# Algebra Revision Sheet Questions 2 and 3 of Paper 1

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Algebra Revision Sheet Questions and of Paper Simple Equations Step Get rid of brackets or fractions Step Take the x s to one side of the equals sign and the numbers to the other (remember to change the sign when crossing the = ) Step Divide across by the number next to the x. Example Solve for x, (x - ) = 4x 6x = 4x Get rid of brackets by multiplying 6x 4x = + x = x Divide across by Example Solve for x, x 7 x 6 6(x - 7) = (x + ) Cross multiply to get rid of the fractions 6x 4 = x + 6 Get rid of brackets by multiplying 6x x = x = x 4 Divide across by 4 Substitution Write out the question again substituting numbers for letters. Example Find the value of x 5xy when x = and y = - x 5xy Write out expression = () 5()( ) Substitute in numbers for x and y = Evaluate = 9

2 Simultaneous Equations equations we use to find values for x and y One equation will be linear (just x and y parts) One equation will be quadratic ( x or y parts) Example x + y = Equation x y 4 Equation x + y = Rearrange Equation to get x alone x = y by bringing y over the other side. x y 4 Equation ( y ) y 4 Insert the above value of x into Equation ( y) y( y) - y = 4 9 6y 6y + 4y - y = 4 Open up ( y) Remove brackets by multiplying y y 5 0 to get a quadratic equation y 4y 5 0 Divide across by ( y 5)( y ) 0 Factorise (put into brackets) y 5 = 0 and y + = 0 Let each bracket equal zero y = 5 and y = - y s to one side, numbers to the other We must now use these two values of y to get two x values. We do this by substituting the y values into Equation. x + y = Equation y = 5 then x + (5) = Substitute y = 5 into Equation x + 0 = Remove bracket by multiplying x = 0 x = -7 Evaluate So x = -7 and y = 5 Answer (-7, 5) Write them as a pair, x value first y = - then x + (-) = Substitute y = 5 into Equation x = Remove bracket by multiplying x = + x = 5 Evaluate So x = 5 and y = - Answer (5, -) Write them as a pair, x value first

3 Algebraic Fractions These questions involve solving equations that have fractions and require you to get rid of the fractions before you can solve the equation. Step Find a lowest common denominator (usually all the bottom terms multiplied) Step Multiply each top term by any terms NOT underneath it Step Remove the common denominator Step 4 Bring all the terms to the left of the = and simplify Step 5 Solve the quadratic equation by factorising (if possible) and letting each bracket equal 0. If it cannot be factorised you must use the formula (see next page). Example Solve x x Common denominator is (x+)(x-) x x ( x )() ( x )() ( x )( x ) Top terms times all terms NOT below them ( x )( x ) (x ) + (x +) = {(x +)(x )} Remove denominator (bottom section) x + x + = {x(x+) +(x )} Multiply out, open (x +)(x ) x + x + = { x x x } x + x + = { x x } x - = x x 9 x x 9 x = 0 Everything to one side. x x 8 = 0 If the equation can be factorised do so and let each bracket equal 0. If not use the FORMULA. Turn over to see how the FORMULA can be used to find our x values. The formula MUST be learned off by heart.

4 In this case we need to use the FORMULA b b 4ac x = a This formula will give us the two roots (x values) for any quadratic equation. Where possible however it is easier to factorise and let each bracket equal 0. This formula can be used in any question on the two papers to solve a quadratic and not just Q or Q. x x 8 = 0 A quadratic that cannot be factorised. a b c 8 The values of a, b and c for the formula. b ( ) b 4ac a ( ) ( ) 4( )(8) x = and x =. 7. x = and x = x = -. and x =. The formula Substitute in the a, b and c values. Remove square root Split into the + and parts The roots of the equation. 4

5 Indices With questions involving indices we must break down the numbers on each side of the = to the same base number. We can then let the indices (powers) of each equal each other and solve the simple equation. To break them down we need to learn the laws of indices below (a). (b) (c) ( (e) 9 9 (f) 64 = 64 4 (g) 8 = 8 = (h) and 5 4 Example Solve for x in the equation x x x x ( 5 ) Change 5 into ) (d) x x Remove bracket to leave both sides in base 5 x = 6-x Let the indices (powers) equal each other x + x = 6 x = 6 6 x Divide across by Example 4 8 ) 4 ( Solve for x in the equation = 5x 4 = The Equation 5x ( ) = Turn everything into base ( )( ) 5x Multiply the powers 5x = ( )( ) 5 x Let the powers equal each other 5 x Remove mixed fraction = (5 x) Multiply across by = 0 x Multiply to remove bracket x = 0 x = 7 7 x Divide across by 5x 5 5

