Rising Algebra 2 Honors


 Daniella Flowers
 1 years ago
 Views:
Transcription
1 Rising Algebra Honors Complete the following packet and return it on the first da of school. You will be tested on this material the first week of class. 50% of the test grade will be completion of this packet; ou must show our work to receive full credit. Unless otherwise stated, work should be done without a calculator. Algebra 1 Skills Needed to be Successful in Algebra A. Simplifing Polnomial Epressions Objectives: The student will be able to: Appl the appropriate arithmetic operations and algebraic properties needed to simplif an algebraic epression. Simplif polnomial epressions using addition and subtraction. Multipl a monomial and polnomial. B. Solving Equations Objectives: The student will be able to: Solve multistep equations. Solve a literal equation for a specific variable, and use formulas to solve problems. C. Rules of Eponents Objectives: The student will be able to: Simplif epressions using the laws of eponents. Evaluate powers that have zero or negative eponents. D. Binomial Multiplication Objectives: The student will be able to: Multipl two binomials. E. Factoring Objectives: The student will be able to: Identif the greatest common factor of the terms of a polnomial epression. Epress a polnomial as a product of a monomial and a polnomial. Find all factors of the quadratic epression a + b + c b factoring and graphing. F. Radicals Objectives: The student will be able to: Simplif radical epressions. G. Graphing Lines Objectives: The student will be able to: Identif and calculate the slope of a line. Graph linear equations using a variet of methods. Determine the equation of a line. H. Regression and Use of the Graphing Calculator Objectives: The student will be able to: Draw a scatter plot, find the line of best fit, and use it to make predictions. Graph and interpret realworld situations using linear models. 4
2 A. Simplifing Polnomial Epressions I. Combining Like Terms  You can add or subtract terms that are considered "like", or terms that have the same variable(s) with the same eponent(s). E. 1: E. : 8h + 10h  1h  15h 8h + 10h  1h  15h 0h  5h II. Appling the Distributive Propert  Ever term inside the parentheses is multiplied b the term outside of the parentheses. E. 1: (9 " 4) # 9 " # 4 7 "1 E. : 4 (5 + 6) 4 " " III. Combining Like Terms AND the Distributive Propert (Problems with a Mi!)  Sometimes problems will require ou to distribute AND combine like terms!! E. 1: (4 " ) +1 # 4 " # +1 1 " " 6 E. : (1 " 5) " 9("7 +10) #1 " # 5" 9("7) " 9(10) 6 "15+ 6" 90 "
3 PRACTICE SET 1 Simplif. 1. 8! ! n! (! 4n) 4.! (11b! ) q ( ) 6.! ( 5! 6) 7. (18z! 4w) + (10z! 6w) 8. ( 8c + ) + 1(4c! 10)! 9. 9(6! )! (9 ) 10.! (! ) + 6(5 + 7) 6
4 I. Solving TwoStep Equations B. Solving Equations A couple of hints: 1. To solve an equation, UNDO the order of operations and work in the reverse order.. REMEMBER! Addition is undone b subtraction, and vice versa. Multiplication is undone b division, and vice versa. E. 1: 4 " = = 4 4 = 8 E. : 87 = " " 1 " 1 66 = "11 "11 "11 " 6 = II. Solving Multistep Equations With Variables on Both Sides of the Equal Sign  When solving equations with variables on both sides of the equal sign, be sure to get all terms with variables on one side and all the terms without variables on the other side. E. : = " 4 " 4 8 = " 4 " 4 4 = = 6 III. Solving Equations that need to be simplified first  In some equations, ou will need to combine like terms and/or use the distributive propert to simplif each side of the equation, and then begin to solve it. E. 4 : 5(4 " 7) = " 5 = "10 "10 10 " 5 = = = 8 7
