Nyquist-Rate A/D Converters. A/D Converter Basics

Size: px
Start display at page:

Download "Nyquist-Rate A/D Converters. A/D Converter Basics"

Transcription

1 Nyquist-ate A/D Converters slide 1 of 23 A/D Converter Basics A/D B out ( b b b N 2 N ) = ± x where V 2 LSB < x < --V 2 LSB ange of valid input values produce the same output signal quantization error. (1) B out 11 V LSB = 1/4 = 1 LSB /4 1/2 3/4 1 V in slide 2 of 23

2 Low-to-Medium Speed, High Accuracy Integrating Oversampling (not Nyquist-rate) Analog to Digital Converters Medium Speed, Medium Accuracy Successive approximation Algorithmic High Speed, Low-to-Medium Accuracy Flash Two-step Interpolating Folding Pipelined Time-interleaved slide 3 of 23 Integrating Converters C 1 S 2 S 1 S 2 Vin S 1 1 V x Comparator Control logic Counter b 1 b 2 b 3 (Vin is held constant during conversion.) b N Clock 1 f = clk T clk B out Low offset and gain errors for low-speed applications Small amount of circuitry Conversion speed is 2 N+1 times 1/T clk slide 4 of 23

3 Integrating Converters V x Phase (I) 3 Phase (II) (Constant slope) 2 1 T 1 Time T 2 (Three values for three inputs) Count at end of T 2 is digital output Does not depend on C time-constant slide 5 of 23 Integrating Converters 0 Hf () 20 db/decade slope (db) Frequency (Hz) (Log scale) Notches the input frequencies which are multiples of 1/T 1 slide 6 of 23

4 Successive-Approximation Converters Sample Start, V D/A = 0, i = 1 > V D/A Yes No Signed input b i = 1 b i = 0 V D/A V D/A + 2 i 1 V D/A V D/A 2 i 1 ( ) Makes use of binary search algorithm /equires N steps for N-bit converter Successively tunes a signal until within 1 LSB of input Medium speed Moderate accuracy i i+ 1 No i N Stop Yes slide 7 of 23 DAC Based Successive-Approximation Successive-approximation register (SA) and control logic b 1 b 2 b N B out V D/A D/A converter Adjust V D/A until within 1 LSB of Start with MSB and continue until LSB found D/A mainly determines overall accuracy Input required slide 8 of 23

5 16C 8C V 0 x 4C Charge edistribution A/D 2C b 1 b 2 b 3 b 4 b 5 s 3 C C s 2 SA 1. Sample mode s 1 V x = s 2 16C 8C 4C 2C C C b b b b b s 3 SA 16C V x 8C = V in 2 4C 2C b 1 b2 b 3 b 4 b 5 s 3 C C s 2 SA s 1 2. Hold mode s 1 3. Bit cycling slide 9 of 23 Charge edistribution A/D Combines, D/A converter, and difference circuit Sample mode: Caps charged to, compar reset. Hold mode: Caps switched to gnd so Vx Vin Bit cycling: Cap switched to. If V x < 0 cap left connected to and bit=1. Otherwise, cap back to gnd and bit=0. epeat N times Cap bottom plates connected to side to minimize parasitic capacitance at V x. Parasitic cap does not cause conversion errors but it attenuates. = V x slide 10 of 23

6 Algorithmic (or Cyclic) A/D Converter Start Sample V =, i = 1 V > 0 Yes No b i = 1 b i = 0 Signed input Operates similar to successiveapprox converter Successive-approx halves ref voltage each cycle Algorithmic doubles error each cycle (leaving ref voltage unchanged) V 2(V /4) V 2(V + /4) i i + 1 No i > N Stop Yes slide 11 of 23 atio-independent Algorithmic Converter Out Vin Cmp Shift register Gain amp X2 Vref /4 Vref /4 Small amount of circuitry reuse cyclically in time equires a high-precision multiply by 2 gain stage slide 12 of 23

