# Study Guide. Beginning Astronomy

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Study Guide Beginning Astronomy

2

3 You must know these things: Earth's diameter is about 8000 miles Moon's distance is about 60 Earth radii (240,000 miles) Average distance of Earth to Sun is about 93 million miles (150 million km) One light-year is how far light travels in a vacuum in a year, about 6 trillion miles. Parsec is short for parallax of a second of arc 1 pc ~ 3.26 light-years. Distance in pc is the reciprocal of the parallax in arcsec (d = 1/p).

4 The Milky Way galaxy is about 75,000 light-years in diameter. The solar system orbits the Galactic center at 220 km/sec on a rather circular orbit. We are about 8000 pc (25,000 light-years) from the center of the Galaxy. Nearby galaxies have distances measured in millions of light-years. The most distant galaxies we can possibly detect are at distances of about 13 billion light-years. When observing them we are looking 13 billion years into the past.

5 Phases of the Moon

6 It takes the Moon ~29.5 days to go through its cycles of phases. It just keeps orbiting the Earth, month after month after month. So if you know when full moon or new moon occurs, you can figure out approximately when the last quarter moon occurred, the next quarter moon will occur, or any other phase for that matter. If you can draw a picture of the Moon going around the Earth, with the Sun off to one side, you can understand the phases. You don't really need to memorize what follows on the next few slides!

7 The Moon goes through phases because it is basically spherical and the angle between the Earth, Moon, and Sun changes day to day. When the Moon is new, it is in the same direction as the Sun, so it rises when the Sun rises and sets when the Sun sets. When the Moon is 50 percent illuminated and at first quarter phase, it is one week (roughly) after new Moon. The first quarter Moon is high in the south at sunset. The first quarter Moon will set at roughly midnight.

8 The full Moon is full because it is on the opposite part of the sky from the Sun. The full Moon rises at sunset. The full Moon will set approximately at sunrise. A total lunar eclipse can only happen at full Moon. A total lunar eclipse occurs when the Moon passes into the Earth's shadow. A third quarter Moon occurs a week after full Moon. The third quarter Moon rises roughly at midnight. The third quarter Moon is high in the south at sunrise.

9 A young crescent Moon occurs between new Moon and first quarter. The young crescent Moon will be visible in the west or SW after sunset. It will set before midnight. The gibbous Moon between first quarter and full Moon is visible in the east (maybe SE) after sunset and will be visible most of the night. The old gibbous Moon occurs between the time of full Moon and third quarter. The old gibbous Moon will rise in mid-evening and will be visible all night. The old crescent Moon rises long after midnight. It can be seen in the east or southeast before sunrise.

10

11

12 Telescopes Probably the most important thing about a telescope is the quality of the optics. Obviously, if the primary light gathering element is poorly made, or the secondary, or the eyepieces, you won't be able to do much useful observing. Also, if your observing site has air pollution, light pollution, or bad seeing, that will seriously hamper your endeavors. But let us assume that you do have a well made telescope at a dark site with lots of clear, steady nights. What then is important?

13 The most important parameter for a telescope is the light gathering power, which is proportional to the area of the main objective. Since it is possible to make a mirror much larger than a lens for the same amount of money, you can get a more powerful telescope for your budget by investing in a reflector, as opposed to a refractor. Also, since the refraction of light is a function of wavelength, it is not possible to make a refractor totally free of chromatic aberration. For optical viewing any telescope can get any magnification whatsoever, since the magnification is simply the focal length of the primary divided by the focal length of the eyepiece. For practical reasons, it is rare to be able to use more than 200X on a 6-inch to 10-inch telescope (like most commercial telescopes).

14 Why do radio telescopes (or radio telescope arrays) have to be so large? a. To gather more photons, as radio signals are very weak b. To achieve better resolution, as this is a function of wavelength and the wavelengths of radio waves are long c. Because each dish has a short focal length, and magnification is a function of focal length

15 Stars and stellar evolution The Hertzsprung-Russell Diagram

16 This is the Hertzsprung- Russell diagram, a plot of the luminosities of stars vs. a measure of their temperatures. Stars at the top of the diagram are more luminous and larger than the Sun. Those at the bottom are smaller and less luminous.

17 How luminous are white dwarf stars, compared to the Sun? a. The same b. 100 to 10,000 times brighter c. 100 to 10,000 times fainter

18 The main sequence is also a mass sequence.

19 More massive stars contract faster to the main sequence in the process of formation.

20 Once stars have used up their core hydrogen they evolve to become giants or supergiants. (Well, red dwarfs with less than 0.4 solar masses do something else.)

21 Main sequence lifetime scales with mass as follows: T * / T Sun = (M * / M sun ) -2.5 The main sequence lifetime of the Sun is 10 billion years. A star with mass of 10 solar masses will use up its core hydrogen in 30 million years.