5 PRACTICE SET Solve each equation. You must show all work. 1. 5! =. 140 = (! 4) = ! = = 4(1! 9) = ! 68 7.! 11 =! 5(! 8) ! 7! 10 = ! 15 =! (! 8) 10.! ( 1! 6) = IV. Solving Literal Equations  A literal equation is an equation that contains more than one variable.  You can solve a literal equation for one of the variables b getting that variable b itself (isolating the specified variable). E.1: =18, Solve for. = 18 = 6 E. : 5a "10b = 0, Solve for a. +10b =+10b 5a = 0 +10b 5a 5 = b 5 a = 4 + b 8
6 PRACTICE SET Solve each equation for the specified variable. 1. Y + V = W, for V. 9wr = 81, for w. d f = 9, for f 4. d + t = 10, for 5. P = (g 9)180, for g h = 10 + u, for 9
7 C. Rules of Eponents Multiplication: Recall ( m )( n ) ( m+ n) = E: ( 4 )(4 5 )=(" 4)( 4 " 1 )( " 5 )=1 5 7 Division: Recall m ( m n)! n 5 5 4m j ' 4 $ ' m $ ' j $ = E: = 14m j % " =! 1 m j % m " % j "! &! #& #& # Powers: Recall ( m ) n ( m! n) = E: (! a bc ) = (! ) ( a ) ( b ) ( c ) =! 8a b c 0 Power of Zero: Recall = 1,! 0 E: = (5)(1)( ) = 5 PRACTICE SET 4 Simplif each epression m 1. ( c )( c)( c ). m. (k 4 ) d 5. ( q )( p q ) p z 5 z (! t 7 ) 8. g 0 5 f 9. (4h k )(15k h ) a b 6ab c 11. ( n m ) 4 1. ) 0 ( 1 1. (! 5a b)(ab c)(! b) ( ) ( )( ) 10
8 I. Reviewing the Distributive Propert D. Binomial Multiplication The distributive propert is used when ou want to multipl a single term b an epression. E 1: 8(5 8 " 5 40! 9) + 8 " (! 9)! 7 II. Multipling Binomials the FOIL method When multipling two binomials (an epression with two terms), we use the FOIL method. The FOIL method uses the distributive propert twice! FOIL is the order in which ou will multipl our terms. First Outer Inner Last E. 1: ( + 6)( + 10) FIRST OUTER First " > ( + 6)( + 10) Outer Inner > > 6 INNER LAST Last > (After combining like terms) 11
9 Recall: 4 = 4 4 = E. ( + 5) ( + 5) = ( + 5)(+5) Now ou can use the FOIL method to get a simplified epression. PRACTICE SET 5 Multipl. Write our answer in simplest form. 1. ( + 10)( 9). ( + 7)( 1). ( 10)( ) 4. ( 8)( + 81) 5. ( 1)(4 + ) 6. ( + 10)(9 + 5) 7. ( 4)( + 4) 8. ( + 10) 9. ( + 5) 10. ( ) 1
10 E. Factoring I. Using the Greatest Common Factor (GCF) to Factor. Alwas determine whether there is a greatest common factor (GCF) first. E. 1 4! + 90 In this eample the GCF is. So when we factor, we have (! ). Now we need to look at the polnomial remaining in the parentheses. Can this trinomial be factored into two binomials? In order to determine this make a list of all of the factors of Since = 11 and (5)(6) = 0 we should choose 5 and 6 in order to factor the epression. The epression factors into (! 5)(! 6) Note: Not all epressions will have a GCF. If a trinomial epression does not have a GCF, proceed b tring to factor the trinomial into two binomials. II. Appling the difference of squares: a! b = ( a! b)( a + b) E. 4 "100 ( ) 4 " 5 ( )( + 5) 4 " 5 Since and 5 are perfect squares separated b a subtraction sign, ou can appl the difference of two squares formula. 1
11 PRACTICE SET 6 Factor each epression a b! 16ab + 8ab c.! 5 4. n + 8n g! 9g d + d! 8 7. z! 7z! 0 8. m + 18m ! k + 0k! 15 14
12 F. Radicals To simplif a radical, we need to find the greatest perfect square factor of the number under the radical sign (the radicand) and then take the square root of that number. E. 1: 7 6 " 6 E. : " 9 " 10 4 " " E. : OR E. : " " This is not simplified completel because 1 is divisible b 4 (another perfect square) 4 PRACTICE SET 7 Simplif each radical
13 G. Graphing Lines I. Finding the Slope of the Line that Contains each Pair of Points. Given two points with coordinates ( 1, 1) and (, ) the line containing the points is! m = 1.! E. (, 5) and (4, 1) E. (, ) and (, ) 1! 5! 4! 1 m = = =! m = = 4!! (! ) 5 1 The slope is . The slope is 5 1, the formula for the slope, m, of PRACTICE SET 8 1. (1, 4) and (1, ). (, 5) and (, 1). (1, ) and (1, ) 4. (, 4) and (6, 4) 5. (, 1) and (, ) 6. (5, ) and (5, 7) 16
