tables allowed) T, C 0 (nonnegativity)

7 Graphical Representation Number of Chairs (C) 1, (T = 0, C = 600) 600 Carpentry Constraint Line 400 (T = 400, C = 300) 200 (T = 800, C = 0) ,000 Number of Tables(T) Figure Graphical Representation Number of Chairs (C) 1, Region Satisfying 3T + 4C 2,400 (T = 300, C = 200) ,000 Number of Tables(T) (T = 600, C = 400) Figure Graphical Representation (T = 0, C = 1,000) Number of Chairs (C) 1,000 (T = 100, C = 700) (T = 0, C = 600) Painting Constraint (T = 300, C = 200) Carpentry Constraint (T = 500, C = 200) (T = 500, C = 0) (T = 800, C = 0) ,000 Number of Tables(T) Figure

8 Graphical Representation Painting Constraint Number of Chairs (C) 1, Feasible Infeasible Solution (T = 50, C = 500) Maximum Tables Required Constraint Maximum Chairs Allowed Constraint (T = 300, C = 200) Carpentry Constraint Infeasible Solution (T = 500, C = 200) Region ,000 Number of Tables(T) Figure Using Level Lines Number of Chairs (C) (T = 0, C = 560) (T = 0, C = 420) Feasible Region (T = 300, C = 0) (T = 400, C = 0) ,000 Number of Tables(T) Figure Using Level Lines 800 Optimal Level Profit Line 600 Carpentry Constraint Number of Chairs (C) Optimal Corner Point Solution Level Profit Line with No Feasible Points ($7T + $5C = $4,200) Painting Constraint ,000 Number of Tables(T) Figure

9 Calculating a Solution Optimal point 4 is the intersection of two constraints, carpentry and painting Solving simultaneously 6T + 8C = 4,800 (6T + 3C = 3,000) 5C = 1,800 implies C = 360 and T = Using All Corner Points Point 1 (T = 100, C = 0) Profit = $7 x $5 x 0 = $700 Point 2 (T = 100, C = 450) Profit = $7 x $5 x 450 = $2,950 Point 3 (T = 200, C = 450) Profit = $7 x $5 x 450 = $3,650 Point 4 (T = 320, C = 360) Profit = $7 x $5 x 360 = $4,040 Point 5 (T = 500, C = 0) Profit = $7 x $5 x 0 = $3, Extension to the Model Number of Chairs (C) Optimal Level Profit Line for Revised Problem (T = 300, C = 375) is the New Optimal Corner Point Solution (T = 320, C = 360) is No Longer Feasible 7 Additional Constraint C T 75 4 Has a Positive Slope ($7T + $5C = $2,800) This Portion of the Original Feasible Region Is No Longer Feasible ,000 Number of Tables(T) Figure

10 Minimization Problem Minimize cost Holiday Meal Turkey Ranch Two types of feed Minimize cost = $0.10A + $0.15B subject to 5A + 10B 45 (protein required) 4A + 3B 24 (vitamin required) 0.5A 1.5 (iron required) A,B 0 (nonnegativity) 2-28 Minimization Problem Data for Holiday Meal Turkey Ranch NUTRIENTS PER POUND OF FEED MINIMUM REQUIRED PER TURKEY PER NUTRIENT BRAND A FEED BRAND B FEED MONTH Protein (units) Vitamin (units) Iron (units) Cost Per Pound $0.10 $0.15 Table Minimization Problem Pounds of Brand B (B) Iron Constraint Feasible Region is Unbounded Vitamin Constraint 2 Protein Constraint Pounds of Brand A (A) Figure

11 Graphical Solution Pounds of Brand B (B) 10 Level Cost 9 Line for 8 Minimum Cost Unbounded Feasible Region Level Cost Line 2 Optimal Corner 1 Point Solution (A = 4.2, B = 2.4) Pounds of Brand A (A) Figure Calculating a Solution Optimal point 2 is the intersection of two constraints, vitamin and protein Solving simultaneously 4(5A + 10B = 45) implies 20A + 40B = 180 5(4A + 3B = 24) implies (20A + 15B = 120) 25B = 60 implies B = 2.4 and A = Special Situations Redundant Constraints Do not affect the feasible region Changed constraint in Flair Furniture problem T 100 becomes T