7 atio-independent Algorithmic Converter Q1 Verr C1 Q1 C2 Cmp Verr C1 Q1 C2 Cmp 1. Sample remainder and cancel input-offset voltage. Q1 2. Transfer charge Q 1 from C 1 to C 2. C2 C1 Verr Q2 3. Sample input signal with C 1 again after storing charge Q 1 on C 2. Cmp C2 C1 Verr Cmp Q1+Q2 Vout = 2 Verr 4. Combine Q 1 and Q 2 on C 1, and connect C 1 to output. Does not rely on cap matching Sample input twice using C 1 ; hold first charge in C 2 and re-combine with first charge on C 1 slide 13 of V r7 V r6 V r5 V r4 V r3 V r2 V r1 Flash (or Parallel) Converters Over range (2 N 1) to N encoder N digital outputs High-speed Large size and power hungry 2 N comparators Speed bottleneck usually large cap load at input Thermometer code out of comps Nands used for simpler decoding and/or bubble error correction Use comp offset cancellation 2 Comparators slide 14 of 23

8 Issues in Designing Flash A/D Converters Input Capacitive Loading use interpolating arch. esistor-string Bowing Due to I in of bipolar comps force center tap (or more) to be correct. Signal and/or Clock Delay Small arrival diff in clock or input cause errors. (250MHz 8-bit A/D needs 5ps matching for 1LSB) route clock and together with the delays matched [Gendai, 1991]. Match capacitive loads Substrate and Power-Supply Noise = 2 V and 8-bit, 7.8 mv of noise causes 1 LSB error shield clocks and use on-chip supply cap bypass Flashback Glitch at input due to going from track to mode use preamps in comparators and match input impedances slide 15 of 23 Flash Converters Bubble Errors Thermometer code should be Bubble error (noise, metastability) Usually occurs near transition point but can cause gross errors depending on encoder slide 16 of 23

9 V ri (2N 1) to N encoder N digital outputs slide 17 of 23 Two-Step A/D Converters Vin 4-bit MSB A/D V 1 V q 4-bit D/A 16 Gain amp 4-bit LSB A/D First 4 bits Lower 4 bits ( b, b, b, b ) ( b, b, b, b ) High-speed, medium accuracy (but 1 sample latency) Less area and power than flash Only 32 comparators in above 8-bit two-step Gain amp likely sets speed limit Without digital error correction, many blocks need at least 8-bit accuracy slide 18 of 23

10 Digital Error Correction 2 (8-bit accurate) Vin 1 (8-bit accurate) 4-bit MSB A/D (4-bit accurate) V 1 Gain amp 4-bit V q D/A 8 3 (8-bit accurate) (5-bit accurate) Digital delay 5 bits 4 bits D Error correction 5-bit LSB A/D (5-bit accurate) elaxes requirements on input A/D equires a 5-bit 2nd stage since V q increased 8 bits slide 19 of 23 V = V 0.5 V 0.25 V Interpolating A/D Converters V (Overflow) V V V 2c 6 V 2b V 5 2a V Input amplifiers 1 Latch comparators Digital logic b 1 b 2 b 3 b 4 Use input amps to amplify input around reference voltages Latch thresholds less critical Less cap on input (faster than flash) Match delays to es Often combined with folding architecture slide 20 of 23

11 Interpolating Converters 5.0 V 2 V 2b V2c (Volts) V 1 Latch threshold V 2a (Volts) slide 21 of 23 Pipelined A/D Converters b 1 N 1-bit shift register Q N D N Q N-1 D N-2 Q N-1 D N-2 b 2 b N 1 Q 1 D 1 Q 1 Q 1 D 1 D 1 b N 1-bit DAPX 1-bit DAPX 1-bit DAPX 1-bit DAPX (DAPX - digital approximator) Analog pipeline b i V i 1 Cmp /4 /4 2 V i slide 22 of 23

12 Time-Interleaved A/D Converters [Black, 80] f 1 N-bit A/D f 2 f 0 f 3 N-bit A/D Dig. mux Digital output N-bit A/D f 4 N-bit A/D Use parallel A/Ds and multiplex them Tone occurs at fs/n for N converters if mismatched Input critical, others not perhaps different tech for input slide 23 of 23

Digital to Analog and Analog to Digital Conversion

Digital to Analog and Analog to Digital Conversion Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to

More information

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world.

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world. Analog/Digital Conversion Analog Signals Interacing a microprocessor-based system to the real world. continuous range x(t) Analog and digital signals he bridge: Sampling heorem Conversion concepts Conversion

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Systematic Design for a Successive Approximation ADC

Systematic Design for a Successive Approximation ADC Systematic Design for a Successive Approximation ADC Mootaz M. ALLAM M.Sc Cairo University - Egypt Supervisors Prof. Amr Badawi Dr. Mohamed Dessouky 2 Outline Background Principles of Operation System

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

5 Analog-to-Digital Conversion Architectures

5 Analog-to-Digital Conversion Architectures Kosonocky, S. & Xiao, P. Analog-to-Digital Conversion Architectures Digital Signal Processing Handbook Ed. Vijay K. Madisetti and Douglas B. Williams Boca Raton: CRC Press LLC, 1999 c 1999byCRCPressLLC

More information

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE

AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

12-Bit, 4-Channel Parallel Output Sampling ANALOG-TO-DIGITAL CONVERTER

12-Bit, 4-Channel Parallel Output Sampling ANALOG-TO-DIGITAL CONVERTER For most current data sheet and other product information, visit www.burr-brown.com 12-Bit, 4-Channel Parallel Output Sampling ANALOG-TO-DIGITAL CONVERTER FEATURES SINGLE SUPPLY: 2.7V to 5V 4-CHANNEL INPUT

More information

2. ADC Architectures and CMOS Circuits

2. ADC Architectures and CMOS Circuits /56 2. Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

Signal Conversion. David J. Beebe

Signal Conversion. David J. Beebe 3 Signal Conversion David J. Beebe The power of the computer to analyze and visually represent biomedical signals is of little use if the analog biomedical signal cannot be accurately captured and converted

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

EE 230 Lecture 37. Data Converters. ADC and DAC Architectures

EE 230 Lecture 37. Data Converters. ADC and DAC Architectures EE 230 Lecture 37 Data Converters ADC and DAC Architectures Study Abroad Opportunities The increasing role Asia is playing in both the engineering field and the world s economy is unlike anything we have

More information

Printed Circuit Boards. Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools

Printed Circuit Boards. Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools Printed Circuit Boards (PCB) Printed Circuit Boards Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools 1 Bypassing, Decoupling, Power, Grounding 2 Here is the circuit we

More information

Chapter 6: From Digital-to-Analog and Back Again

Chapter 6: From Digital-to-Analog and Back Again Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to

More information

AN2834 Application note

AN2834 Application note Application note How to get the best ADC accuracy in STM32Fx Series and STM32L1 Series devices Introduction The STM32Fx Series and STM32L1 Series microcontroller families embed up to four advanced 12-bit

More information

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output CMOS Analog IC Design - Chapter 10 Page 10.0-5 BLOCK DIAGRAM OF A DIGITAL-ANALOG CONVERTER b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.

More information

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase

More information

ADS9850 Signal Generator Module

ADS9850 Signal Generator Module 1. Introduction ADS9850 Signal Generator Module This module described here is based on ADS9850, a CMOS, 125MHz, and Complete DDS Synthesizer. The AD9850 is a highly integrated device that uses advanced

More information

Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35

Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Sampling switches, charge injection, Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo

More information

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 February 1991 FEATURES Low distortion 16-bit dynamic range 4 oversampling possible Single 5 V power supply No external components required

More information

ABCs of ADCs. Analog-to-Digital Converter Basics. Nicholas Gray Data Conversion Systems Staff Applications Engineer

ABCs of ADCs. Analog-to-Digital Converter Basics. Nicholas Gray Data Conversion Systems Staff Applications Engineer ABCs of ADCs Analog-to-Digital Converter Basics Nicholas Gray Data Conversion Systems Staff Applications Engineer November 24, 2003 Corrected August 13, 2004 Additional Corrections June 27, 2006 1 Agenda

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

Part Number Description AD9254R703F Radiation tested to 100K, 1.8V, 14-Bit, 150MSPS Bipolar Ain Range A/D Converter

Part Number Description AD9254R703F Radiation tested to 100K, 1.8V, 14-Bit, 150MSPS Bipolar Ain Range A/D Converter This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein. The manufacturing

More information

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT Application Report SLAA323 JULY 2006 Oversampling the ADC12 for Higher Resolution Harman Grewal... ABSTRACT This application report describes the theory of oversampling to achieve resolutions greater than

More information

10 BIT s Current Mode Pipelined ADC

10 BIT s Current Mode Pipelined ADC 10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA kothareddybharani@yahoo.com P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA pjayakrishnan@vit.ac.in

More information

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill

More information

CA3306, CA3306A, CA3306C 6-Bit, 15 MSPS, Flash A/D Converters

CA3306, CA3306A, CA3306C 6-Bit, 15 MSPS, Flash A/D Converters August 997 TM CA336, CA336A, CA336C 6-Bit, 5 MSPS, Flash A/D Converters Features CMOS Low Power with Video Speed (Typ).....7mW Parallel Conversion Technique Signal Power Supply Voltage........... 3V to

More information

A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications

A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications A -GSPS CMOS Flash A/D Converter for System-on-Chip Applications Jincheol Yoo, Kyusun Choi, and Ali Tangel Department of Computer Science & Department of Computer & Engineering Communications Engineering

More information

LC 2 MOS Signal Conditioning ADC with RTD Excitation Currents AD7711

LC 2 MOS Signal Conditioning ADC with RTD Excitation Currents AD7711 FEATURES Charge-Balancing ADC 24 Bits, No Missing Codes 0.0015% Nonlinearity 2-Channel Programmable Gain Front End Gains from 1 to 128 1 Differential Input 1 Single-Ended Input Low-Pass Filter with Programmable

More information

A Low-Power, Variable-Resolution Analogto-Digital

A Low-Power, Variable-Resolution Analogto-Digital A Low-Power, Variable-Resolution Analogto-Digital Converter By Carrie Aust Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Microcomputers. Analog-to-Digital and Digital-to-Analog Conversion

Microcomputers. Analog-to-Digital and Digital-to-Analog Conversion Microcomputers Analog-to-Digital and Digital-to-Analog Conversion 1 Digital Signal Processing Analog-to-Digital Converter (ADC) converts an input analog value to an output digital representation. This

More information

W a d i a D i g i t a l

W a d i a D i g i t a l Wadia Decoding Computer Overview A Definition What is a Decoding Computer? The Wadia Decoding Computer is a small form factor digital-to-analog converter with digital pre-amplifier capabilities. It is

More information

Op Amp Circuit Collection

Op Amp Circuit Collection Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

More information

US-SPI New generation of High performances Ultrasonic device

US-SPI New generation of High performances Ultrasonic device US-SPI New generation of High performances Ultrasonic device Lecoeur Electronique - 19, Rue de Courtenay - 45220 CHUELLES - Tel. : +33 ( 0)2 38 94 28 30 - Fax : +33 (0)2 38 94 29 67 US-SPI Ultrasound device

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

EMC Expert System for Architecture Design

EMC Expert System for Architecture Design EMC Expert System for Architecture Design EMC Expert System for Architecture Design Marcel van Doorn marcel.van.doorn@philips.com Philips Electromagnetics Competence Center High Tech Campus 26, 5656 AE

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

ADC12041 ADC12041 12-Bit Plus Sign 216 khz Sampling Analog-to-Digital Converter

ADC12041 ADC12041 12-Bit Plus Sign 216 khz Sampling Analog-to-Digital Converter ADC12041 ADC12041 12-Bit Plus Sign 216 khz Sampling Analog-to-Digital Converter Literature Number: SNAS106 ADC12041 12-Bit Plus Sign 216 khz Sampling Analog-to-Digital Converter General Description Operating

More information

Evaluating AC Current Sensor Options for Power Delivery Systems

Evaluating AC Current Sensor Options for Power Delivery Systems Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy

More information

16-Bit 100 ksps Sampling ADC AD676

16-Bit 100 ksps Sampling ADC AD676 a FEATURES Autocalibrating On-Chip Sample-Hold Function Parallel Output Format 16 Bits No Missing Codes 1 LSB INL 97 db THD 90 db S/(N+D) 1 MHz Full Power Bandwidth V IN 15 AGND SENSE 14 V REF 16 AGND

More information

DAC Digital To Analog Converter

DAC Digital To Analog Converter DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated

More information

DT9836 Series. BNC Connection Box. OEM Embedded Version

DT9836 Series. BNC Connection Box. OEM Embedded Version BUS: USB DT9836 Type: Simultaneous Multifunction DT9836 Series Simultaneous Analog Input Multifunction Data Acquisition USB Modules Simultaneously Captured Analog Input Channels 12 separate 16-bit A/D

More information

Ultrasound Distance Measurement

Ultrasound Distance Measurement Final Project Report E3390 Electronic Circuits Design Lab Ultrasound Distance Measurement Yiting Feng Izel Niyage Asif Quyyum Submitted in partial fulfillment of the requirements for the Bachelor of Science

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Building an Auto-Ranging DMM with the ICL7103A/ICL8052A A/D Converter Pair

Building an Auto-Ranging DMM with the ICL7103A/ICL8052A A/D Converter Pair Building an Auto-Ranging DMM with the ICL7103A/ICL8052A A/D Converter Pair Application Note September 1999 AN028 Introduction The development of LSI A/D converters has carved the pathway for a new category

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Features. Note Switches shown in digital high state

Features. Note Switches shown in digital high state DAC1020 DAC1021 DAC1022 10-Bit Binary Multiplying D A Converter DAC1220 DAC1222 12-Bit Binary Multiplying D A Converter General Description The DAC1020 and the DAC1220 are respectively 10 and 12-bit binary

More information

ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer

ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

DRM compatible RF Tuner Unit DRT1

DRM compatible RF Tuner Unit DRT1 FEATURES DRM compatible RF Tuner Unit DRT1 High- Performance RF Tuner Frequency Range: 10 KHz to 30 MHz Input ICP3: +13,5dBm, typ. Noise Figure @ full gain: 14dB, typ. Receiver Factor: -0,5dB, typ. Input

More information

Tire Pressure Monitoring Sensor Temperature Compensated and Calibrated, Fully Integrated, Digital Output

Tire Pressure Monitoring Sensor Temperature Compensated and Calibrated, Fully Integrated, Digital Output Freescale Semiconductor Technical Data Tire Pressure Monitoring Sensor Temperature Compensated and Calibrated, Fully Integrated, Digital Output The Freescale Semiconductor, Inc. sensor is an 8-pin tire

More information

A/D Converter based on Binary Search Algorithm

A/D Converter based on Binary Search Algorithm École Polytechnique Fédérale de Lausanne Politecnico di Torino Institut National Polytechnique de Grenoble Master s degree in Micro and Nano Technologies for Integrated Systems Master s Thesis A/D Converter

More information

24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER

24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER 49% FPO 24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER TM FEATURES SAMPLING FREQUEY (f S ): 16kHz to 96kHz 8X OVERSAMPLING AT 96kHz INPUT AUDIO WORD: 20-, 24-Bit HIGH PERFORMAE: Dynamic

More information

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490 Data Sheet FEATURES Fast throughput rate: 1 MSPS Specified for VDD of 2.7 V to 5.25 V Low power at maximum throughput rates 5.4 mw maximum at 870 ksps with 3 V supplies 12.5 mw maximum at 1 MSPS with 5

More information

Analog to Digital Conversion of Sound with the MSP430F2013

Analog to Digital Conversion of Sound with the MSP430F2013 Analog to Digital Conversion of Sound with the MSP430F2013 Christopher Johnson 4/2/2010 Abstract Several modern-day applications require that analog signals be converted to digital signals in order to

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1 ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