14 II. Using the Slope Intercept Form of the Equation of a Line. The slopeintercept form for the equation of a line with slope m and intercept b is E. =! 1 E. =! + 4 Slope: intercept: 1 Slope:! intercept: 4 = m + b. Place a point on the ais at 1. Place a point on the ais at. Slope is or /1, so travel up on Slope is /4 so travel down on the the ais and over 1 to the right. ais and over 4 to the right. Or travel up on the ais and over 4 to the left. PRACTICE SET = + 5. =! Slope: intercept: Slope: intercept: 17
15 . =! =! Slope: Slope: intercept: intercept 5. =! + 6. = Slope: Slope: intercept: intercept 18
16 III. Using Standard Form to Graph a Line. An equation in standard form can be graphed using several different methods. Two methods are eplained below. a. Rewrite the equation in = m + b form, identif the intercept and slope, then graph as in Part II above. b. Solve for the  and  intercepts. To find the intercept, let = 0 and solve for. To find the intercept, let = 0 and solve for. Then plot these points on the appropriate aes and connect them with a line. E.! = 10 a. Solve for. OR b. Find the intercepts:! =! + 10 let = 0 : let = 0:! + 10 =!! (0) = 10 (0)! = =! = 10! = 10 = 5 10 =! So intercept is (5, 0) & 10 # So intercept is $ 0,'! % " On the ais place a point at On the ais place a point at! Connect the points with the line. =! 1 19
17 PRACTICE SET =. 5 + = 10. = ! = 9 0
18 5.! + 6 = 1 6. =! 1
19 H. Regression and Use of the Graphing Calculator Note: For guidance in using our calculator to graph a scatterplot and finding the equation of the linear regression (line of best fit), please see the calculator direction sheet included in the back of the review packet. PRACTICE SET The following table shows the math and science test scores for a group of ninth graders. Math Test Scores Science Test Scores Let's find out if there is a relationship between a student's math test score and his or her science test score. a. Fill in the table below. Remember, the variable quantities are the two variables ou are comparing, the lower bound is the minimum, the upper bound is the maimum, and the interval is the scale for each ais. Variable Quantit Lower Bound Upper Bound Interval b. Create the scatter plot of the data on our calculator. c. Write the equation of the line of best fit. d. Based on the line of best fit, if a student scored an 8 on his math test, what would ou epect his science test score to be? Eplain how ou determined our answer. Use words, smbols, or both. e. Based on the line of best fit, if a student scored a 5 on his science test, what would ou epect his math test score to be? Eplain how ou determined our answer. Use words, smbols, or both.
20 . Use the chart below of winning times for the women's 00meter run in the Olmpics below to answer the following questions. Year Time (Seconds) a. Fill in the table below. Remember, the variable quantities are the two variables ou are comparing, the lower bound is the minimum, the upper bound is the maimum, and the interval is the scale for each ais. Variable Quantit Lower Bound Upper Bound Interval b. Create a scatter plot of the data on our calculator. c. Write the equation of the regression line (line of best fit) below. Eplain how ou determined our equation. d. The Summer Olmpics will be held in London, England, in 01. According to the line of best fit equation, what would be the winning time for the women's 00 meter run during the 01 Olmpics? Does this answer make sense? Wh or wh not?
21 graph a function Press the Y= ke, Enter the function directl using the X, T,!, n ke to input. Press the GRAPH ke to view the function. Use the WINDOW ke to change the dimensions TI8 Plus/TI84 Graphing Calculator Tips How to and scale of the graph. Pressing TRACE lets ou move the cursor along the function with the arrow kes to displa eact coordinates. find the value of an value Once ou have graphed the function, press CALC nd TRACE and select 1:value. Enter the  value. The corresponding value is displaed and the cursor find the maimum value of a function Once ou have graphed the function, press CALC nd TRACE and select 4:maimum. You can set the left and right boundaries of the area to be eamined and guess the maimum value either b entering values find the zero of a function Once ou have graphed the function, press CALC nd TRACE and select :zero. You can set the left and right boundaries of the root to be eamined and guess the value either b entering values find the intersection of two functions Once ou have graphed the function, press CALC nd TRACE and select 5:intersect. Use the up and down arrows to move among functions and press ENTER to select two. Net, enter lists of data Press the STAT ke and select 1:Edit. Store ordered pairs b entering the coordinates in L1 and the coordinates in L. You can calculate new lists. To moves to that point on the function. directl or b moving the cursor along the function and pressing ENTER. The value and value of the point with the maimum value are then displaed. directl or b moving the cursor along the function and pressing ENTER. The value displaed is the root. enter a guess for the point of intersection or move the cursor to an estimated point and press ENTER. The value and value of the intersection are then displaed. create a list that is the sum of two previous lists, for eample, move the cursor onto the L heading. Then enter the formula L1+L at the L prompt. 4
22 plot data Once ou have entered our data into lists, press STAT PLOT nd Y= and select Plot1. Select On and choose the tpe of graph ou want, e.g. scatterplot (points not connected) or connected dot for graph a linear regression of data Once ou have graphed our data, press STAT and move right to select the CALC menu. Select 4:LinReg(a+b). Tpe in the parameters L1, L, Y1. To enter Y1, press VARS draw the inverse of a function Once ou have graphed our function, press DRAW nd PRGM and select 8:DrawInv. Then enter Y1 if our function is in Y1, or just enter the function itself. create a matri From the home screen, press nd 1 to select MATRX and move right to select the EDIT menu. Select 1:[A] and enter the number of rows and the number of columns. Then fill in the matri b entering a value in each element. solve a sstem of equations Once ou have entered the matri containing the coefficients of the variables and the constant terms for a particular sstem, press MATRX (nd 1, move to MATH, and select B:rref. generate lists of random integers From the home screen, press MATH and move left to select the PRB menu. Select 5:RandInt and enter the lower integer bound, the upper integer bound, and the number of trials, separated b two variables, histogram for one variable. Press ZOOM and select 9:ZoomStat to resize the window to fit our data. Points on a connected dot graph or histogram are plotted in the listed order. and move right to select the YVARS menu. Select 1:Function and then 1:Y1. Press ENTER to displa the linear regression equation and Y= to displa the function. You ma move among elements with the arrow kes. When finished, press QUIT nd MODE to return to the home screen. To insert the matri into calculations on the home screen, press nd 1 to select MATRX and select NAMES and select 1:[A]. Then enter the name of the matri and press ENTER. The solution to the sstem of equations is found in the last column of the matri. commas, in that order. Press STO and L1 to store the generated numbers in List 1. Repeat substituting L to store a second set of integers in List. 5
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 20142015 school year. Goal The goal of the summer math program is to help students
More informationSUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills
SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationWe start with the basic operations on polynomials, that is adding, subtracting, and multiplying.
R. Polnomials In this section we want to review all that we know about polnomials. We start with the basic operations on polnomials, that is adding, subtracting, and multipling. Recall, to add subtract
More informationSection 5.0A Factoring Part 1
Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (
More informationIdentify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4
Chapter 1 Test Do ou know HOW? Identif a pattern and find the net three numbers in the pattern. 1. 5, 1, 3, 7, c. 6, 3, 16, 8, c Each term is more than the previous Each term is half of the previous term;
More informationMore Equations and Inequalities
Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More information7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
More informationName Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE
Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers
More informationCHAPTER 7: FACTORING POLYNOMIALS
CHAPTER 7: FACTORING POLYNOMIALS FACTOR (noun) An of two or more quantities which form a product when multiplied together. 1 can be rewritten as 3*, where 3 and are FACTORS of 1. FACTOR (verb)  To factor
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More informationMATH 102 College Algebra
FACTORING Factoring polnomials ls is simpl the reverse process of the special product formulas. Thus, the reverse process of special product formulas will be used to factor polnomials. To factor polnomials
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationAnytime plan TalkMore plan
CONDENSED L E S S O N 6.1 Solving Sstems of Equations In this lesson ou will represent situations with sstems of equations use tables and graphs to solve sstems of linear equations A sstem of equations
More informationNSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
More informationLESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
More information1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered
Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,
More informationUse order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS
ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.
