ADVANCED INORGANIC CHEMISTRY (CHE 510) EXAMINATION II NOVEMBER 20, Name: Key

Size: px
Start display at page:

Download "ADVANCED INORGANIC CHEMISTRY (CHE 510) EXAMINATION II NOVEMBER 20, Name: Key"

Transcription

1 ADVACED IORGAIC CEMISTRY (CE 510) EXAMIATIO II OVEMBER 20, 2006 ame: Key SOW ALL OF YOUR WORK so that you may get some partial credit. The last few pages of this exam booklet contain tables that you may need to complete this exam. Please answer questions I TE AREA PROVIDED, TE BACK OF A EXAM PAGE OR O TE CLEARLY LABELED SPARE SEET. o credit will be given for work written on the tables pages. 1

2 1a. (8 pts) Using a group theoretical approach, construct a MO energy level diagram for tetrahedral 4 +. Include appropriate symmetry labels and discuss the logic used as well as any assumptions made in the construction of the MO diagram. What is the bond order predicted for tetrahedral 4 + on the basis of your MO energy level diagram? First, identify valence orbitals of the atoms involved in the bonding: the valence orbitals of the nitrogen atom are 2s, 2p x, 2p y, and 2p z orbitals while each hydrogen atom has a 1s orbital. ext, figure out the symmetry of the orbitals involved. Thus, we make SALC s of the hydrogen 1s orbitals T d E 8 C 3 3 C 2 6 S 4 6 σ d Γ 1s Which reduces to Γ 1s = A 1 + T 2 Looking in the character table, we see that for nitrogen: 2s orbital has a 1 symmetry 2p x, 2p y, and 2p z orbitals have t 2 symmetry Recognizing that nitrogen is more electronegative that hydrogen, we can suspect that the hydrogen SALC s will have the higher energy and that the a 1 SALC is slightly lower than the t 2 SALC s because of the nodal surfaces that exist although the atoms are not formally bonded. Thus, we get the diagram below: 2

3 t 2 2a 1 t 2 t 2 a 1 1t 2 a 1 1a 1 B.O. = ½ (8) = 4 1b. (8 pts) Using a group theoretical approach, construct a MO energy level diagram for square planar 4 +. Include appropriate symmetry labels and discuss the logic used as well as any assumptions made in the construction of the MO diagram. What is the bond order predicted for square planar 4 + on the basis of your MO energy level diagram? First, we find the symmetry point group for square planar + 4 : z y + x D 4h 3

4 ext, we generate SALC s of the hydrogen atom 1s orbitals; z y x D 4h E 2 C 4 C 2 2 C 2 ' 2 C 2 '' i 2 S 4 σ h 2 σ v 2 σ d Γ 1s We find that Γ 1s = A 1g + B 1g + E u after applying our reduction formula. Looking in the D 4h character table, we see that for nitrogen: 2s orbital has a 1g symmetry 2p x and 2p y have E u symmetry 2p z orbital has a 2u symmetry Recognizing that nitrogen is more electronegative that hydrogen, we get the diagram below: e u 2a 1g b 1g b 1g + e u a 2u + e u a 2u a 1g a 1g 1e u 1a 1g B.O = ½ (# of bonding electrons -# of antibonding electrons) = ½ (6-0) = 3. ote that electrons in a 2u orbital are nonbonding. 4

5 1c. (6 pts) Construct (draw) a Walsh diagram correlating the bonding molecular orbitals of tetrahedral 4 + with those of square planar 4 +. Explain the reasoning behind your diagram. Our Walsh diagram is shown below. The nodeless a 1 - a 1g orbital does not influence shape of the molecule since it is cylindrically symmetrical. As we can see the t 2 set of molecular orbitals in tetrahedral geometry splits into the a 2u and e u set in the square planar structure. The a 2u MO is primarily 3p z in character and the overlap with the hydrogen SALC s decreases to essentially zero, producing a large rise in its energy. Though overlap between the e u (p x and p y ) orbitals and the hydrogen orbitals increase slighty, it s is not enough to compensate this increase in energy of the a 2u orbital because the P X and p y orbitals were already in good overlap in tetrahedral geometry. Thus, when a molecule possesses a total of eight electrons, tetrahedral structure will be preferred. T d D 4h a 2u orbital energy t 2 eu a 1 a 1g 109 Angle ( ) 90 See Yoshizawa et al. Chem. Phys. 2001, 271, for recent discussion of Walsh diagrams of A 4 molecules. 5

6 2a. (10 pts) Using group theory, construct a MO energy level diagram showing sigma bonding only for [Ti(CO) 6 ] 2-. Include appropriate symmetry labels for all orbitals and discuss the logic used as well as any assumptions made in constructing your MO diagram. Draw the MO diagram using the template labeled [Ti(CO) 6 ] 2- (below). First, identify valence orbitals of the atoms involved in the bonding. The valence orbitals of the titanium atom are the five 3d-, 4s-, and three 4p orbitals. The CO ligands form sigma bonds though their 3σ g OMO (we showed this in class). ext, we figure out the symmetry of the orbitals involved. Thus, we make SALC s of the CO donor sigma orbitals:!!!!!! O h E 8 C 3 6 C 2 6 C 4 3C 4 2 i 6 S 4 8 S 6 3 σ h 6 σ d Γ Co Which reduces to Γ CO = A 1g + E g + T 1u Looking in the character table, we see that for titanium: 4s orbital has a 1g symmetry 3dz 2 and 3dx 2 -y 2 have e g symmetry 3dxy, 3dxz, and 3dyz have t 2g symmetry 4p x,4p y, and 4p z orbitals have t iu symmetry Recognizing that the CO donor electrons must be at lower energy than the titanium acceptor orbitals (CO carbon is more electronegative that titanium), we get the diagram on the next page. We see that the t 1u orbitals are lower in energy than the e g, this is because the e g orbitals point directly at the ligands and are raised in energy due to repulsive interaction. 6

7 Ti 2- [Ti(CO) 6 ] 2-6CO 2t 1u 2a 1g 2e g CO!* orbitals (not involved in " bonding) t 1u E a 1g e g t 2g t 2g t 1u a 1g e g 1t 1u 1e g 1a 1g 7

8 2b. (5 pts) [Ti(CO) 6 ] 2- displays an IR-active CO stretch (ν CO ) at 1748 cm -1 while [Cr(CO) 6 ] displays an IR-active CO stretch (ν CO ) at 2000 cm -1. Use the template below to draw a MO energy level diagram for [Cr(CO) 6 ] that is consistent with its higher CO stretching frequency. Cr [Cr(CO) 6 ] 6CO 2t 1u 2a 1g 2e g CO!* orbitals (not involved in " bonding) E t 1u a 1g e g t 2g t 2g t 1u a 1g e g 1t 1u 1e g 1a 1g 8

9 2c. (5pts) Rationalize the trend in ν CO for [Ti(CO) 6 ] 2- and [Cr(CO) 6 ] on the basis of your MO diagrams and keeping in mind the electroneutrality principle. Both Ti 2- and Cr are d 6 metal centers. The IR data indicate that greater metal to CO ligand back-bonding interaction occurs in [Ti(CO) 6 ] 2- than [Cr(CO) 6 ]. This can be explained by the fact that titanium is more electropositive than Cr and has a -2 charge in [Ti(CO) 6 ] 2-, which means more electron density needs to be delocalized onto the CO ligands to maintain an essentially neutral metal center. Thus, titanium s valence orbitals and hence [Ti(CO) 6 ] 2- s molecular orbitals reside at higher energy than Cr s valence orbitals and hence [Cr(CO) 6 ] s molecular orbitals. As a result, t 2g orbitals of [Ti(CO) 6 ] 2- are closer in energy to CO π* orbitals, leading to better overlap and greater (metal d CO π*) backbonding interaction. 2d. (6 pts) The photoelectron spectrum of gas phase [Mo(CO) 6 ] is shown below. Use the spectrum to account for the energies of the molecular orbitals of the octahedral complex. int: the ionization energy of CO itself is around 14 ev. The OMOs of [Mo(CO) 6 ] are the three t 2g orbitals largely confined to the Mo atom (see MO diagram for related [Cr(CO) 6 ] on previous page for reference ) and their energy can be ascribed to that of the peak with the lowest ionization energy (close to 8 ev). The group of ionization energies around 14eV is 9

10 probably due to the Mo-CO σ bonding orbitals, as well as bonding orbitals in CO since the ionization energy of CO itself is around 14 ev. 3a. (8 pts) ame the following compounds according to IUPAC rules: (a) [Co 2 (en)( 3 ) 2 ] Diamminedichloroethylenediaminecobalt(II) (b) [Co( 3 )( 3 ) 5 ]SO 4 Pentaammineazidocobalt(III) sulfate (c) [Ag( 3 ) 2 ]PF 6 Diamminesilver(I) hexaflurophosphate (d) K 3 [Fe(C) 6 ] Potassium hexacyanoferrate(iii) 3b. (10 pts) Draw all of the possible isomers for [Co 2 (en)( 3 ) 2 ]. 3 Co 3 3 Co 3 Co 3 3 Co

11 4. (10 pts) The important structural role of Zn 2+ in biological systems can be attributed to its electronic preference for octahedral over tetrahedral geometry. True or False? Explain your reasoning False. Zn 2+ has d 10 electron configuration. The LFSE is zero for both octahderal and tetrahedral geometries (below). Thus, octahedral site stabilization energy is zero hence there is no electronic preference for octahedral geometry over tetrahedral geometry. The geometry adopted by Zn 2+ generally depends on the steric requirements of the ligands and thermochemical considerations. T d O h! O! t d LSFE = 0 LSFE = 0 11

12 5. (15 pts) Bearing in mind the Jahn-Teller theorem, rank the following compounds in terms of their degree of deviation from idealized octahedral structure: [Cr(C) 6 ] 4-, [Cu(O 2 ) 6 ] 2+, and [Cr(O 2 ) 6 ] 3+. Explain your reasoning and indicate what type of distortion can be expected (use drawings as required). [Cr(O 2 ) 6 ] 3+ < [Cr(C) 6 ] 4- < [Cu(O 2 ) 6 ] 2+ Cr 2+ = d 4 ion, Cr 3+ = d 3 ion, and Cu 2+ = d 9 ion. 2 O is a weak field ligand while C - is a strong field ligand. ence, [Cr(C) 6 ] 4- is a low spin complex while only one electron configuration is possible in the case of [Cu(O 2 ) 6 ] 2+ or [Cr(O 2 ) 6 ] 3+. While a d 3 ion is not subject to Jahn-Teller distortion since no stabilization is gained, a Jahn-Teller (J-T) distortion, which lowers the symmetry, removes orbital degeneracy, and leads to a more stable complex, is expected for both low spin d 4 - (axial compression) and d 9 electron configurations (axial compression or elongation). J-T distortion results in greater splitting of the e g orbitals than the t 2g orbitals, hence deviation from idealized octahedral is greater for [Cu(O 2 ) 6 ] 2+ than [Cr(C) 6 ] 4- (see your textbook for splitting diagrams) 12

13 6. (12 pts) Explain the differences in values of the ligand field splittings ( = o or T ) for the cobalt complexes below: Complex (cm -1 ) [Co( 3 ) 6 ] 3+ 22,900 [Co( 2 O) 6 ] 3+ 18,200 [Co( 3 ) 6 ] 2+ 10,200 [Co( 3 ) 4 ] 2+ 5,900 3 exerts a stronger ligand field than 2 O hence is greater for [Co( 3 ) 6 ] 3+ than [Co( 2 O) 6 ] 3+, both of which contain Co 3+ ions. While [Co( 3 ) 6 ] 3+ and [Co( 3 ) 6 ] 2+ are both hexaammine complexes, an increase in ionic charge (from Co 2+ to Co 3+ ) will draw the ligands more closely in and thereby increase electrostatic repulsion. Consequently, for [Co( 3 ) 6 ] 3+ is greater than for [Co( 3 ) 6 ] 2+. early, 3 is not a sufficiently stronger ligand field than 2 O to overcome the effect of the increased charge in [Co( 2 O) 6 ] 3+ versus in [Co( 3 ) 6 ] 2+. The greater the number of ligands, the greater the perturbation of the d orbitals. Thus, six coordinate complexes have greater values of than the tetrahedral complex, [Co( 3 ) 4 ] 2+ (remember that t = 4/9 o ). 13