6 Surds Surds are irrational numbers in the form Some important points: ab = a. b and a. b = ab Therefore 4 can be broken down into 4. 6 = 6 a a 6 6 therefore b b Terms with the same surd part can be added and subtracted Therefore = 4 6 Any surd squared is equal to the term under the root sign Therefore a 5 a 5 x x x x Equations involving surds can be solved by squaring both sides of the =. This gets rid of the surd part to leave you with a simple or quadratic equation. Example Solve 4 x 8 x 8 4 Take 4 to the other side of = x 4 4 x Square both side to remove surd part x = 6 x = 6 + x = 9 9 x = = 9 Divide across by Example ( x )( x ) x x x( x ) ( x ) x x x Open up the first bracket x x x. x ) ) x x x x Remove brackets by multiplying 9 x x Multiply 9 x x 6

7 Functions Questions with functions involve replacing the x in an expression with a number. They are generally a part (c) and can be asked in many different ways. Quite often it will ask you to put two numbers in for x and leaves you with a simultaneous equation. For example if it asks you to find f() you put in for x. If it asks you to find f(-5) you put 5 into the equation for x. Below are examples showing two different types of question Example f(x) = (x + p)(x p) given that f() = 0 find the value of p. f(x) = (x + p)(x p) write out the function f() = (() + p)( p) = 0 replace x in the function with and let it = 0 (4 + p)( - p) = 0 let each bracket = p = 0 and - p = 0 p = -4 and p = Example f(x) = ax bx 8 If f() = -9 and f(-) = find the value of a and b f(x) = ax bx 8 write out function f() = a () b() 8 = -9 put in x = and let function = -9 a + b 8 = -9 a + b = a + b = - This will be Equation of simultaneous f(x) = ax bx 8 write out function f(-) = a ( ) b( ) 8 = put in x = - and let function = a b 8 = a b = + 8 a b = This will be Equation of simultaneous a + b = - Equation Simultaneous Equation a b = Equation Simultaneous Equation a = 0 b s cancel, a + a = a, - + = 0 a = 5 divide across by a + b = - Equation 5 + b = - Put a value in to get the b value b = - 5 b s to one side, numbers to the other b = -6 evaluate a = 5 and b = -6 values for a and b 7

8 Factor Theorem Long Division In this type of question we are generally dealing with a cubic equation such as x x 4x = 0 There are a number of things they can ask in this question. The bold writing indicates the different things we may have to attempt to solve the equation. Show that something is a factor of the equation e.g. show that x is a factor. If x is a factor then x = is a root and by putting into the equation it will equal 0 Let us see if x is a factor by letting x = x x 4x = 0 Write out equation () 4() 0 Substitute in x = 8 + (4) 8 = = 0 This is true so x is a factor If we are NOT told the factor we must find it out through trial and error. We start off by putting x = into the equation and seeing if it equals 0 If so then x is a factor. If not we try x = - and see if this equals 0. If so then x + is a factor. If not we try x = and see if this equals 0. If so then x is a factor. If not we try x = - and so on until we have one of the factors. When we have a factor they may ask us to find OTHER factors. We do this through long division. In the above example we have found out that x is a factor of x x 4x To find the other factors divide x into x x 4x x 5x x x x 4x Divide x by x x x Multiply (x ) by 5x 4x Subtract (change signs) and divide 5x by x 5x 0x Multiply (x ) by 5x 6x Subtract (change signs) and divide 6x by x 6x Multiply (x ) by 6 0 Subtract (change signs) (x )( x 5x ) = 0 The factors of the equation (x )(x + )(x + ) = 0 We can factorise the second bracket further When we have the factors (brackets) we find the roots by letting each bracket = 0. Finding the roots means the same as solving the equation. Basically means get the x values. (x )(x + )(x + ) = 0 Factors x = 0 x + = 0 x + = 0 Let each bracket equal 0 x = x = - x = - The roots of the equation. Remember if it the question asks us to solve then we must find what x = x 8

9 Inequalities These are similar to simple equations but use the greater than, less than signs, greater than or equal to and less than or equal to signs ( and ). The rules for solving are similar to solving normal equations however one important difference is that if we decide to change all the signs we MUST change the direction of the inequality also. Example if x 4 then x -4 Change the signs, change the direction of inequality If asked to draw a number line we must pay close attention to whether the numbers are: x R - these are rational numbers, fractions, decimals etc and are illustrated on the number line with a shaded line. x Z - these are integers, all positive and negative whole numbers and are illustrated on the number line with dots. x N - there are natural numbers, positive whole numbers and are illustrated on the number line with dots. Example Solve 5x 4x for x R and illustrate on number line. 5x 4x 5x 4x x Evaluate To show this on a number line x R If the question had stated that x N or x Z we would use the following number line x N, x Z Occasionally we will be asked to find solutions for two sets in which case we need to know the meaning of the following symbols. - this means what numbers would be included in both sets. \ - this means what is included in one set without the other for example A\B means what numbers are in set A but not in set B Example A is the set x 4 x Z x B is the set 5 x Z A B x 4 + x 5 A is everything less than or equal to x x 0 B is everything greater than or equal to - x -9 x - x A B therefore - x -,-,-,0,, (all the numbers between and inclusive, these numbers are in both set A and set B) A\B therefore x -4 (all the numbers less than 4 are in set A but are NOT in set B, they are less than but not greater than ) 9

10 Rearrange This involves using our algebra skills to rearrange equations Step Remove brackets or fractions if necessary Step Take anything with the letter we are looking for to the left of the = and everything else to the right of the =. Step If there is more than one term now on the left, factorise to get the letter alone. Step 4 Divide across by the term next to the letter we want to isolate. Example Express x in terms of a,b and c (this means get x by itself on left of the = ) ax + b = c ax = c b Bring everything with an x to the left, everything else to the right. c b x Divide across by a to isolate x a Example Express b in terms of a and c (this means get b by itself on left of the = ) 8a 5b c b 8a 5b = bc Get rid of fraction by multiplying across by b -5b bc = - 8a Bring everything with a b to the left, everything else 5b + bc = 8a to the right. Change all the signs. b(5 + c) = 8a Factorise by taking out b 8a b (5 c) Divide across by (5 + c) to isolate b Example Express t in terms of p and q (this means get t by itself on left of the = ) q t p t t(p) = q - t Get rid of fraction by multiplying across by t tp + t = q Bring everything with a t to the left, everything else to the right. t(p + ) = q Factorise by taking out t q t Divide across by (p + ) to isolate t ( p ) 0

### Mathematics Higher Tier, Algebraic Fractions

These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or an organisation and would like to purchase these solutions please contact Chatterton

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Year 9 set 1 Mathematics notes, to accompany the 9H book.

Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### 6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms

AAU - Business Mathematics I Lecture #6, March 16, 2009 6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms 6.1 Rational Inequalities: x + 1 x 3 > 1, x + 1 x 2 3x + 5

### 3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

9.5 Quadratics - Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### Answers to Basic Algebra Review

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### STRAND: ALGEBRA Unit 3 Solving Equations

CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### 2015 Junior Certificate Higher Level Official Sample Paper 1

2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Fractions and Linear Equations

Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:

In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### In this lesson you will learn to find zeros of polynomial functions that are not factorable.

2.6. Rational zeros of polynomial functions. In this lesson you will learn to find zeros of polynomial functions that are not factorable. REVIEW OF PREREQUISITE CONCEPTS: A polynomial of n th degree has

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### Solving Logarithmic Equations

Solving Logarithmic Equations Deciding How to Solve Logarithmic Equation When asked to solve a logarithmic equation such as log (x + 7) = or log (7x + ) = log (x + 9), the first thing we need to decide

### ( yields. Combining the terms in the numerator you arrive at the answer:

Algebra Skillbuilder Solutions: 1. Starting with, you ll need to find a common denominator to add/subtract the fractions. If you choose the common denominator 15, you can multiply each fraction by one

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.

GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright

### Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Edexcel AS and A-level Modular Mathematics

Core Mathematics Edexcel AS and A-level Modular Mathematics Greg Attwood Alistair Macpherson Bronwen Moran Joe Petran Keith Pledger Geoff Staley Dave Wilkins Contents The highlighted sections will help

### Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### 0.4 FACTORING POLYNOMIALS

36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### 1.2 Linear Equations and Rational Equations

Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

### Lecture 7 : Inequalities 2.5

3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

### Factoring Polynomials

Factoring Polynomials 4-1-2014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Accuplacer Arithmetic Study Guide

Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

### Contents. Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!)

Page Contents Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!) Systematic Search for a Change of Sign (Decimal Search) Method Explanation

### 4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### Sample Problems. Practice Problems

Lecture Notes Factoring by the AC-method page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Partial Fractions Examples

Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

### Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear