Chemistry 417! 1! Fall Chapter 2 Notes


 Lynette Garrett
 2 years ago
 Views:
Transcription
1 Chemistry 417! 1! Fall 2012 Chapter 2 Notes September 3, 2012! Chapter 2, up to shielding 1. Atomic Structure in broad terms a. nucleus and electron cloud b. nomenclature, so we may communicate c. Carbon12 is the reference for weights d. isotopes i. some elements (P, F for example) are monotopic e. allotropes i. some elements occur in different forms 1. examples are C, O, S, P 2. an example with consequences is Sn (look up tin pest ) a The Bohr atom a. electrons do not orbit the nucleus as in classical model i. why would classical orbits not be viable? b. experiments came before theory i. atoms of hydrogen (and other elements) that were excited by heat or electric discharge emitted light of specific wavelengths an equation to account for the position of the emissions in the electromagnetic spectrum was empirically developed. This is the Balmer equation c. Balmer equation, extended d. Paschen, Balmer & Lyman series e. theorists developed a model of the atom where electrons exist in stationary states about the nucleus i. these states differ in amount of angular momentum of the electron, which is quantized. transitions of the electron between these states is allowed, with release or absorption of energy corresponding to the difference in energy between the two states. Gain or loss of arbitrary amounts of energy is not allowed f. we treat the electron as having wave properties g. the heart of the model is the Schrödinger equation (see page 23) i. wave function ψ must be singlevalued i iv. wave function and its first derivative must be continuous wave function must approach zero as r approaches infinity the integral of the product of the wave function and its complex conjugate over all space must equal 1 v. the integral of a wave function with another wave function (two different orbitals) must be zero; the orbitals are orthogonal. h. Particle in a box (your full treatment of this is in 2 nd semester PChem) i. a model so we can have a more sophisticated picture of an orbital other than itʼs not an orbit.
2 Chemistry 417! 2! Fall 2012 you arenʼt responsible for reproducing the derivation on p , but intellectually, you need to be able to follow it. i. The square of the wave function (ψ 2 ) does have physical significance. Its magnitude is proportional to the probability of finding the electron at various places 3. The quantum numbers (see p. 26) a. Weʼll develop this the Hydrogen Atom Wave Functions and use them as the basis for understanding multielectron atoms b. the quantum number rules c. your General Chemistry text will have a nice thorough background on this stuff 4. Angular and Radial Functions a. A wave function in 3 dimensions can be conveniently thought of as having two parts (radial function and two angular functions) i. the angular function: how does the electron density differ as a function of position a given distance from the nucleus? the radial functions: how does electron density differ as a function of distance from the nucleus? b. Angular function. The familiar shapes of s, p, and d orbitals follow straight from the angular functions for the hydrogen atom i. depends on the quantum numbers l and ml see Table 2.3 (p. 27), follow the progression across the table to the rightmost columns c. Radial functions. i. the presence of nodes within lobes of the orbital (or, for the s orbital, within the whole orbital itself) i the radial function tends toward zero farther away from the nucleus we draw pictures that capture some arbitrary amount (90, 95, or 99%) of the electron density which are of practical use (knowing that orbitals extend infinitely with infinitely small electron density is not of practical use). d. Nodal surfaces. i. arise from both the angular and the radial functions 1. see Figure 2.7 on p. 31. Here we see that a node is a place where the sign of the wave function crosses through zero. 2. In terms of probability of finding the electron, the probability at a node is zero. 3. Angular nodes are planar or conical. In Figure 2.8, see (b) through (f) for examples of angular nodes. (c) has both an angular (planar) node and a radial (spherical) node. The nodes depicted in (d) are conical nodes you are looking at a crosssection of the orbital. 4. Radial nodes are spherical. In Figure 2.8, (a) and (c) show radial nodes, which look like a circle in the drawings because you are looking at a crosssection of the orbital 5. Aufbau Principle (see also any General Chemistry text) a. how we fill orbitals in multielectron atoms b. paying attention to quantum number rules c. fill orbitals according to their energy levels
3 Chemistry 417! 3! Fall 2012 i. lower n is lower energy for a given n, lower the l the lower the energy i *caution* sometimes a certain (n, l) combination will be higher in energy than a different (n+1, l) combination. (the value of l is different in each case.) 6. Pauli Exclusion Principle a. no electrons in an atom may have the exact same values for the four quantum numbers 7. Hundʼs rule of maximum multiplicity a. see Table 2.6 to make this idea clear b. diagram bottom p. 35 i. Coulombic energy it costs energy to put two electrons in the same orbital versus different orbitals (this one makes good sense) Exchange energy it costs energy to have two electrons not be strictly interchangeable