More informationA Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
More informationAlgebra 2 PreAP. Name Period
Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing
More informationPolynomials and Factoring
7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of
More informationexpression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
More informationFlorida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
More informationAlex and Morgan were asked to graph the equation y = 2x + 1
Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and intercept wa First, I made a table. I chose some values, then plugged
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More information9.3 OPERATIONS WITH RADICALS
9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in
More informationMth 95 Module 2 Spring 2014
Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression
More informationThe majority of college students hold credit cards. According to the Nellie May
CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials
More informationMethods to Solve Quadratic Equations
Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a seconddegree
More informationALGEBRA I / ALGEBRA I SUPPORT
Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.
More informationAlgebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students notetaking, problemsolving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
More informationMathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010  A.1 The student will represent verbal
More informationALGEBRA I (Created 2014) Amherst County Public Schools
ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies
More informationZero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m
0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have
More informationPrentice Hall Mathematics Algebra 1 2004 Correlated to: Alabama Course of Study: Mathematics (Grades 912)
Alabama Course of Study: Mathematics (Grades 912) NUMBER AND OPERATIONS 1. Simplify numerical expressions using properties of real numbers and order of operations, including those involving square roots,
More informationIntroduction  Algebra I
LIFORNI STNRS TEST lgebra I Introduction  lgebra I The following released test questions are taken from the lgebra I Standards Test. This test is one of the alifornia Standards Tests administered as part
More informationAlgebra 2 Unit 10 Tentative Syllabus Cubics & Factoring
Name Algebra Unit 10 Tentative Sllabus Cubics & Factoring DATE CLASS ASSIGNMENT Tuesda Da 1: S.1 Eponent s P: 1, 7 Jan Wednesda Da : S.1 More Eponent s P: 9 Jan Thursda Da : Graphing the cubic parent
More informationAnchorage School District/Alaska Sr. High Math Performance Standards Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,
More informationMATH 90 CHAPTER 6 Name:.
MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a
More informationFilling in Coordinate Grid Planes
Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the
More informationAlum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationPolynomial and Rational Functions
Chapter 5 Polnomial and Rational Functions Section 5.1 Polnomial Functions Section summaries The general form of a polnomial function is f() = a n n + a n 1 n 1 + +a 1 + a 0. The degree of f() is the largest
More informationSAMPLE. Polynomial functions
Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through
More informationINVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
More informationUnit 1: Polynomials. Expressions:  mathematical sentences with no equal sign. Example: 3x + 2
Pure Math 0 Notes Unit : Polynomials Unit : Polynomials : Reviewing Polynomials Epressions:  mathematical sentences with no equal sign. Eample: Equations:  mathematical sentences that are equated with
More informationWhy should we learn this? One realworld connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the intercept. One realworld connection is to find the rate
More informationThe Graph of a Linear Equation
4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that
More informationHigher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
More informationObjectives. By the time the student is finished with this section of the workbook, he/she should be able
QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a
More informationA.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it
Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply
More informationTranslating Points. Subtract 2 from the ycoordinates
CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that
More informationTI84/83 graphing calculator
TI8/83 graphing calculator Let us use the table feature to approimate limits and then solve the problems the old fashion way. Find the following limits: Eample 1.1 lim f () Turn on your TI8 graphing
More informationAlgebra 1. Curriculum Map
Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring
More informationDeterminants can be used to solve a linear system of equations using Cramer s Rule.
2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution
More informationWhen I was 3.1 POLYNOMIAL FUNCTIONS
146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we
More informationFlorida Algebra I EOC Online Practice Test
Florida Algebra I EOC Online Practice Test 1 Directions: This practice test contains 65 multiplechoice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationGreatest Common Factor (GCF) Factoring
Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication
More informationUnit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials
Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial
More informationALGEBRA 1 SKILL BUILDERS
ALGEBRA 1 SKILL BUILDERS (Etra Practice) Introduction to Students and Their Teachers Learning is an individual endeavor. Some ideas come easil; others take timesometimes lots of time to grasp. In addition,
More informationTHE POWER RULES. Raising an Exponential Expression to a Power
8 (5) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar
More informationSummer Math Exercises. For students who are entering. PreCalculus
Summer Math Eercises For students who are entering PreCalculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationFlorida Math Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies  Lower and Upper
Florida Math 0022 Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies  Lower and Upper Whole Numbers MDECL1: Perform operations on whole numbers (with applications,
More informationPacket 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2
Packet 1 for Unit Intercept Form of a Quadratic Function M Alg 1 Assignment A: Graphs of Quadratic Functions in Intercept Form (Section 4.) In this lesson, you will: Determine whether a function is linear
More informationQuadratic Equations and Functions
Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In
More informationMATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
More informationMyMathLab ecourse for Developmental Mathematics
MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and
More informationGraphing Linear Equations in SlopeIntercept Form
4.4. Graphing Linear Equations in SlopeIntercept Form equation = m + b? How can ou describe the graph of the ACTIVITY: Analzing Graphs of Lines Work with a partner. Graph each equation. Find the slope
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationAlgebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
More informationEquations and Inequalities
Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.
More informationUnit 7 Polynomials. 7 1 Naming Polynomials. 7 2 Adding/Subtracting Polynomials. 7 3 Multiplying Monomials. 7 4 Dividing Monomials
Unit 7 Polnomials 7 1 Naming Polnomials 7 Adding/Subtracting Polnomials 7 Multipling Monomials 7 Dividing Monomials 7 Multipling (Monomial b Pol) 7 6 Multipling Polnomials 7 7 Special Products 0 Section
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationSECTION P.5 Factoring Polynomials
BLITMCPB.QXP.0599_4874 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The
More informationFACTORING ax 2 bx c WITH a 1
296 (6 20) Chapter 6 Factoring 6.4 FACTORING a 2 b c WITH a 1 In this section The ac Method Trial and Error Factoring Completely In Section 6.3 we factored trinomials with a leading coefficient of 1. In
More informationStudents Currently in Algebra 2 Maine East Math Placement Exam Review Problems
Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write
More information3.4 The PointSlope Form of a Line
Section 3.4 The PointSlope Form of a Line 293 3.4 The PointSlope Form of a Line In the last section, we developed the slopeintercept form of a line ( = m + b). The slopeintercept form of a line is
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationPearson s Correlation Coefficient
Pearson s Correlation Coefficient In this lesson, we will find a quantitative measure to describe the strength of a linear relationship (instead of using the terms strong or weak). A quantitative measure
More informationMathematics Placement
Mathematics Placement The ACT COMPASS math test is a selfadaptive test, which potentially tests students within four different levels of math including prealgebra, algebra, college algebra, and trigonometry.
More informationZeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.
_.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial
More informationFactoring and Applications
Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationMATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60
MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets
More informationMultiplying Polynomials 5
Name: Date: Start Time : End Time : Multiplying Polynomials 5 (WS#A10436) Polynomials are expressions that consist of two or more monomials. Polynomials can be multiplied together using the distributive
More information6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:
Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions  4, use the graph at the right.. Eplain wh the graph
More informationFactoring Algebra Chapter 8B Assignment Sheet
Name: Factoring Algebra Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.
More informationAlgebra 1 Course Objectives
Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationExponents and Polynomials
Because of permissions issues, some material (e.g., photographs) has been removed from this chapter, though reference to it may occur in the tet. The omitted content was intentionally deleted and is not
More informationChapter R.4 Factoring Polynomials
Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More information