12 Special Situations Number of Chairs (C) 1, C 450 Carpentry Constraint Is Redundant 400 Constraint Changed to T Painting Constraint Is Redundant ,000 Feasible Region Number of Tables(T) Figure Special Situations Infeasibility No one solution satisfies all the constraints Changed constraint in Flair Furniture problem T 100 becomes T Special Situations Number of Chairs (C) Constraint Changed to T 600 1,000 C Two Regions Do Not Overlap Region 200 Satisfying Three Constraints 3T + 4C 2,400 2T + C 1,000 Region Satisfying Fourth Constraint ,000 Number of Tables(T) Figure

13 Special Situations Alternate Optimal Solutions More than one solution satisfies all the constraints Changed objective in Flair Furniture problem $7T + $5C becomes $6T + $3C 2-37 Special Situations 800 Level Profit Line for Maximum Profit Overlaps Painting Constraint Number of Chairs (C) Feasible Region Level Profit Line Is Parallel to Painting Constraint $6T + $5C = $2,100 Optimal Solution Consists of All Points Between Corner Points 4 and ,000 Number of Tables(T) Figure Special Situations Unbounded Solution May or may not have a finite solution Usually improper formulation Changed objective in Holiday Meal problem Minimize = $0.10A + $0.15B becomes Maximize = 8A + 12B

14 Special Situations Pounds of Brand B (B) 10 9 Iron Constraint 8 7 Unbounded Feasible Region Vitamin Constraint 1 Protein Constraint Pounds of Brand A (A) Figure Using Excel s Solver Excel s built-in LP solution tool for LP Commonly available and easy access Familiar software 2-41 Screenshot 2-1A

15 Screenshot 2-1B 2-43 Screenshot 2-1B 2-44 Screenshot 2-1C

16 Screenshot 2-1D 2-46 Screenshot 2-1E 2-47 Screenshot 2-1F

17 Screenshot Screenshot 2-3A

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Sensitivity Analysis with Excel

Sensitivity Analysis with Excel Sensitivity Analysis with Excel 1 Lecture Outline Sensitivity Analysis Effects on the Objective Function Value (OFV): Changing the Values of Decision Variables Looking at the Variation in OFV: Excel One-

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

Module1. x 1000. y 800.

Module1. x 1000. y 800. Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

More information

0.1 Linear Programming

0.1 Linear Programming 0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject

More information

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1 Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

More information

1. Graphing Linear Inequalities

1. Graphing Linear Inequalities Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means

More information

Linear Programming. Before studying this supplement you should know or, if necessary, review

Linear Programming. Before studying this supplement you should know or, if necessary, review S U P P L E M E N T Linear Programming B Before studying this supplement you should know or, if necessary, review 1. Competitive priorities, Chapter 2 2. Capacity management concepts, Chapter 9 3. Aggregate

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

More information

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

More information

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately

More information

LINEAR PROGRAMMING WITH THE EXCEL SOLVER

LINEAR PROGRAMMING WITH THE EXCEL SOLVER cha06369_supa.qxd 2/28/03 10:18 AM Page 702 702 S U P P L E M E N T A LINEAR PROGRAMMING WITH THE EXCEL SOLVER Linear programming (or simply LP) refers to several related mathematical techniques that are

More information

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Airport Planning and Design. Excel Solver

Airport Planning and Design. Excel Solver Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

More information

Linear programming. Learning objectives. Theory in action

Linear programming. Learning objectives. Theory in action 2 Linear programming Learning objectives After finishing this chapter, you should be able to: formulate a linear programming model for a given problem; solve a linear programming model with two decision

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

Linear Programming. April 12, 2005

Linear Programming. April 12, 2005 Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

More information

Using Mathematics to Solve Real World Problems

Using Mathematics to Solve Real World Problems Using Mathematics to Solve Real World Problems Creating a mathematical model: Creating a mathematical model: We are given a word problem Creating a mathematical model: We are given a word problem Determine

More information

Question 2: How will changes in the objective function s coefficients change the optimal solution?

Question 2: How will changes in the objective function s coefficients change the optimal solution? Question 2: How will changes in the objective function s coefficients change the optimal solution? In the previous question, we examined how changing the constants in the constraints changed the optimal

More information

Simplex method summary

Simplex method summary Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

More information

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 445 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

More information

Solving Linear Programs

Solving Linear Programs Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

More information

9.4 THE SIMPLEX METHOD: MINIMIZATION

9.4 THE SIMPLEX METHOD: MINIMIZATION SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to $5 What number of audits and tax returns will bring in a maximum revenue? In the simplex

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Chapter 3: Section 3-3 Solutions of Linear Programming Problems

Chapter 3: Section 3-3 Solutions of Linear Programming Problems Chapter 3: Section 3-3 Solutions of Linear Programming Problems D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 3: Section 3-3 Solutions of Linear Programming

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

1. Briefly explain what an indifference curve is and how it can be graphically derived.

1. Briefly explain what an indifference curve is and how it can be graphically derived. Chapter 2: Consumer Choice Short Answer Questions 1. Briefly explain what an indifference curve is and how it can be graphically derived. Answer: An indifference curve shows the set of consumption bundles

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Finite Mathematics Using Microsoft Excel

Finite Mathematics Using Microsoft Excel Overview and examples from Finite Mathematics Using Microsoft Excel Revathi Narasimhan Saint Peter's College An electronic supplement to Finite Mathematics and Its Applications, 6th Ed., by Goldstein,

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Optimization in R n Introduction

Optimization in R n Introduction Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Using EXCEL Solver October, 2000

Using EXCEL Solver October, 2000 Using EXCEL Solver October, 2000 2 The Solver option in EXCEL may be used to solve linear and nonlinear optimization problems. Integer restrictions may be placed on the decision variables. Solver may be

More information

Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16.

Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. LINEAR PROGRAMMING II 1 Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. Introduction A minimization problem minimizes the value of the objective function rather than

More information

3 Introduction to Linear Programming

3 Introduction to Linear Programming 3 Introduction to Linear Programming 24 The development of linear programming has been ranked among the most important scientific advances of the mid-20th century, and we must agree with this assessment.

More information

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Chapter 2: Introduction to Linear Programming

Chapter 2: Introduction to Linear Programming Chapter 2: Introduction to Linear Programming You may recall unconstrained optimization from your high school years: the idea is to find the highest point (or perhaps the lowest point) on an objective

More information

ISyE 2030 Test 2 Solutions

ISyE 2030 Test 2 Solutions 1 NAME ISyE 2030 Test 2 Solutions Fall 2004 This test is open notes, open books. Do precisely 5 of the following problems your choice. You have exactly 55 minutes. 1. Suppose that we are simulating the

More information

Absolute Value Equations and Inequalities

Absolute Value Equations and Inequalities . Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between

More information

1 Mathematical Models of Cost, Revenue and Profit

1 Mathematical Models of Cost, Revenue and Profit Section 1.: Mathematical Modeling Math 14 Business Mathematics II Minh Kha Goals: to understand what a mathematical model is, and some of its examples in business. Definition 0.1. Mathematical Modeling

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Standard Form of a Linear Programming Problem

Standard Form of a Linear Programming Problem 494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

More information

Algebra I. In this technological age, mathematics is more important than ever. When students

Algebra I. In this technological age, mathematics is more important than ever. When students In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

More information

Chick-fil-A Nutrition Plan

Chick-fil-A Nutrition Plan Chick-fil-A Nutrition Plan Eric Cardoso December 1, 2012 Introduction. Chick-fil-A is a American fast food restaurant best known for their chicken sandwiches. On the Georgia College campus, there is a