LC2 MOS Quad 8-Bit D/A Converter AD7226

LC2 MOS Quad 8-Bit D/A Converter AD7226 a FEATURES Four 8-Bit DACs with Output Amplifiers Skinny 20-Pin DIP, SOIC and 20-Terminal Surface Mount Packages Microprocessor Compatible TTL/CMOS Compatible No User Trims Extended Temperature Range Operation

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +1024 C)

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +1024 C) 19-2235; Rev 1; 3/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The performs cold-junction compensation and digitizes the signal from a type-k thermocouple. The data is output

More information

AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR125: ADC of tinyavr in Single Ended Mode Features Up to 10bit resolution Up to 15kSPS Auto triggered and single conversion mode Optional left adjustment for ADC result readout Driver source code included

More information

1.1 Silicon on Insulator a brief Introduction

1.1 Silicon on Insulator a brief Introduction Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial

More information

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed

More information

Complete, High Resolution 16-Bit A/D Converter ADADC71

Complete, High Resolution 16-Bit A/D Converter ADADC71 Complete, High Resolution 6-Bit A/D Converter ADADC7 FEATURES 6-bit converter with reference and clock ±.3% maximum nonlinearity No missing codes to 4 bits Fast conversion: 35 μs (4 bit) Short cycle capability

More information

A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8

A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8 Application Note August 999 A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC00, a -Bit No Latency Σ ADC in an SO- By Kevin R. Hoskins and Derek V. Redmayne

More information

HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER

HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER The ADS20 and ADS2 are precision, wide dynamic range, Σ A/D converters that have 24 bits of no missing code and up to 23 bits rms of

More information

High Speed Inter-chip Signaling in CMOS

High Speed Inter-chip Signaling in CMOS High Speed Inter-chip Signaling in CMOS Area Exam Jim Goodman May 5, 2000 The Problem Moore s Law and Rent s Rule Speed & functionality double every 18 months Pin bandwidth not growing as quickly [Dally97]

More information

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr Grading 1st Midterm -

More information

Analog-to-Digital Converters

Analog-to-Digital Converters Analog-to-Digital Converters In this presentation we will look at the Analog-to-Digital Converter Peripherals with Microchip s midrange PICmicro Microcontrollers series. 1 Analog-to-Digital Converters

More information

AVR126: ADC of megaavr in Single Ended Mode. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE

AVR126: ADC of megaavr in Single Ended Mode. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE AVR 8-bit Microcontrollers AVR126: ADC of megaavr in Single Ended Mode APPLICATION NOTE Introduction Atmel megaavr devices have a successive approximation Analog-to- Digital Converter (ADC) capable of

More information

Class 11: Transmission Gates, Latches

Class 11: Transmission Gates, Latches Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates

More information

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

More information

THE proliferation of digital signal processing across a

THE proliferation of digital signal processing across a EECS 598-02 ANALOG TO DIGITAL INTEGATED CICUITS, FALL 2002 1 A 150 Msamples/s Folding and Current Mode Interpolating ADC in 0.35µm CMOS obert M. Senger, Paul M. Walsh, Jérôme Le Ny Abstract An ADC using

More information

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS This tutorial provides an overview of signal processing and conditioning for use in instrumentation and automatic control systems.

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Basic DAC Architectures II: Binary DACs. by Walt Kester

Basic DAC Architectures II: Binary DACs. by Walt Kester TUTORIAL Basic DAC Architectures II: Binary DACs by Walt Kester INTRODUCTION While the string DAC and thermometer DAC architectures are by far the simplest, they are certainly not the most efficient when

More information

10-Bit Digital Temperature Sensor (AD7416) and Four/Single-Channel ADC (AD7417/AD7418) AD7416/AD7417/AD7418

10-Bit Digital Temperature Sensor (AD7416) and Four/Single-Channel ADC (AD7417/AD7418) AD7416/AD7417/AD7418 a FEATURES 10-Bit ADC with 15 s and 30 s Conversion Times Single and Four Single-Ended Analog Input Channels On-Chip Temperature Sensor: 55 C to +125 C On-Chip Track/Hold Over-Temperature Indicator Automatic

More information

Asynchronous counters, except for the first block, work independently from a system clock.

Asynchronous counters, except for the first block, work independently from a system clock. Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

Lesson 16 Analog-to-Digital Converter (ADC)

Lesson 16 Analog-to-Digital Converter (ADC) Lesson 16 Analog-to-Digital Converter (ADC) 1. Overview In this lesson, the Analog-to-Digital Converter (ADC) of the Cortex-M3 is introduced. For detailed description of the features and controlling options

More information

A 3 V 12b 100 MS/s CMOS D/A Converter for High- Speed Communication Systems

A 3 V 12b 100 MS/s CMOS D/A Converter for High- Speed Communication Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.3, NO., DECEMBER, 3 A 3 V b MS/s CMOS D/A Converter for High- Speed Communication Systems Min-Jung Kim, Hyuen-Hee Bae, Jin-Sik Yoon, and Seung-Hoon

More information

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory

A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Presented at the 2001 International Solid State Circuits Conference February 5, 2001 A 10,000 Frames/s 0.1 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Stuart Kleinfelder, SukHwan Lim, Xinqiao

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

Chapter 12. Data Converters. à Read Section 19 of the Data Sheet for PIC18F46K20. Updated: 4/19/15

Chapter 12. Data Converters. à Read Section 19 of the Data Sheet for PIC18F46K20. Updated: 4/19/15 Chapter 12 Data Converters à Read Section 19 of the Data Sheet for PIC18F46K20 Updated: 4/19/15 Data Converters: Basic Concepts Analog signals are continuous, with infinite values in a given range. Digital

More information

Equalization/Compensation of Transmission Media. Channel (copper or fiber)

Equalization/Compensation of Transmission Media. Channel (copper or fiber) Equalization/Compensation of Transmission Media Channel (copper or fiber) 1 Optical Receiver Block Diagram O E TIA LA EQ CDR DMUX -18 dbm 10 µa 10 mv p-p 400 mv p-p 2 Copper Cable Model Copper Cable 4-foot

More information

16-Bit Monotonic Voltage Output D/A Converter AD569

16-Bit Monotonic Voltage Output D/A Converter AD569 a FEATURES Guaranteed 16-Bit Monotonicity Monolithic BiMOS II Construction 0.01% Typical Nonlinearity 8- and 16-Bit Bus Compatibility 3 s Settling to 16 Bits Low Drift Low Power Low Noise APPLICATIONS

More information

Multichannel Data Acquisition Systems. Section 4

Multichannel Data Acquisition Systems. Section 4 Section 4 This section will look at considerations for multichannel data acquisition systems. Outline Understanding the Requirements: Signals to be digitized Phase requirements between channels Handling

More information

24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales FEATURES S8550 VFB. Analog Supply Regulator. Input MUX. 24-bit Σ ADC. PGA Gain = 32, 64, 128

24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales FEATURES S8550 VFB. Analog Supply Regulator. Input MUX. 24-bit Σ ADC. PGA Gain = 32, 64, 128 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales DESCRIPTION Based on Avia Semiconductor s patented technology, HX711 is a precision 24-bit analogto-digital converter (ADC) designed for weigh

More information

Tire pressure monitoring

Tire pressure monitoring Application Note AN601 Tire pressure monitoring 1 Purpose This document is intended to give hints on how to use the Intersema pressure sensors in a low cost tire pressure monitoring system (TPMS). 2 Introduction

More information

AP2428.01. A/D Converter. Analog Aspects. C500 and C166 Microcontroller Families. Microcontrollers. Application Note, V 1.

AP2428.01. A/D Converter. Analog Aspects. C500 and C166 Microcontroller Families. Microcontrollers. Application Note, V 1. Application Note, V 1.0, May 2001 AP2428.01 A/D Converter C500 and C166 Microcontroller Families Analog Aspects Microcontrollers Never stop thinking. A/D Converter Revision History: 2001-05 V1.0 Previous

More information

Chapter 6 PLL and Clock Generator

Chapter 6 PLL and Clock Generator Chapter 6 PLL and Clock Generator The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central processing module. The PLL allows the processor to operate at a high internal clock

More information

Introduction to Digital Audio

Introduction to Digital Audio Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.

More information