2006 Washington State Math Championship. Unless a particular problem directs otherwise, give an exact answer or one rounded to the nearest thousandth.


 Roberta Harrington
 1 years ago
 Views:
Transcription
1 2006 Washington State Math Championship Unless a particular problem directs otherwise, give an exact answer or one rounded to the nearest thousandth. Geometry  Grade 5 1. How many fold rotational symmetry does the image below contain? 2. How many triangles are there in the figure below? 3. Two legs of a triangle have lengths 13 and 9. Give the range of the third leg written as an inequality with C as the variable (min<c<max) Given the Translation T(x,y) T (x6,y+3) of Q(1,2), U(2,1), A(6,3) and D(2,3). 2 Q Find the sum of the x coordinates of ordered pairs of the image (the preimage may help). 2 U 5 A D The supplement of an angle is 3 times the angle s complement. What is the missing angle?
2 6. What is the percent increase for the volume of a cube that has been dialated by a scale factor of 2? 7. A rectangle s long side is five more than twice the length of the shorter side. If the perimeter is 100, what is the length of the longest side? 8. The following geometric design is constructed by adding new squares to each rectangle. What would be the length of the longest diagonal, if the two smallest squares have sidelengths of three? 3 9. The regular hexagon below is circumscribed by a circle with a circumference of 8π. Find the shaded area. 10. The diagram shows an equiangular hexagon with sidelengths 12, 14, 18, 20, 22, 28 can be inscribed in an equilateral triangle with sidelength 60. This same equiangular hexagon can also be inscribed in and equilateral triangle with sidelength of n not equal to 60. What is the value on n?
3 2006 Washington State Math Championship Unless a particular problem directs otherwise, give an exact answer or one rounded to the nearest thousandth. Geometry  Grade 6 1. Given the Translation T(x,y) T (x6,y+3) of Q(1,2), U(2,1), A(6,3) and D(2,3). 4 2 Q Find the sum of the x coordinates of ordered pairs of the image (the preimage may help). U 5 D 24 A The supplement of an angle is 3 times the angle s complement. What is the missing angle? 3. What is the percent increase for the volume of a cube that has been dialated by a scale factor of 2? 4. A rectangle s long side is five more than twice the length of the shorter side. If the perimeter is 100, what is the length of the longest side? 5. The following geometric design is constructed by adding new squares to each rectangle. What would be the length of the longest diagonal, if the two smallest squares have sidelengths of three? 3 6. The regular hexagon below is circumscribed by a circle with a circumference of 8π. Find the shaded area.
4 7. The diagram shows an equiangular hexagon with sidelengths 12, 14, 18, 20, 22, 28 can be inscribed in an equilateral triangle with sidelength 60. This same equiangular hexagon can also be inscribed in and equilateral triangle with sidelength of n not equal to 60. What is the value on n? In 1736, the cousin of the famous Gabriel Daniel Fahrenheit, Otto Fahrenheit, invented his angle measuring scale. No rotation was 32, and half a rotation was 212. When Otto Fahrenheit measured the angles of a hexagon with his notsofamous Fahrenheit protractor and then added them what was the sum of the angles? 9. The net (2d drawing of a 3d shape) of a Greenhouse is given. The 20 by 20 square is the floor of the building. If the air system circulates 8 cubic feet per second, how many minutes will it take to circulate the entire volume of the building (answer to the nearest minute)? A isosceles right triangle is removed from each corner of a square piece of paper so that a rectangle remains (each big isosceles triangle has 9 times the area of the small isosceles triangle). What is the length of the rectangle longest side, if the area sum of all 4 triangles is 200?
5 2006 Washington State Math Championship Unless a particular problem directs otherwise, give an exact answer or one rounded to the nearest thousandth. Geometry  Grade 7 1. A rectangle s long side is five more than twice the length of the shorter side. If the perimeter is 100, what is the length of the longest side? 2. The following geometric design is constructed by adding new squares to each rectangle. What would be the length of the longest diagonal, if the two smallest squares have sidelengths of three? 3 3. The regular hexagon below is circumscribed by a circle with a circumference of 8π. Find the shaded area. 4. The diagram shows an equiangular hexagon with sidelengths 12, 14, 18, 20, 22, 28 can be inscribed in an equilateral triangle with sidelength 60. This same equiangular hexagon can also be inscribed in and equilateral triangle with sidelength of n not equal to 60. What is the value on n In 1736, the cousin of the famous Gabriel Daniel Fahrenheit, Otto Fahrenheit, invented his angle measuring scale. No rotation was 32, and half a rotation was 212. When Otto Fahrenheit measured the angles of a hexagon with his notsofamous Fahrenheit protractor and then added them what was the sum of the angles?
6 10 6. The net (2d drawing of a 3d shape) of a Greenhouse is given. The 20 by 20 square is the floor of the building. If the air system circulates 8 cubic feet per second, how many minutes will it take to circulate the entire volume of the building (answer to the nearest minute)? A isosceles right triangle is removed from each corner of a square piece of paper so that a rectangle remains (each big isosceles triangle has 9 times the area of the small isosceles triangle). What is the length of the rectangle longest side, if area the sum of all 4 triangles is 200? 8. Steps are made first with frames and then cement is poured into the frames. You do not need to make bottoms on the frames. Below are the 2 ft dimensions of the frames. What is the cost of making the steps given the prices below and if all boards must be one piece? 6 in Boards cost = $9 for 6 feet sections, 6 inches wide Cement cost = $6 for 4 cubic feet bags 6 in 4 ft 4 ft 9. Mr. Mo Lawnmower wants to cut out the grass triangular sections along the back of his house so he can plant some shrubs. However, feels bad about Fido (his dog) losing 120 ft some of his grass. Mr. Lawnmower vows to replace every square foot lost to the flowerbeds 60 ft 40 ft back onto the section of the very backyard. How x long will the new narrower section (40 ft wide) 20 ft'' become if the triangles cut out are isosceles with legs 20 feet long? 10. The bases of the Triangular Prism below have a total area of 36. If the two congruent lateral faces have a total area of 48, what is the height?
7 2006 Washington State Math Championship Unless a particular problem directs otherwise, give an exact answer or one rounded to the nearest thousandth. Geometry  Grade 8 1. The diagram shows an equiangular hexagon with sidelengths 12, 14, 18, 20, 22, 28 can be inscribed in an equilateral triangle with sidelength 60. This same equiangular hexagon can also be inscribed in and equilateral triangle with sidelength of n not equal to 60. What is the value on n In 1736, the cousin of the famous Gabriel Daniel Fahrenheit, Otto Fahrenheit, invented his angle measuring scale. No rotation was 32, and half a rotation was 212. When Otto Fahrenheit measured the angles of a hexagon with his notsofamous Fahrenheit protractor and then added them what was the sum of the angles? 3. The net (2d drawing of a 3d shape) of a Greenhouse is given. The 20 by 20 square is the floor of the building. If the air system circulates 8 cubic feet per second, how many minutes will it take to circulate the entire volume of the building (answer to the nearest minute)? A isosceles right triangle is removed from each corner of a square piece of paper so that a rectangle remains (each big isosceles triangle has 9 times the area of the small isosceles triangle). What is the length of the rectangle longest side, if the sum of all 4 triangles is 200? 5. Steps are made first with frames and then cement is poured into the frames. You do not need to make bottoms on the frames. Below are the 2 ft dimensions of the frames. What is the cost of making the 6 in 6 in 4 ft 4 ft
8 steps given the prices below and if all boards must be one piece? Boards cost = $9 for 6 feet sections, 6 inches wide Cement cost = $6 for 4 cubic feet bags 6. Mr. Mo Lawnmower wants to cut out the grass triangular sections along the back of his house so he can plant some shrubs. However, feels bad about Fido (his dog) losing 120 ft some of his grass. Mr. Lawnmower vows to replace every square foot lost to the flowerbeds 60 ft 40 ft back onto the section of the very backyard. How x long will the new narrower section (40 ft wide) 20 ft'' become if the triangles cut out are isosceles with legs 20 feet long? 7. The bases of the Triangular Prism have a total area of 36. If the two congruent lateral faces have a total area of 48, what is the height? 8. Two pulleys with the same diameter of 20cm are 50cm apart. How long must the minimum length of the pulley be to reach around the pulleys (round to the nearest cm)? 50cm 20cm 20 cm 9. Find angle A in the diagram below. Hexagon is a regular hexagon. QDFX is a parallelogram. FAE is a isosceles triangle. H E Q D N X F A O G E 10. The area of a triangle is equal to.5x x+7.5. If the base is equal to (x+3), then what is the height in terms of x.
Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?
Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane
More information121 Representations of ThreeDimensional Figures
Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 121 Representations of ThreeDimensional Figures Use isometric dot paper to sketch each prism. 1. triangular
More informationEstimating Angle Measures
1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle
More information2nd Semester Geometry Final Exam Review
Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular
More informationGeometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.
Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know
More informationSandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
More informationHonors Geometry Final Exam Study Guide
20112012 Honors Geometry Final Exam Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In each pair of triangles, parts are congruent as marked.
More informationIn Problems #1  #4, find the surface area and volume of each prism.
Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1  #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR
More informationPERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
More information*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.
Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review
More informationTeacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 91.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
More informationGeometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
More informationShow that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
More information114 Areas of Regular Polygons and Composite Figures
1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationCharacteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
More information122 Surface Areas of Prisms and Cylinders. 1. Find the lateral area of the prism. SOLUTION: ANSWER: in 2
1. Find the lateral area of the prism. 3. The base of the prism is a right triangle with the legs 8 ft and 6 ft long. Use the Pythagorean Theorem to find the length of the hypotenuse of the base. 112.5
More informationIntegrated Algebra: Geometry
Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and
More informationReview for Final  Geometry B
Review for Final  Geometry B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A model is made of a car. The car is 4 meters long and the model is 7 centimeters
More information3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks)
EXERCISES: Triangles 1 1. The perimeter of an equilateral triangle is units. How many units are in the length 27 of one side? (Mathcounts Competitions) 2. In the figure shown, AC = 4, CE = 5, DE = 3, and
More informationGrade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference
1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various
More informationPerimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
More information124 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h
Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h The volume is 108 cm 3. The volume V of a prism is V = Bh, where B is the area of a base and h the
More informationPERIMETERS AND AREAS
PERIMETERS AND AREAS 1. PERIMETER OF POLYGONS The Perimeter of a polygon is the distance around the outside of the polygon. It is the sum of the lengths of all the sides. Examples: The perimeter of this
More informationSA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid
Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.
More informationGeometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources:
Geometry Honors: Extending 2 Dimensions into 3 Dimensions Semester 2, Unit 5: Activity 30 Resources: SpringBoard Geometry Online Resources: Geometry Springboard Text Unit Overview In this unit students
More informationRectangle Square Triangle
HFCC Math Lab Beginning Algebra  15 PERIMETER WORD PROBLEMS The perimeter of a plane geometric figure is the sum of the lengths of its sides. In this handout, we will deal with perimeter problems involving
More informationUnit 8 Angles, 2D and 3D shapes, perimeter and area
Unit 8 Angles, 2D and 3D shapes, perimeter and area Five daily lessons Year 6 Spring term Recognise and estimate angles. Use a protractor to measure and draw acute and obtuse angles to Page 111 the nearest
More informationCalculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
More informationGeometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
More informationVOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
More informationSURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
More informationCSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfdprep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
More informationTypes of Triangle Sum of internal angles of triangle = 80 Equilateral Δ: All sides are equal Each internal angle = 60 Height divide the base into two equal parts Perimeter of triangle = 3 side Height of
More informationTopics Covered on Geometry Placement Exam
Topics Covered on Geometry Placement Exam  Use segments and congruence  Use midpoint and distance formulas  Measure and classify angles  Describe angle pair relationships  Use parallel lines and transversals
More information88 Volume and Surface Area of Composite Figures. Find the volume of the composite figure. Round to the nearest tenth if necessary.
Find the volume of the composite figure. Round to the nearest tenth if necessary. The figure is made up of a triangular prism and a rectangular prism. Volume of triangular prism The figure is made up of
More information10.1 Areas of Quadrilaterals and triangles
10.1 Areas of Quadrilaterals and triangles BASE AND HEIGHT MUST FORM A RIGHT ANGLE!! Draw the diagram, write the formula and SHOW YOUR WORK! FIND THE AREA OF THE FOLLOWING:. A rectangle with one side of
More informationDate: Period: Symmetry
Name: Date: Period: Symmetry 1) Line Symmetry: A line of symmetry not only cuts a figure in, it creates a mirror image. In order to determine if a figure has line symmetry, a figure can be divided into
More informationCIRCUMFERENCE AND AREA OF CIRCLES
CIRCUMFERENCE AND AREA F CIRCLES 8..1 8.. Students have found the area and perimeter of several polygons. Next they consider what happens to the area as more and more sides are added to a polygon. By exploring
More informationArea of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
More informationThe Area is the width times the height: Area = w h
Geometry Handout Rectangle and Square Area of a Rectangle and Square (square has all sides equal) The Area is the width times the height: Area = w h Example: A rectangle is 6 m wide and 3 m high; what
More informationPerimeter and area formulas for common geometric figures:
Lesson 10.1 10.: Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles,
More informationCircumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.
Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite
More informationb = base h = height Area is the number of square units that make up the inside of the shape is a square with a side length of 1 of any unit
Area is the number of square units that make up the inside of the shape of 1 of any unit is a square with a side length Jan 297:58 AM b = base h = height Jan 298:31 AM 1 Example 6 in Jan 298:33 AM A
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationDemystifying Surface Area and Volume Teachers Edition
Demystifying Surface and Volume Teachers Edition These constructions and worksheets can be done in pairs, small groups or individually. Also, may use as guided notes and done together with teacher. CYLINDER
More informationWarmUp 1. 1. What is the least common multiple of 6, 8 and 10?
WarmUp 1 1. What is the least common multiple of 6, 8 and 10? 2. A 16page booklet is made from a stack of four sheets of paper that is folded in half and then joined along the common fold. The 16 pages
More informationArea of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
More informationArea of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in
More informationArea of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of
More informationWhich two rectangles fit together, without overlapping, to make a square?
SHAPE level 4 questions 1. Here are six rectangles on a grid. A B C D E F Which two rectangles fit together, without overlapping, to make a square?... and... International School of Madrid 1 2. Emily has
More informationGeometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam.
Geometry Review Here are some formulas and concepts that you will need to review before working on the practice eam. Triangles o Perimeter or the distance around the triangle is found by adding all of
More informationFormulas for Area Area of Trapezoid
Area of Triangle Formulas for Area Area of Trapezoid Area of Parallelograms Use the formula sheet and what you know about area to solve the following problems. Find the area. 5 feet 6 feet 4 feet 8.5 feet
More informationGEOMETRY FINAL EXAM REVIEW
GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.
More informationPerimeter, Area, and Volume
Perimeter is a measurement of length. It is the distance around something. We use perimeter when building a fence around a yard or any place that needs to be enclosed. In that case, we would measure the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Santa Monica College COMPASS Geometry Sample Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the area of the shaded region. 1) 5 yd 6 yd
More informationMath 10  Unit 3 Final Review  Numbers
Class: Date: Math 10  Unit Final Review  Numbers Multiple Choice Identify the choice that best answers the question. 1. Write the prime factorization of 60. a. 2 7 9 b. 2 6 c. 2 2 7 d. 2 7 2. Write the
More informationArea. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
More informationGeorgia Online Formative Assessment Resource (GOFAR) AG geometry domain
AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent
More informationConstructing Symmetrical Shapes
07NEM5WBAnsCH07 7/20/04 4:36 PM Page 62 1 Constructing Symmetrical Shapes 1 Construct 2D shapes with one line of symmetry A line of symmetry may be horizontal or vertical 2 a) Use symmetry to complete
More informationVolume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
More informationGeometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
More informationPerfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through
Perfume Packaging Gina would like to package her newest fragrance, Persuasive, in an eyecatching yet costefficient box. The Persuasive perfume bottle is in the shape of a regular hexagonal prism 10 centimeters
More informationGAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book
GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18
More informationSigns, Signs, Every Place There Are Signs! Area of Regular Polygons p. 171 Boundary Lines Area of Parallelograms and Triangles p.
C H A P T E R Perimeter and Area Regatta is another word for boat race. In sailing regattas, sailboats compete on courses defined by marks or buoys. These courses often start and end at the same mark,
More informationGeometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
More information1 foot (ft) = 12 inches (in) 1 yard (yd) = 3 feet (ft) 1 mile (mi) = 5280 feet (ft) Replace 1 with 1 ft/12 in. 1ft
2 MODULE 6. GEOMETRY AND UNIT CONVERSION 6a Applications The most common units of length in the American system are inch, foot, yard, and mile. Converting from one unit of length to another is a requisite
More informationS.A. = L.A. + 2B = ph + 2B
Page 1 of 5 View Tutorial 5c Objective: Find the lateral area, total surface area, and volume of rectangular prisms. A prism is a polyhedron with two congruent & parallel bases. The other faces are the
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More informationSolids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
More informationGrade 3 Core Standard III Assessment
Grade 3 Core Standard III Assessment Geometry and Measurement Name: Date: 3.3.1 Identify right angles in twodimensional shapes and determine if angles are greater than or less than a right angle (obtuse
More information9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2D Shapes The following table gives the names of some 2D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
More informationTEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM
7 th Grade Math TAKSSTAARSTAARM Comparison Spacing has been deleted and graphics minimized to fit table. (1) Number, operation, and quantitative reasoning. The student represents and uses numbers in
More informationPrisms and Cylinders 3.1. In Investigation 2, you found the volume of rectangular prisms by filling. Filling Fancy Boxes
! s and Cylinders In Investigation 2, you found the volume of rectangular prisms by filling the prism with cubes. The number of cubes in the bottom layer is the same as the area of the rectangular base
More informationPerimeter, Circumference, and Area KEY
Notes The perimeter of a polygon is the total distance around a polygon. Although there are formulas for finding the perimeter of a rectangle (2l + 2w) and for the square (4s), perimeter for any polygon
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationMath Tech 1 Unit 11. Perimeter, Circumference and Area. Name Pd
Math Tech 1 Unit 11 Perimeter, Circumference and Area Name Pd 111 Perimeter Perimeter  Units  Ex. 1: Find the perimeter of a rectangle with length 7 m and width 5 m. Ex. 2: Find the perimeter of the
More informationPostulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 111: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
More informationChapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!
Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret
More informationLine Segments, Rays, and Lines
HOME LINK Line Segments, Rays, and Lines Family Note Help your child match each name below with the correct drawing of a line, ray, or line segment. Then observe as your child uses a straightedge to draw
More informationActivities Grades K 2 THE FOURSQUARE QUILT. Put triangles together to make patterns.
Activities Grades K 2 www.exploratorium.edu/geometryplayground/activities THE FOURSQUARE QUILT Put triangles together to make patterns. [45 minutes] Materials: FourSquare Quilt Template (attached) Triangle
More informationGeometry Progress Ladder
Geometry Progress Ladder Maths Makes Sense Foundation Endofyear objectives page 2 Maths Makes Sense 1 2 Endofblock objectives page 3 Maths Makes Sense 3 4 Endofblock objectives page 4 Maths Makes
More informationSect 9.5  Perimeters and Areas of Polygons
Sect 9.5  Perimeters and Areas of Polygons Ojective a: Understanding Perimeters of Polygons. The Perimeter is the length around the outside of a closed two  dimensional figure. For a polygon, the perimeter
More informationAreas of Rectangles and Parallelograms
CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson you will Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover
More informationOpenEnded ProblemSolving Projections
MATHEMATICS OpenEnded ProblemSolving Projections Organized by TEKS Categories TEKSING TOWARD STAAR 2014 GRADE 7 PROJECTION MASTERS for PROBLEMSOLVING OVERVIEW The Projection Masters for ProblemSolving
More informationSection 7.1 Solving Right Triangles
Section 7.1 Solving Right Triangles Note that a calculator will be needed for most of the problems we will do in class. Test problems will involve angles for which no calculator is needed (e.g., 30, 45,
More informationLesson 12.1 Skills Practice
Lesson 12.1 Skills Practice Name Date Introduction to Circles Circle, Radius, and Diameter Vocabulary Define each term in your own words. 1. circle A circle is a collection of points on the same plane
More informationPrecision and Measurement
NAME DATE PERIOD Precision and Measurement The precision or exactness of a measurement depends on the unit of measure. The precision unit is the smallest unit on a measuring tool. Significant digits include
More informationCALCULATING PERIMETER. WHAT IS PERIMETER? Perimeter is the total length or distance around a figure.
CALCULATING PERIMETER WHAT IS PERIMETER? Perimeter is the total length or distance around a figure. HOW DO WE CALCULATE PERIMETER? The formula one can use to calculate perimeter depends on the type of
More informationGeometry Chapter 9 Extending Perimeter, Circumference, and Area
Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Target (LT1) Solve problems involving the perimeter and area of triangles
More informationGeometry Final Exam Review ~ Circles
nalytical Geometry ommon ore Final Exam Preparation Name: Geometry Final Exam Review ~ ircles Multiple hoice Identify the choice that best completes the statement or answers the question. ssume that lines
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationGeometry Final Exam Review Worksheet
Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.
More informationSurface Area Quick Review: CH 5
I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find
More informationEach pair of opposite sides of a parallelogram is congruent to each other.
Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. 2. Each pair of opposite
More informationGeometry Chapter 9 Extending Perimeter, Circumference, and Area
Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Targets LT91: Solve problems involving the perimeter and area of
More information93. Area of Irregular Figures Going Deeper EXPLORE. Essential question: How do you find the area of composite figures? Area of a Composite Figure
Name Class Date 93 1 Area of Irregular Figures Going Deeper Essential question: How do you find the area of composite figures? CC.7.G.6 EXPLORE Area of a Composite Figure video tutor Aaron was plotting
More informationShape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
More information