14 7. (12 pts) For each of the following pair of complexes, identify the one that has the larger ligand field stabilization energy (LFSE). Explain your reasoning and where possible, show your work. (a) [Mn(O 2 ) 6 ] 2+ or [Fe(O 2 ) 6 ] 3+ Both Mn 2+ and Fe 3+ are isoelectronic (d 5 ) ions. Since 2 O is a weak field ligand, both [Mn(O 2 ) 6 ] 2+ and [Fe(O 2 ) 6 ] 3+ are high spin complexes. ence both have LFSE = 0. (b) [Cr(O 2 ) 6 ] 2+ or [Mn(O 2 ) 6 ] 2+ Both are high-spin complexes. While Mn 2+ is a d 5 ion and hence LFSE = 0, Cr 2+ is a d 4 ion and hence [Cr(O 2 ) 6 ] 2+ has t 2g 3 e g 1 configuration and LFSE = [(-0.4 x 3) + (0.6 x 1)] o = -0.6 o. Thus, [Cr(O 2 ) 6 ] 2+ has the larger LFSE. (c) [Ru(C) 6 ] 3- or [Fe(C) 6 ] 3- Both Ru 3+ and Fe 3+ are d 6 ions that belong to the same group. Both complexes are low spin and hence have t 2g 6 electron configuration. owever, LFSE increases down the group (as d orbital size increases, allowing for better overlap) and hence the ruthenium complex will have the higher LFSE 14

Covalent Bonding & Molecular Orbital Theory

Covalent Bonding & Molecular Orbital Theory Covalent Bonding & Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #16 References - MO Theory Molecular orbital theory is covered in many places including most

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

Geometries and Valence Bond Theory Worksheet

Geometries and Valence Bond Theory Worksheet Geometries and Valence Bond Theory Worksheet Also do Chapter 10 textbook problems: 33, 35, 47, 49, 51, 55, 57, 61, 63, 67, 83, 87. 1. Fill in the tables below for each of the species shown. a) CCl 2 2

More information

TRANSITION METALS AND COORDINATION CHEMISTRY

TRANSITION METALS AND COORDINATION CHEMISTRY CHAPTER TWENTY-ONE TRANSITION METALS AND COORDINATION CHEMISTRY For Review 1. Chromium ([Ar]:4s 0 3d 5 ) and copper [Ar]:4s 1 3d 10 ) have electron configurations which are different from that predicted

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each) CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum

More information

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5 Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

LCAO-MO Correlation Diagrams

LCAO-MO Correlation Diagrams LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

18 electron rule : How to count electrons

18 electron rule : How to count electrons 18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16. 129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.

More information

CHEMISTRY 113 EXAM 4(A)

CHEMISTRY 113 EXAM 4(A) Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

More information

CHAPTER 13 CHAPTER 13. Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only.

CHAPTER 13 CHAPTER 13. Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. Generated by Foxit PDF reator Foxit Software Pd- AND f-blk RGANETALLIS PAn organometallic compound must contain P a carbon-metal bond. PBook, p. 459, gives list of common ligands P An over-view of organometallics

More information

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar

More information

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

Hybrid Molecular Orbitals

Hybrid Molecular Orbitals Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers. So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

How To Write A Periodic Table

How To Write A Periodic Table Spring 2008 hemistry 2000 Midterm #1A / 50 marks INSTRUTINS 1) Please read over the test carefully before beginning. You should have 5 pages of questions and a periodic table. 2) If you need extra space,