4 Chemistry 417! 4! Fall 2012 An alternative, nonoutline take on this material: Notes with Figures from Chapter 2 Balmer (1885) rationalizes the wavelengths of spectral lines of atomic hydrogen. This can be generalized to: where l means lower, h means higher A positive value means energy is emitted; a negative value means that energy was absorbed. Very important: This model, though it works very well, only works for hydrogen and other singleelectron systems (He +, Li 2+, etc.). de Broglie asserted that the electron has wavelike properties: And Heisenbergʼs uncertainty principle tells us that the uncertainties in position and momentum are intertwined: Which means for us that although we find energies (and thus momenta) of electrons with great precision, the consequence is large uncertainty in the position of the electron. Thus the ideal simplicity of orbits gives way to orbitals: orbitals are regions that describe the probable location of electrons. We will talk about probability of finding electrons in a region, and use the term electron density to represent this. So, a useful mental picture is given on page 21: electrons can be thought of as forming standing waves but the motion and position cannot be precisely determined. We use equations to calculate approximations of the electron density in a system. The most common way is with the Schrödinger equation: Hψ = Eψ
5 Chemistry 417! 5! Fall 2012 ψ is the wavefunction E is the energy of the electron H, the Hamiltonian, operates on the wavefunction, and the result is the wavefunction back, multiplied by the energy of the electron. Just what are the wavefunctions? We develop the idea of the wavefunction by looking at the 1dimensional model of a particle in a box. For us, the point of the particle in a box derivation is to justify the experimental reality that energy levels of electrons in atoms, ions, and molecules are quantized, and transitions between levels only occur with discrete energy changes. Atomic wavefunctions are derived for three dimensions the way that 1dimensional wavefunctions are done for the particle in the box. Particle in a box exists in one dimension, and has 1 quantum number Orbitals in 3 dimensions have 3 quantum numbers Page 27 gives a tabular guide to the angular and radial functions Angular functions (Θ, Φ) these lead to the shapes (Θ) and orientations (Φ) of orbitals (use quantum numbers l and ml) sometimes the two functions are combined into a single angular function Υ Radial function (R) these lead to the shapes and energies of orbitals (use quantum numbers n and l) Considering the radial function, we make an important conceptual distinction between the radial function (R) and the radial probability function (4πr 2 R 2 ). The radial probability function is the square of the radial function multiplied by a factor so that it gives the probability of finding the electron at a given distance from the nucleus on a very thin spherical shell. See the following figure derived from Figure 2.7 (page 31)
6 Chemistry 417! 6! Fall 2012 Radial functions compared to Radial probability functions
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary
More information2. Atomic Structure. 2.1 Historical Development of Atomic Theory. Remember!? Dmitri I. Mendeleev s Periodic Table (17 Feb. 1869 )
2. Atomic Structure 2.1 Historical Development of Atomic Theory Remember!? Dmitri I. Mendeleev s Periodic Table (17 Feb. 1869 ) 1 2.1.1 The Periodic Table of the Elements 2.1.2 Discovery of Subatomic Particles
More informationAtomic Theory and the Periodic Table
Atomic Theory and the Periodic Table Petrucci, Harwood and Herring: Chapters 9 and 10 Aims: To examine the Quantum Theory, to understand the electronic structure of elements, To explain the periodic table
More informationAP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE
AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as
More informationAtomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
More informationAP Chemistry A. Allan Chapter 7 Notes  Atomic Structure and Periodicity
AP Chemistry A. Allan Chapter 7 Notes  Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 101 1010 108 4 to 7x107 104 101 10 10 4 gamma
More informationChapter 7: The QuantumMechanical Model of the Atom
C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The QuantumMechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,
More informationDO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
More informationChapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom
Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are
More informationLevel 3 Achievement Scale
Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that
More informationName Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problemsolving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
More information1D 3D 1D 3D. is called eigenstate or state function. When an operator act on a state, it can be written as
Chapter 3 (Lecture 45) Postulates of Quantum Mechanics Now we turn to an application of the preceding material, and move into the foundations of quantum mechanics. Quantum mechanics is based on a series
More informationChapter 5. Mendeleev s Periodic Table
Chapter 5 Perodicity and Atomic Structure Mendeleev s Periodic Table In the 1869, Dmitri Mendeleev proposed that the properties of the chemical elements repeat at regular intervals when arranged in order
More informationWave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum
Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability
More informationChapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
More informationChapter 7. Quantum Theory and Atomic Structure
Chapter 7. Quantum Theory and Atomic Structure A problem arose in Rutherford s nuclear model. A nucleus and electron attract each other; to remain apart the electron must move. The energy of the electron
More informationMultielectron atoms
Multielectron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.
More informationReview of the isotope effect in the hydrogen spectrum
Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationChemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light  Energy travels through space in the form of electromagnetic radiation (EMR).  Examples of types of EMR: radio waves, xrays, microwaves, visible
More informationBohr s Model and Emission Spectra of Hydrogen and Helium
PHYS01 LAB03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms
More informationFUNDAMENTALS OF CHEMISTRY Vol. I  Chemical Matter: Elements and Their Classification Through the Periodic System  Renato Ugo
CHEMICAL MATTER: ELEMENTS AND THEIR CLASSIFICATION THROUGH THE PERIODIC SYSTEM Renato Ugo Università di Milano, Italy Keywords: chemical elements, electrochemical properties, electron affinities, electronegativity,
More informationAtomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\111020\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
More informationLight as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
More informationChapter 7: Electrons in Atoms. Electromagnetic Radiation
Chapter 7: Electrons in Atoms Dr. Chris Kozak Memorial University of Newfoundland, Canada 1 Electromagnetic Radiation Electric and magnetic fields propagate as waves through empty space or through a medium.
More informationThe Nature of Electromagnetic Radiation
II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines
More information develop a theory that describes the wave properties of particles correctly
Quantum Mechanics Bohr's model: BUT: In 192526: by 1930s:  one of the first ones to use idea of matter waves to solve a problem  gives good explanation of spectrum of single electron atoms, like hydrogen
More informationAtoms Absorb & Emit Light
Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions
More informationPhotons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
More informationATOMIC STRUCTURE AND THE PROPERTIES OF MATTER
SUBAREA I. ATOMIC STRUCTURE AND THE PROPERTIES OF MATTER COMPETENCY 1.0 UNDERSTAND THE VARIOUS MODELS OF ATOMIC STRUCTURE, THE PRINCIPLES OF QUANTUM THEORY, AND THE PROPERTIES AND INTERACTIONS OF SUBATOMIC
More informationArrangement of Electrons in Atoms
CHAPTER 4 PRETEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital
More informationWAVES AND ELECTROMAGNETIC RADIATION
WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):
More informationObjectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory
PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & deexcitation Ionisation Molecules Constituents
More informationOutline. Chapter 6 Electronic Structure and the Periodic Table. Review. Arranging Electrons in Atoms. Fireworks. Atomic Spectra
Outline William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 6 Electronic Structure and the Periodic Table Light, photon energies and atomic spectra The hydrogen
More informationCHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser General Chemistry I revised 8/03/08
CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser General Chemistry I revised 8/03/08 6.9 What are the basic SI units for? (a) the wavelength of light meters, although colors are usually reported in 3 digit
More information13 What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1 What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) 3.48 x 1017 J b) 2.18 x 1019 J c) 1.55 x 1019 J d) 2.56 x 1019
More informationAtomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number
2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number  number of protons number of protons = number of electrons IF positive
More informationAP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0,  1/ for the three
More informationAtomic structure The product of frequency and wavelength for all forms of electromagnetic radiation (light) is a constant, the speed of light c.