22 Stars mass = 0.4 solar masses (red dwarfs), or less nuclear energy generated mainly by: proton-proton cycle fully convective means that they eventually convert all of their hydrogen into helium main sequence lifetime > 200 billion years will not become a giant star could become a helium white dwarf

23 Stars mass = 1.0 solar masses (like the Sun) nuclear energy primarily generated by: proton-proton cycle structure: radiative core, convective envelope main sequence lifetime = 10 billion years becomes a red giant, then... end state = carbon-oxygen white dwarf star

24 Stars mass = 2.0 solar masses (like Sirius) nuclear energy principally generated by: CNO cycle structure: convective core, radiative envelope main sequence lifetime = 1.8 billion years becomes a red giant, produces a planetary nebulae end state = carbon-oxygen white dwarf star

25 How much mass will Sirius lose due to its stellar wind and the production of a planetary nebula? a. 0.1 solar masses b. 0.6 solar masses c. 1.4 solar masses d. somewhere between 0.6 and 1.4 solar masses

26 Stars mass = 8.0 solar masses or more (like Betelgeuse) nuclear energy principally generated by: CNO cycle, then in shells, then eventually they get iron cores structure: convective core, radiative envelope main sequence lifetime < 55 million years become supergiants end state = Type II supernova --> neutron star, pulsar, or black hole

27 Stellar temperatures and colors Spectral type Photospheric temperature color (degrees K) O9 34,000 blue A0 10,000 white G2 6,000 yellow K2 4,830 orange M5 3,170 red

28 Harvard spectral classification scheme the spectral types from hot to cool are OBAFGKM Spectral type O B A F G K M spectral characteristics helium lines, weak H lines weaker He line, stronger H lines strongest H lines weaker H lines, some metallic lines weaker still H lines, strong lines of calcium, iron, sodium even stronger lines of Ca, Na molecular bands such as TiO, VO

29 Stars are fueled by nuclear fusion in their cores. Most stars spend 90 percent of their lives as main sequence stars, converting H into He. Nuclear fission, on the other hand, is the breaking apart of heavy nuclei such as uranium. You can remember the word fusion because you know that to fuse two objects means to stick them together. In their cores massive stars will successively produce helium, carbon, oxygen, neon, sodium, magnesium, oxygen, silicon, sulfur, phosphorus, nickle, up to iron.

30 Doppler shifts, blue shifts, red shifts The Doppler shift is the fractional change of the wavelengths of a source of light (or sound) compared to the speed of the waves. For a light source with relative velocity v along the line of sight z = v/c = Δλ / λ If the source's waves are shifted to shorter wavelengths, the distance between the observer and the source is decreasing. These are blue shifts. If the distance is increasing, the observed wavelengths are greater than the laboratory values. These are red shifts.

31 Spectral lines of stars in our galaxy are shifted only a little bit because the velocities are small compared to the speed of light. The velocity of a speeding ambulance can be much larger percentage of the speed of sound. Distant galaxies can have very large redshifts.

32 The Milky Way is a large spiral galaxy. The Sun is located about 2/3 of the way from the center to the edge of the visible disk. The Sun is located in the plane of the Galaxy. The center of the Galaxy is about 8000 parsecs away, in the constellation Sagittarius. The diameter of the Galaxy is about 25,000 parsecs, or about 75,000 light-years. The center of the globular cluster system is also the center of the Galaxy.

33 The Sun moves around the center of the Milky Way Galaxy a. With a rather elliptical orbit b. With a nearly circular orbit c. On a parabolic trajectory d. On a hyperbolic trajectory

34 Where did various kinds of atoms come from? During the first 5 minutes after the Big Bang protons, helium nuclei, a teeny bit of deuterium and lithium, plus lots of electrons were created. 400,000 years later the universe was cool enough for the electrons to combine with those protons to make neutral hydrogen atoms, and other electrons combined with the helium nuclei to make neutral helium. Roughly 75% of the universe (by mass) was hydrogen and roughly 25% was helium. Once gas clouds collapsed into stars, nuclear fusion in the cores of stars created more helium, plus other atoms, all the way to iron (in stars 8 solar masses or more).

35 Single, massive stars that blew up as Type II supernovae created 50% of the natural elements heavier than iron. So most of the silver and gold in your fillings or in your jewelry was created in some supernova explosion before the Sun formed. But all the protons in the universe were created during the first 5 minutes after the Big Bang.

36 Evidence for Dark Matter comes from a. Rotation curves of large spiral galaxies b. Arcs of light in the direction of rich clusters of galaxies, caused by gravitational lensing c. Analysis of the motions of galaxies in clusters d. All of the above

37 For summary of cosmology, refer to the full Powerpoint lecture devoted to quasars, gravitational lenses, and cosmology.

### MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

### Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

### Astronomy 100 Exam 2

1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

### Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

### Class 2 Solar System Characteristics Formation Exosolar Planets

Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

### WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

### 165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

### Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

### UNIT V. Earth and Space. Earth and the Solar System

UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

### Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Enter your answers on the form provided. Be sure to write your name and student ID number on the first blank at the bottom of the form. Please mark the version (B) in the Key ID space at the top of the

### Monday 24 June 2013 Morning

THIS IS A NEW SPECIFICATION H Monday 24 June 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A A183/02 Module P7 (Higher Tier) * A 1 3 7 3 1 0 6 1 3 * Candidates answer on the Question Paper. A

### Chapter 19 Star Formation

Chapter 19 Star Formation 19.1 Star-Forming Regions Units of Chapter 19 Competition in Star Formation 19.2 The Formation of Stars Like the Sun 19.3 Stars of Other Masses 19.4 Observations of Cloud Fragments

### astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

### FXA 2008. UNIT G485 Module 5 5.5.1 Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

1 Candidates should be able to : CONTENTS OF THE UNIVERSE Describe the principal contents of the universe, including stars, galaxies and radiation. Describe the solar system in terms of the Sun, planets,

### Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

### THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk 1.INTRODUCTION Late in the nineteenth century, astronomers had tools that revealed a great deal about stars. By that time, advances in telescope

### Determining the Sizes & Distances of Stars Using the H-R Diagram

Determining the Sizes & Distances of Stars Using the H-R Diagram Activity UCIObs 11 College Level Source: Copyright (2009) by Tammy Smecker-Hane & Michael Hood. Contact tsmecker@uci.edu with questions.

Universe 101 Reading Packet Space is a pretty big place and there is a lot to learn. This packet will guide you through some of the basics of astronomy, starting with the big bang and ending with why our

### 12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters

Chapter 12 Quiz, Nov. 28, 2012, Astro 162, Section 4 12-1. Where in our Galaxy has a supermassive (or galactic) black hole been observed? a) at the outer edge of the nuclear bulge b) in the nucleus X c)

### 7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

### Solar Energy Production

Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

### 1 A Solar System Is Born

CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

### The parts of a nuclear fission reactor

P2 6.1a Student practical sheet The parts of a nuclear fission reactor Making uranium-235 split and produce energy is actually remarkably easy. The trick is to make it do so in a controllable way. Aim

### Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

### Stellar Evolution. The Basic Scheme

Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow

### In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

### STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

### Lecture 19 Big Bang Cosmology

The Nature of the Physical World Lecture 19 Big Bang Cosmology Arán García-Bellido 1 News Exam 2: you can do better! Presentations April 14: Great Physicist life, Controlled fusion April 19: Nuclear power,

### L2: The building-up of the chemical elements

credit: NASA L2: The building-up of the chemical elements UCL Certificate of astronomy Dr. Ingo Waldmann What ordinary stuff is made of What ordinary stuff is made of Build up of metallicity 2 What are

### The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

The Scale of the Universe Some Introductory Material and Pretty Pictures The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. A scientific theory is regarded

### Be Stars. By Carla Morton

Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

### Observing the Universe

Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

### The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

### The Universe. The Solar system, Stars and Galaxies

The Universe The Universe is everything. All us, the room, the U.S. the earth, the solar system, all the other stars in the Milky way galaxy, all the other galaxies... everything. How big and how old is

### The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

### Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### Study Guide: Solar System

Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

### An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science

An Introduction to Astronomy and Cosmology 1) Astronomy - an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation

### Explain the Big Bang Theory and give two pieces of evidence which support it.

Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

### Name: Class: Date: ID: A

Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

### If we look into space and see stars that show a blue shift, what does this tell us about the stars motion?

Name: Quiz name: Review f or Test ate: 1. If we look into space and see stars that show a blue shift, what does this tell us about the stars motion? T hey are moving away from the Earth T hey are moving

### Spectral Classification of Stars

Department of Physics and Geology Astronomy 1402 Spectral Classification of Stars The purpose of this laboratory activity is to introduce you to stellar spectral classification. You will have an opportunity

### A Universe of Galaxies

A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

### Lesson Plan G2 The Stars

Lesson Plan G2 The Stars Introduction We see the stars as tiny points of light in the sky. They may all look the same but they are not. They range in size, color, temperature, power, and life spans. In

### Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

### Modeling Galaxy Formation

Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

### Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae

Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae 1. The Equation of State: Pressure of an Ideal Gas Before discussing results of stellar structure and stellar evolution models

### Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

### Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

### TELESCOPE AS TIME MACHINE

TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE

### The Messier Objects As A Tool in Teaching Astronomy

The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,

### Stellar Evolution: a Journey through the H-R Diagram

Stellar Evolution: a Journey through the H-R Diagram Mike Montgomery 21 Apr, 2001 0-0 The Herztsprung-Russell Diagram (HRD) was independently invented by Herztsprung (1911) and Russell (1913) They plotted

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Evolution of Close Binary Systems

Evolution of Close Binary Systems Before going on to the evolution of massive stars and supernovae II, we ll think about the evolution of close binary systems. There are many multiple star systems in the

### Introduction to the Solar System

Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

### Planets beyond the solar system

Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

### Chapter 27: The Early Universe

Chapter 27: The Early Universe The plan: 1. A brief survey of the entire history of the big bang universe. 2. A more detailed discussion of each phase, or epoch, from the Planck era through particle production,

### Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

### California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

### Nuclear fission and fusion

Nuclear fission and fusion P2 62 minutes 62 marks Page of 23 Q. Nuclear power stations use the energy released from nuclear fuels to generate electricity. (a) Which substance do the majority of nuclear

### The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

### 1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

### Chapter 15 Cosmology: Will the universe end?

Cosmology: Will the universe end? 1. Who first showed that the Milky Way is not the only galaxy in the universe? a. Kepler b. Copernicus c. Newton d. Hubble e. Galileo Ans: d 2. The big bang theory and

### 1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013

Name: 1 Introduction Read through this information before proceeding on with the lab. 1.1 Spectral Classification of Stars 1.1.1 Types of Spectra Astronomers are very interested in spectra graphs of intensity

### The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1

The Formation of Planetary Systems Astronomy 1-1 Lecture 20-1 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary

### Monday 23 June 2014 Morning

H Monday 23 June 2014 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A/FURTHER ADDITIONAL SCIENCE A A183/02 Module P7 (Higher Tier) *3173662729* Candidates answer on the Question Paper. A calculator

### The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

### Which month has larger and smaller day time?

ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

### Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

### 8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

### Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

### Activity: Multiwavelength Bingo

ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies

### Milky Way & Hubble Law

Milky Way & Hubble Law Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Happy Thanksgiving! Announcements 3rd midterm 12/3 I will drop the lowest midterm grade

### 1) The final phase of a star s evolution is determined by the star s a. Age b. Gravitational pull c. Density d. Mass

Science Olympiad Astronomy Multiple Choice: Choose the best answer for each question. Each question is worth one point. In the event of a tie, there will be a tie-breaking word problem. 1) The final phase

### HR Diagram Student Guide

Name: HR Diagram Student Guide Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the following questions

### Pretest Ch 20: Origins of the Universe

Name: _Answer key Pretest: _2_/ 58 Posttest: _58_/ 58 Pretest Ch 20: Origins of the Universe Vocab/Matching: Match the definition on the left with the term on the right by placing the letter of the term

### Giant Molecular Clouds

Giant Molecular Clouds http://www.astro.ncu.edu.tw/irlab/projects/project.htm Galactic Open Clusters Galactic Structure GMCs The Solar System and its Place in the Galaxy In Encyclopedia of the Solar System

### What is the Sloan Digital Sky Survey?

What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining

### SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM

PROJECT 4 THE HERTZSPRUNG RUSSELL DIGRM Objective: The aim is to measure accurately the B and V magnitudes of several stars in the cluster, and plot them on a Colour Magnitude Diagram. The students will

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

### Astronomy & Physics Resources for Middle & High School Teachers

Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the

### The Expanding Universe. Prof Jim Dunlop University of Edinburgh

The Expanding Universe Prof Jim Dunlop University of Edinburgh Cosmology: The Study of Structure & Evolution of the Universe Small & Hot Big & Cold Observational Evidence for the Expansion of the Universe

### Why is the Night Sky Dark?

Why is the Night Sky Dark? Cosmology Studies of the universe as a whole Today Brief history of ideas (Early Greeks Big Bang) The expanding universe (Hubble, Relativity, density & destiny) An alternative

### The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

### Page. ASTRONOMICAL OBJECTS (Page 4).

Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

### ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 2 Answers

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 2 Answers 1. Radio waves travel through space at what speed? (d) at the speed of light, 3 10 8 m/s 2. In 1675, Rømer

### STUDY GUIDE: Earth Sun Moon

The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

### The Sun and Solar Energy

I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

### 5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

### Newton s laws of motion and gravity

Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

### Carol and Charles see their pencils fall exactly straight down.

Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along

### Probes of Star Formation in the Early Universe

Gamma Ray Bursts Probes of Star Formation in the Early Universe Edward P.J.van den Heuvel Universiteit van Amsterdam &KITP-UCSB KITP, March 17, 2007 Age of the Universe: 13.7 billion years Age of our Milky

### Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

### Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

### WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets