Semiconductor Physics

Save this PDF as:

Size: px
Start display at page:

Transcription

1 10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi Electronic and Optoelectronic Properties of Semiconductors - Singh Quantum Well Wires and Dots Hartmann Wave Mechanics Applied to Semiconductor Heterostructures - Bastard Fundamentals of Semiconductor Physics and Devices Enderlein & Horing Examination Homework Problems (6p) Written Exam (4p) Additionally Your own research area. Background courses (Solid State Physics, SC Physics, Sc Devices)

2 Course Layout 1. Introduction 2. Crystal and Energy Band structure 3. Semiconductor Statistics 4. Defects and Impurities 5. Optical Properties I : Absorption and Reflection 6. Optical Properties II : Recombinations 7. Carrier Diffusion 8. Scattering Processes 9. Charge Transport 10. Surface Properties 11. Low Dimensional Structures 12. Heterostructures 13. Quantum Wells/Dots 14. Organic Semiconductors 15. Graphene 16. Reserve and Summary

3 Lecture Layout Defects Classification EMT Defects Recombinations Deep Level Defects SHR Kinetics Configuration Coordinate Electronic Structure of Deep Levels Born-Oppenheimer Approximation Hartree-Fock DFA Super Cell Calculations Defects Examples Double Donor,Acceptors Specific Defects Semi-Insulating Semiconductors Structural Defects

4 Classifications of Defects a) Interstitial impurity atom, b) Edge dislocation, c) Self interstitial atom, d) Vacancy, e) Precipitate of impurity atoms, f) Vacancy type dislocation loop, g) Interstitial type dislocation loop, h) Substitutional impurity atom

5 Classifications of Defects Intrinsic defects often causes dangling bonds, and relaxation of lattice to minimize energy.

6 Effective Mass Defects In Effective-Mass Theory (EMT) the energy levels of the donor is obtained from Bohr s theory for the hydrogen atom. The energy level for the electron in hydrogen is scaled with the ratio of the effective mass to the free electron mass and with the relative dielectric constant. For Si the EMT energy level is 6 mev, below The conduction band edge (hydrogen continuum) More detailed calculation using the Anisotropic effective mass gives 9.05 mev.

7 Double Donors, Acceptors An impurity with two extra electrons give rise to a double donor. Typical examples for Si are substitutional chalcogenide atoms (VI). Similar to He atom. Donor energy for the single level D o /D + smaller than for D + /D ++. Double acceptors: Typical example substitutional Zn in Si. Zn 0 /Zn - Zn - /Zn -- Ev ev Ec 0.55 ev

8 Deep Levels For deep levels the potential is shortrange and the wavefunction strongly localized. Localisation in real space leads to a delocalisation in k-space. Deep levels usually traps carrier and act as recombination centers. A deep level can have different charge states depending on the occupancy of levels on the states. The energy level varies with the charge state. The energy level can also be influenced by lattice relaxation depending on charge state.

9 Recombination Mechanism Excited Carriers, meaning carriers not in static thermal equilibrium, will recombine across the bandgap by different mechanisms. These can be either radiative or non-radiative.

10 Recombination Mechanism For all recombination mechanisms both energy and momentum must be conserved.

11 Shockley-Read-Hall SRH The theory of capture of carriers to a deep level, trap, and recombination of carriers across the bandgap is described by the SHR Kinetics.

12 Shockley-Read-Hall SRH Non-degenerate semiconductor majority of conduction band states empty constant.

13 Shockley-Read-Hall SRH Similar for holes Recombination Rates

14 Shockley-Read-Hall SRH Detailed Balance at Equilibrium, Steady-state r n = r p = 0 General assumption

16 Shockley-Read-Hall SRH Low Level Injection

17 Physical View of Carrier Capture Average kinetic energy of electron in a non-defenerate semiconductor is ½ mv th = 3/2 kt ~ 10 7 cm/sec at RT Capture coefficient c n and p n in units of cm 3 /s

18 Recombination Centers Electron trap Cn >> Cp Hole trap Cn << Cp Recombination Center Cn ~ Cp

19 Defect Properties Important properties of defects: Energy Level Concentration Capture Cross Section Measured by different electrical characterisation techniques.

20 Calculating Energylevels

21 Quantum Mechanics For a system with N electrons and M nuclei, the full many-particle Hamiltonian is Where m is the electron mass, M the mass of the :th nuclei, r i the position of the i:th electron, and R and Z the position and charge of the :th nucleus. The Schrödinger equation is With the solution

22 Born-Oppenheimer Approximation An approximation using the fact that m/m << 1. In the zero order approximation m/m=0 corresponding to M. This gives a Hamiltonian for the electrons in a static lattice.

23 The Adiabatic Approximation In the adiabatic approximation the contribution of the momentum operator on the electron wavefunction is neglected. This gives a separate S.E. for the nucleii, which separates the problem into a electronical part and a vibrational part.

24 The Coordinate Diagram The total energy (Electronic+Lattice) is visualized in a configuration coordinate diagram. Deviation from a equilibrium position can be described by parabola. E 0 (Q) = ½KQ 2 From Thesis Carl Hemmingsson

25 Negative U-Centers Some defects with strong lattice interaction has so called negative-u behaviour. This occurs when a defect, which can capture electrons, binds the second electron stronger than the first. The repulsive Coulomb force is overcome by a local distortion of the lattice lowering the total energy. Examples are vacancy in SiC, and the Z 1/2 center in SiC.

26 Metastable Defects Deep levels often have strong interaction with the lattice and generate local distortion. Different defect positions can have lowest energy depending on charge state. From Thesis Franziska Beyer Configuration B stable when occupied with electron (Bn-1). A change from configuration B A, can occur with an activation energy E A (B-A) which can come from temperature, electric fields or injection in a device. After electron emission the defect is stable in configuration A.

27 DX-Center The DX is a deep level first seen in Al x Ga 1-x As. It dominates the transport properties for x > Concentration comparable to doping. The capture process is thermally activated. Optical Emission. Not identified. Proposed involving a donor and a vacancy.

28 EL2 Defect EL2 is a deep donor in GaAs. Not related to impurities. Proposed to be an As antisite. Charged state has two electrons, and when charged the As atom is displaced from lattice position.

29 Semi-Insulating Defects Semiconductors with high resistivity, cm, are called semi-insulating, SI. High resistivity is related to low free carrier concentration. SI substrates are needed for high-speed devices. Conduction Band Fermi Level SI requires fermi level in the center of the bandgap. Carriers from shallow impurities, dopands, need to be captured by deep level defects. Valence Band Typical defects are transition metals: Si:Au, GaAs:Cr, InP:Fe, SiC:V In SiC also intrinsic defects such as V C

30 Isoelectronic Impurities Isoelectronic impurities are usually deep levels with a short range potential. Example N on P place in GaP. The defect introduces a bound state for electron or hole. It is then charged and attracts the opposite particle via coulomb interaction.

31 Structural Defects

32 Structural Defects Structural defects often related to dangling bonds, which can cause trap levels in the bandgap. Structural defects has 1D or 2D extension.

33 Structural Defects Stacking faults is one atomic plane with an error in the stacking sequence. Typical for SiC. 2D extended defect. Can occur during growth, or during operation of devices. Bipolar degredation.

34 Defect States Iwata et.al PRB 65, (2001) The change in periodicity in the crystal influences the bandstructure. In this case an extra band below the conduction band. This forms a 2D potential for electrons, similar to a quantum well. Captures electrons, which reduces number of electrons in the conduction band, which increases resistivity. Kuhr et.al JAP 92, 5863 (2002)

35 Bipolar Degredation 1min Electron-hole recombination gives energy to the lattice and moves dislocations. A movement of a partial dislocation in the Si-sublattice creates a stacking fault. 2min SWBXT Back reflection Cathodoluminescence CL

Semiconductor Physics

10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations

ENEE 33, Spr. 09 Supplement I Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations Zeynep Dilli, Oct. 2008, rev. Mar 2009 This is a supplement

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons)

Energy band diagrams In the atoms, the larger the radius, the higher the electron potential energy Hence, electron position can be described either by radius or by its potential energy In the semiconductor

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

Lecture 2 - Semiconductor Physics (I) September 13, 2005

6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

Lecture 2 Semiconductor Physics (I)

Lecture 2 Semiconductor Physics (I) Outline Intrinsic bond model : electrons and holes Generation and recombination Intrinsic semiconductor Doping: Extrinsic semiconductor Charge Neutrality Reading Assignment:

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11

INSTITUTE FOR APPIED PHYSICS Physical Practice for earners of Engineering sciences Hamburg University, Jungiusstraße 11 Hall effect 1 Goal Characteristic data of a test semiconductor (Germanium) should

CHAPTER - 45 SEMICONDUCTOR AND SEMICONDUCTOR DEVICES

1. f = 101 kg/m, V = 1 m CHAPTER - 45 SEMCONDUCTOR AND SEMCONDUCTOR DEVCES m = fv = 101 1 = 101 kg No.of atoms = 101 10 6 10 = 64.6 10 6. a) Total no.of states = N = 64.6 10 6 = 58.5 = 5. 10 8 10 6 b)

The nearly-free electron model

Handout 3 The nearly-free electron model 3.1 Introduction Having derived Bloch s theorem we are now at a stage where we can start introducing the concept of bandstructure. When someone refers to the bandstructure

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

Basic Nuclear Concepts

Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

Excitons Types, Energy Transfer

Excitons Types, Energy Transfer Wannier exciton Charge-transfer exciton Frenkel exciton Exciton Diffusion Exciton Energy Transfer (Förster, Dexter) Handout (for Recitation Discusssion): J.-S. Yang and

Semiconductor Laser Diode

Semiconductor Laser Diode Outline This student project deals with the exam question Semiconductor laser diode and covers the following questions: Describe how a semiconductor laser diode works What determines

Defect Engineering in Semiconductors

Defect Engineering in Semiconductors Silicon Technology: problems of ultra large-scale l integration i Gettering in silicon Defect engineering in HgCdTe Near-surface defects in GaAs after diamond saw-cutting

Electrical Properties

Electrical Properties Outline of this Topic 1. Basic laws and electrical properties of metals 2. Band theory of solids: metals, semiconductors and insulators 3. Electrical properties of semiconductors

Quantitative Photoluminescence. Studies in. a-si:h/c-si Solar Cells

Quantitative Photoluminescence Studies in a-si:h/c-si Solar Cells Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

CHAPTER 1: Semiconductor Materials & Physics

Chapter 1 1 CHAPTER 1: Semiconductor Materials & Physics In this chapter, the basic properties of semiconductors and microelectronic devices are discussed. 1.1 Semiconductor Materials Solid-state materials

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

Electrical Conductivity

Advanced Materials Science - Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by Michael-Stefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction

High Stress Silicon Nitride Films for Strained Silicon Technology

High Stress Silicon Nitride Films for Strained Silicon Technology Bhadri Varadarajan*, Jim Sims PECVD Business Unit Novellus Systems, Inc. Effect of Strain on Carrier Mobility! Strain lifts degeneracy,

Semiconductor Detectors Calorimetry and Tracking with High Precision

Semiconductor Detectors Calorimetry and Tracking with High Precision Applications 1. Photon spectroscopy with high energy resolution. Vertex detection with high spatial resolution 3. Energy measurement

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Simple example, but still complicated... Photosynthesis is

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e -

Periodic Table give up 1e - give up 2e - give up 3e - H Li Be Na Mg K Ca Columns: Similar Valence Structure Sc Oaccept 2e- accept 1e - inert gases S Se F Cl Br He Ne Ar Kr Adapted from Fig. 2.6, Callister

SubAtomic Physics Nuclear Physics

SubAtomic Physics Nuclear Physics Lecture 4 Main points of Lecture 3 Strong and coulomb interaction processes conserve angular momentum and parity External properties 1) Charge number of protons (ze) 2)

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

Multi-electron atoms

Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.

5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

Consider a one-dimensional chain of alternating positive and negative ions. Show that the potential energy of an ion in this hypothetical crystal is

Chapter 11 The Solid State. Home Wor Solutions 11.1 Problem 11.5 Consider a one-dimensional chain of alternating positive and negative ions. Show that the potential energy of an ion in this hypothetical

The Diode. Diode Operation

The Diode The diode is a two terminal semiconductor device that allows current to flow in only one direction. It is constructed of a P and an N junction connected together. Diode Operation No current flows

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

Nanoparticle Enhanced Thin Film Solar Cells

Nanoparticle Enhanced Thin Film Solar Cells Solar Cells Solar cells convert visible light to electricity. It is one of the clean sources of energy. In theory a 100 square mile area covered with solar panels

Supplementary Course Topic 3:

Supplementary Course Topic 3: Quantum Theory of Bonding Molecular Orbital Theory of H 2 Bonding in H 2 and some other simple diatomics Multiple Bonds and Bond Order Bond polarity in diatomic and polyatomic

Applied Physics of solar energy conversion

Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor

Chapter 1. Semiconductors

THE ELECTRON IN ELECTRIC FIELDS Semiconductors If we were to take two parallel plates and connect a voltage source across them as shown in Figure 1, an electric field would be set up between the plates.

Exciton dissociation in solar cells:

Exciton dissociation in solar cells: Xiaoyang Zhu Department of Chemistry University of Minnesota, Minneapolis t (fs) 3h! E, k h! Pc Bi e - 1 Acknowledgement Organic semiconductors: Mutthias Muntwiler,

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional

NUCLEAR FISSION DOE-HDBK-1019/1-93 Atomic and Nuclear Physics NUCLEAR FISSION

NUCLEAR FISSION DOE-HDBK-101/1-3 Atomic and Nuclear Physics NUCLEAR FISSION Nuclear fission is a process in which an atom splits and releases energy, fission products, and neutrons. The neutrons released

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

Boltzmann Distribution Law

Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

Semiconductor doping. Si solar Cell

Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

Broadband THz Generation from Photoconductive Antenna

Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

MMIC Design and Technology. Fabrication of MMIC

MMIC Design and Technology Fabrication of MMIC Instructor Dr. Ali Medi Substrate Process Choice Mobility & Peak Velocity: Frequency Response Band-Gap Energy: Breakdown Voltage (Power-Handling) Resistivity:

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.

Worksheet 11 - Periodic Trends

Worksheet 11 - Periodic Trends A number of physical and chemical properties of elements can be predicted from their position in the Periodic Table. Among these properties are Ionization Energy, Electron

L5. P1. Lecture 5. Solids. The free electron gas

Lecture 5 Page 1 Lecture 5 L5. P1 Solids The free electron gas In a solid state, a few loosely bound valence (outermost and not in completely filled shells) elections become detached from atoms and move

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

3.003 Lab 4 Simulation of Solar Cells

Mar. 9, 2010 Due Mar. 29, 2010 3.003 Lab 4 Simulation of Solar Cells Objective: To design a silicon solar cell by simulation. The design parameters to be varied in this lab are doping levels of the substrate

Ch 3 Atomic Structure and the Periodic Table. Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5

1 Ch 3 Atomic Structure and the Periodic Table Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5 2 Atoms are very small and spherical. Radii Range 0.9 x 10-10

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18,

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids. Nuri Yazdani, 10.03.15

Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids Nuri Yazdani, 10.03.15 What is a QD Nanocrystal Time: ~15m What is a QD nanocrystal? Bulk Crystal Periodic lattice of atoms which extends

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

Each grain is a single crystal with a specific orientation. Imperfections

Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

Chapter Outline. Defects Introduction (I)

Crystals are like people, it is the defects in them which tend to make them interesting! - Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard

1. Degenerate Pressure

. Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

Rules for this test. Physics 222, Winter 2012 Final Exam April 16, 2012 Instructor: Scott Bergeson

Physics 222, Winter 2012 Final Exam April 16, 2012 Instructor: Scott Bergeson Rules for this test 1. This test is open book and open notes, including our class notes page online, and your homework solutions.

OPTIMIZE SOLAR CELL PERFORMANCE

OPTIMIZE SOLAR CELL PERFORMANCE D R A G I C A V A S I L E S K A MINIMIZE LOSSES IN SOLAR CELLS Optical loss Concentration of light Minimize Shadowing Trapping of light: AR coatings Mirrors ( metallization

Fall 2004 Ali Shakouri

University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 5b: Temperature Dependence of Semiconductor Conductivity

Masses in Atomic Units

Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly

ENEE 313, Spr 09 Midterm II Solution

ENEE 313, Spr 09 Midterm II Solution PART I DRIFT AND DIFFUSION, 30 pts 1. We have a silicon sample with non-uniform doping. The sample is 200 µm long: In the figure, L = 200 µm= 0.02 cm. At the x = 0