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

GENERALIZED INTEGER PROGRAMMING

GENERALIZED INTEGER PROGRAMMING Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: schadha@uwec.edu Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: chadhav@uwec.edu GENERALIZED INTEGER

More information

Duality in Linear Programming

Duality in Linear Programming Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

COLLEGE ALGEBRA IN CONTEXT: Redefining the College Algebra Experience

COLLEGE ALGEBRA IN CONTEXT: Redefining the College Algebra Experience COLLEGE ALGEBRA IN CONTEXT: Redefining the College Algebra Experience Ronald J. HARSHBARGER, Ph.D. Lisa S. YOCCO University of South Carolina Beaufort Georgia Southern University 1 College Center P.O.

More information

GRADE 8 MATH: TALK AND TEXT PLANS

GRADE 8 MATH: TALK AND TEXT PLANS GRADE 8 MATH: TALK AND TEXT PLANS UNIT OVERVIEW This packet contains a curriculum-embedded Common Core standards aligned task and instructional supports. The task is embedded in a three week unit on systems

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION

SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION MAKING TOOL SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION MAKING TOOL SUMMARY Martina Briš, B.Sc.(Econ) Faculty of Economics in Osijek 87 Decision making is

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

BX in ( u, v) basis in two ways. On the one hand, AN = u+

BX in ( u, v) basis in two ways. On the one hand, AN = u+ 1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

More information

How To Understand And Solve A Linear Programming Problem

How To Understand And Solve A Linear Programming Problem At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Spreadsheets have become the principal software application for teaching decision models in most business

Spreadsheets have become the principal software application for teaching decision models in most business Vol. 8, No. 2, January 2008, pp. 89 95 issn 1532-0545 08 0802 0089 informs I N F O R M S Transactions on Education Teaching Note Some Practical Issues with Excel Solver: Lessons for Students and Instructors

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

CONTENTS. CASE STUDY W-3 Cost Minimization Model for Warehouse Distribution Systems and Supply Chain Management 22

CONTENTS. CASE STUDY W-3 Cost Minimization Model for Warehouse Distribution Systems and Supply Chain Management 22 CONTENTS CHAPTER W Linear Programming 1 W-1 Meaning, Assumptions, and Applications of Linear Programming 2 The Meaning and Assumptions of Linear Programming 2 Applications of Linear Programming 3 W-2 Some

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Unit 1 Equations, Inequalities, Functions

Unit 1 Equations, Inequalities, Functions Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1-100 Overview: This unit models real-world situations by using one- and two-variable linear equations. This unit will further expand upon pervious

More information

To: GMATScore GMAT Course Registrants From: GMATScore Course Administrator Date: January 2006 Ref: SKU94970333680; GMAT Test Format & Subject Areas

To: GMATScore GMAT Course Registrants From: GMATScore Course Administrator Date: January 2006 Ref: SKU94970333680; GMAT Test Format & Subject Areas To: GMATScore GMAT Course Registrants From: GMATScore Course Administrator Date: January 2006 Ref: SKU94970333680; GMAT Test Format & Subject Areas Contents of this document Format of the GMAT Sections

More information

MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

More information

High School Functions Interpreting Functions Understand the concept of a function and use function notation.

High School Functions Interpreting Functions Understand the concept of a function and use function notation. Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

More information

26 Linear Programming

26 Linear Programming The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory

More information

IV. ALGEBRAIC CONCEPTS

IV. ALGEBRAIC CONCEPTS IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other

More information

Solving Linear Programs using Microsoft EXCEL Solver

Solving Linear Programs using Microsoft EXCEL Solver Solving Linear Programs using Microsoft EXCEL Solver By Andrew J. Mason, University of Auckland To illustrate how we can use Microsoft EXCEL to solve linear programming problems, consider the following

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem? Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation

More information

Solving Linear Programs in Excel

Solving Linear Programs in Excel Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

More information

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

More information