Chapter 5: Electrons in Atoms Light (Electromagnetic Radiation) Light has the properties of both waves and particles. Light waves carry energy through space. wavelength (λ) meters frequency (ν) Hz (s 1
More informationThe Early History of Quantum Mechanics
Chapter 2 The Early History of Quantum Mechanics In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie, Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,
More informationThe Bohr model for the electrons
The Bohr model for the electrons Electronic structure how the electrons are arranged inside the atom Applying the quantum principle of energy Two parameters: Energy Position Learning objectives Describe
More informationCHM1 Exam 4 Review. Topics. 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits  0 amu 2.
Topics 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits  0 amu 2. Atomic symbols Mass number (protons + neutrons) 4+ charge 126C atomic number (# protons)
More informationChapter 11 Modern Atomic Theory
163 Chapter 11 Modern Atomic Theory Review Skills 11.1 The Mysterious Electron Standing Waves and Guitar Strings Electrons as Standing Waves Waveforms for Hydrogen Atoms Particle Interpretation of the
More informationChemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
More informationModule 1: Quantum Mechanics  2
Quantum Mechanics  Assignment Question: Module 1 Quantum Mechanics Module 1: Quantum Mechanics  01. (a) What do you mean by wave function? Explain its physical interpretation. Write the normalization
More informationEmission of Light & Atomic Models 1
Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.
More informationChem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
More informationAssessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
More informationLight is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.
Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in
More informationhypothesis of Louis de Broglie (1924): particles may have wavelike properties
Wave properties of particles hypothesis of Louis de Broglie (1924): particles may have wavelike properties note: it took almost 20 years after noting that waves have particle like properties that particles
More informationChapter 6 Electronic Structure of Atoms
Chapter 6 Electronic Structure of Atoms 1. Electromagnetic radiation travels through vacuum at a speed of m/s. (a). 6.626 x 26 (b). 4186 (c). 3.00 x 8 (d). It depends on wavelength Explanation: The speed
More informationElectron Energy and Light
Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by
More informationBOHR S THEORY AND PHYSICS OF ATOM CHAPTER 43
1. a BOHR S THEORY AND PHYSICS OF ATOM CHAPTER 3 1 h A T (ML T ) M L T 3 L me L MLT M(AT) M L T a has dimensions of length.. We know, 1/ 1.1 1 (1/n 1 1/n ) a) n 1, n 3 or, 1/ 1.1 1 (1/ 1/9) 36 or, 6.5
More informationThe Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
More informationSection 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
More informationElectron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:
Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of
More informationATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
More informationPhysical Principle of Formation and Essence of Radio Waves
Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the
More information5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the StefanBoltzmann Law Light has
More informationThe Beginnings of Atomic Theory
Atoms Section 1 The Beginnings of Atomic Theory Who came up with the first theory of atoms? In the fourth century BCE, the Greek philosopher Democritus suggested that the universe was made of indivisible
More informationBohr's Theory of the Hydrogen Atom
OpenStaxCNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe
More informationExperiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight
Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,
More informationUNIT TEST Atomic & Molecular Structure. Name: Date:
SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A  Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons
More informationEmission Spectra of Elements
Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory
More informationThe Periodic Table of the Elements
Chapter 15 The Periodic Table of the Elements In Section 13.4, we saw the example of a square potential well. In that example, there were three bound states. This is the solution for a single electron
More information5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM
5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,
More informationLecture 20: Polyelectronic Atoms
Lecture 20: Polyelectronic Atoms Reading: Zumdahl 12.1012.13 Outline: Spin (the 4 th quantum number) The Aufbau ( fillingup ) Principle Filling up orbitals and the Periodic Table Electronic Configuration
More informationWelcome to Chemistry!
Welcome to Chemistry! Introduction Lecturer: Dr Adrian George (Chemistry room 224; adrian.george@sydney.edu.au) General administration and course structure Tutorials and tutorial quizzes (3 quizzes 15%
More informationnm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm
Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the
More informationElectromagnetic Radiation
Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can
More informationCHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules
CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.K. Skylaris 1 The (timeindependent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction
More informationCHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
More informationChapter 7. Electron Structure of the Atom. Chapter 7 Topics
Chapter 7 Electron Structure of the Atom Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of
More informationElements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
More informationAtoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework
Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,
More informationQuantum Atom: Atomic Structure, Electron Configuration, and Periodicity
Quantum Atom: Atomic Structure, Electron Configuration, and Periodicity Equations: λν = c E = hν E = hν energy of photon difference of energy levels λ = h/p p = mu (momentum and particle wavelength) debroglie
More informationModern Atomic Theory
Reading: Ch. 9, sections 14 Ch. 7, sections 56 (lec) Ch. 7, sections 13 (lab) Modern Atomic Theory Homework: Chapter 9: 37*, 39*, 41 Chapter 7: 59, 61*, 63, 65 (lec.) Chapter 7: 39, 41, 43, 47 (lab)
More information* Biot Savart s Law Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.
* Biot Savart s Law Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying
More informationAtomic Structure DEMOCRITUS JOHN DALTON
Atomic Structure ATOM: the smallest particle that has the properties of an element. From the early Greek concept of the atom to the modern atomic theory, scientists have built on and modified existing
More informationUnit 2: Atomic Theory Practice Packet
Unit 2: Atomic Theory Practice Packet 1 Name History of Atomic Theory Period Fill in the missing information in the chart below: Name of Researcher Equipment Sketch of Model Major Idea/Discovery N/A All
More informationElements may combine in more than one proportion to form more than one compound. Examples...
1 UNIT 5  ATOMIC THEORY: THE NUCLEAR MODEL OF THE ATOM 2 3 Dalton s Atomic Theory 1) Each element is made up of tiny, individual particles called atoms. 2) Atoms are indivisible; they cannot be created
More informationMr. Dolgos Regents Chemistry NOTE PACKET. Unit 2: Atomic Theory
*STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry NOTE PACKET Unit 2: Atomic Theory 1 *STUDENT* UNIT 2  ATOMIC THEORY *STUDENT* VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic
More informationUNIT 2  ATOMIC THEORY
UNIT 2  ATOMIC THEORY VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic number Bohr model Cation Compound Electron Electron Configuration Element Excited state Ground state
More informationTime dependence in quantum mechanics Notes on Quantum Mechanics
Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:3705:00 Copyright 2003 Dan
More informationPHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004
PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall
More informationMass number = total number of protons and neutrons in the nucleus
CH160: Professor Peter Sadler Introduction to inorganic chemistry Atoms and orbitals Recommended reading: Housecroft & Constable Chemistry, 3 rd Ed. 2006, Chapter 3 (Atoms and atomic structure), pages
More information8/29/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory (1808) J. J. Thomson. Thomson s Experiment
Atomic Structure & The Periodic Table The Greek Philosophers Democritus believed that all matter is made up of tiny particles that could not be divided Aristotle  thought that matter was made of only
More information1: Below you can see a computer generated image of a 2s orbital from Rutgers University website.
Quantum Mechanics of an H atom: 1: Below you can see a computer generated image of a 2s orbital from Rutgers University website. 2: Since the rest of the problems include alteration to the plot, it is
More informationChapter 9. Gamma Decay
Chapter 9 Gamma Decay As we have seen γdecay is often observed in conjunction with α or βdecay when the daughter nucleus is formed in an excited state and then makes one or more transitions to its ground
More informationSample Exercise 6.1 Concepts of Wavelength and Frequency
Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the
More informationThe Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010
The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of
More informationTHE BOHR QUANTUM MODEL
THE BOHR QUANTUM MODEL INTRODUCTION When light from a lowpressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a lowpressure gas is examined with
More informationFLAP P11.2 The quantum harmonic oscillator
F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of
More informationCHEMSITRY NOTES Chapter 13. Electrons in Atoms
CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.
More information1 Lecture 3: Operators in Quantum Mechanics
1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators
More informationE α q 1 q 2 d. NOTE: The negative charge is the same distance from the positive charge in
During Class Invention Question: How are electrons arranged in an atom? 1. Describe the nature of the interaction between protons and electrons in an atom? Consider using some or all of the following terms
More informationLight and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689
Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to
More informationChapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.
Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A
More informationInvestigating electromagnetic radiation
Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M35 and T34,56. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this
More informationA1_Lotukerfið og uppbygging atómanna
Instructor Solutions Manual for Chemistry for Engineering Students, 2 nd Edition 61 Lota_2 A1_Lotukerfið og uppbygging atómanna The Electromagnetic Spectrum 6.8 Which of the waves depicted here has the
More information