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

Electronegativity and Polarity

Electronegativity and Polarity and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to

More information

3.091 Fall Term 2002 Homework #4 Solutions

3.091 Fall Term 2002 Homework #4 Solutions 3.091 all Term 2002 omework #4 olutions 5-5. We imply that sodium is a better electron donor than lithium. Evidence for this can be found in the lower value of AVEE which for these two elements is equivalent

More information

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

Electron Counting in Organometallic Chemistry

Electron Counting in Organometallic Chemistry Electron Counting in Organometallic Chemistry 1. The 18-Electron Rule; definition & rationalisation The constitution and structure of main group element complexes can be predicted and rationalised by a

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

CHAPTER 5: MOLECULAR ORBITALS

CHAPTER 5: MOLECULAR ORBITALS Chapter 5 Molecular Orbitals 5 CHAPTER 5: MOLECULAR ORBITALS 5. There are three possible bonding interactions: p z d z p y d yz p x d xz 5. a. Li has a bond order of. (two electrons in a bonding orbital;

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Ionic Bonding Pauling s Rules and the Bond Valence Method

Ionic Bonding Pauling s Rules and the Bond Valence Method Ionic Bonding Pauling s Rules and the Bond Valence Method Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #14 Pauling Rules for Ionic Structures Linus Pauling,, J. Amer. Chem. Soc. 51,,

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK

CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK CHEM 340 CHEMICAL BONDING in General Lect07 BONDING between atoms classified as belonging to one of the following types: IONIC COVALENT METAL COVALENT NETWORK or each bond type, the valence shell electrons

More information

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

CHEM 101/105 BONDING (continued) Lect-16

CHEM 101/105 BONDING (continued) Lect-16 CHEM 0/05 BONDING (continued) Lect6 A Second covalent bonding theory, MOLECULAR ORBITAL THEORY accounts for covalent bonding by... before looking at MO, return for a moment to the individual unbonded atom

More information

Valence Bond Theory: Hybridization

Valence Bond Theory: Hybridization Exercise 13 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Valence Bond Theory: ybridization Name: Objectives To illustrate the distribution of electrons and rearrangement of orbitals

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Name AP Chemistry Molecular Geometry & Polarity Molecular Geometry A key to understanding the wide range of physical and chemical properties of substances is recognizing that atoms combine with other atoms

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Covalent Bonding and Molecular Geometry

Covalent Bonding and Molecular Geometry Name Section # Date of Experiment Covalent Bonding and Molecular Geometry When atoms combine to form molecules (this also includes complex ions) by forming covalent bonds, the relative positions of the

More information

Use the Force! Noncovalent Molecular Forces

Use the Force! Noncovalent Molecular Forces Use the Force! Noncovalent Molecular Forces Not quite the type of Force we re talking about Before we talk about noncovalent molecular forces, let s talk very briefly about covalent bonds. The Illustrated

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and

More information

Exercises Topic 2: Molecules

Exercises Topic 2: Molecules hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions Molecular Shape and Polarity 4.2 molecule is a discrete chemical entity, in which atoms are held together by the electrostatic attractions of covalent bonds. In previous chemistry courses, you used Lewis

More information

5. Which of the following is the correct Lewis structure for SOCl 2

5. Which of the following is the correct Lewis structure for SOCl 2 Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules.

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules. Chapter 10 Bonding: Lewis electron dot structures and more Bonding is the essence of chemistry! Not just physics! Chemical bonds are the forces that hold atoms together in molecules, in ionic compounds,

More information

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

More information

Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341)

Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341) Chemistry 111 Laboratory Experiment 4: Visualizing Molecular Orbitals with MacSpartan Pro (This experiment will be conducted in OR341) Introduction In class we have discussed Lewis structures, resonance,

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

Lesson 3. Chemical Bonding. Molecular Orbital Theory

Lesson 3. Chemical Bonding. Molecular Orbital Theory Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+ Chapter 9 Tro 1. Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? A) 1s 2 2s

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution Oxides; acidic, basic, amphoteric Classification of oxides - oxide

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information