The Grating Spectrometer and Atomic Spectra

Save this PDF as:

Size: px
Start display at page:

Transcription

1 PHY 192 Grating Spectrometer Spring The Grating Spectrometer and Atomic Spectra Introduction In the previous experiment diffraction and interference were discussed and at the end a diffraction grating was introduced. In this lab most of the things learned in the last experiment will be applied to measure the wavelengths of the lines in the visible spectrum of some elements. You will use a diffraction grating mounted on a spectrometer to measure the interference maxima for various wavelengths of light. Knowing the grating spacing, a measurement of the angle gives the wavelength. This should be a high precision experiment: you should be able to measure wavelengths within 2% before calibration, and.5% after calibration. Theory Grating Spectrometer In the diffraction experiment we showed that the conditions for constructive interference or maxima in the intensity for a double slit are: Here d is the distance between the two slits, is the angle between the incoming beam and the location where we observe the intensity (see Fig. 4 of experiment 4) and m is the order number of the interference. The m=0 peak is what you observe at 0 degrees. As you go left or right, you will see colored stripes corresponding to m= ±1 for different wavelengths, and perhaps at m= ±2 at larger angles. In the previous experiment no focusing lenses were used because the fringes were observed relatively far away. The spectrometer in this experiment uses collimator lenses as the large distance approximations no longer apply and it has the added advantage that the angle is measured directly. The extension from an N = 2 double slit to a grating where N is large is relatively straightforward and Eq. 1 remains valid except that d is much smaller than it was for N = 2. If the wavelength is fixed and m = 1, then the angle "θ" at which the first maximum appears increases as d is decreased (N is increased). This is exactly what we studied in the last part of the diffraction experiment. The higher the grating constant, G = 1/d (usually given as lines per mm), the larger the angle for the maxima and the better the wavelength can be measured. Question 1: When the fringe pattern behind the slits is viewed there is always diffraction as well as interference, as we learned in the previous experiment. The individual slits (lines) of the grating, however, are usually so narrow that the central maximum of diffraction for each slit sends light into a wide range of angles. The gratings we use have G = 600 lines/mm. Assuming that the transparent and opaque segments are of equal widths (a = d/2), calculate the angular locations of the first diffraction minimum for the approximate limits of visible light (roughly 400 nm to 700 nm). Atomic Spectra When the wavelengths of light emitted by excited atomic gases were first studied with precision spectrometers, scientists observed that most of the light was emitted at a few discrete wavelengths. In this experiment, you will observe the discrete emission lines of hydrogen and a few other atomic gases. These discrete lines originate from the de-excitation of atoms. That the lines are discrete was initially a great surprise because it implied that the valid energies of electrons in atoms were also discrete. This (1)

2 PHY 192 Grating Spectrometer Spring discovery led to the development of quantum mechanics, which is one of the foundations of modern physics. proton r v electron To put this discovery in perspective, consider what one might have expected if Newton s laws governed the energies of atomic electrons. Atomic hydrogen consists of a proton and an electron, which 2 e is bound to the proton by the attractive Coulomb force FC k, where k=8.99x10 9 N m 2 /C 2, 2 r e=1.6x10-19 C is the magnitude of the electron and proton charges, and r is the distance between them. If the electron is in a circular orbit about the proton, as shown above, Newton s second law, (mass)x(centripetal acceleration)=coulomb force, implies: (2) (The proton is so much heavier than the electron that one can assume that it remains stationary while the electron orbits about it.) The potential energy U(r) of the electron can be obtained by integrating the Coulomb force from ; doing this provides:. (3) Thus, the total energy E=1/2mv 2 +U can be obtained from Equations (2) and (3) and is given by: It is negative because the electron is bound in the attractive Coulomb potential of the proton electric field. This derivation, which follows from Newton s laws, implies that energy of the electron is negative and has a arbitrary magnitude that depends only on the radius r of the electron orbit. This turns out to be incorrect for small systems like an atom. The electron in a hydrogen atom cannot be in any arbitrary orbit. The energy is quantized to only those orbits with energies given by the Bohr formula: where n = 1, 2, 3, 4... and ev is an atomic-scale energy unit (KE of an electron accelerated through a voltage difference of one Volt). One ev= 1.6x10-19 J (5) (4)

3 PHY 192 Grating Spectrometer Spring When an electron makes a transition between an orbit with a higher energy (larger n i ) to one with a lower energy (smaller n f ), it emits a photon which carries off the energy lost by the electron. This implies the energies of photons emitted by a hydrogen gas are given by (6) The wavelength of the photon can be obtained from its energy by the Planck formula: Question 2: [Before class] Only transitions that are in the Balmer series with n f = 2, n i =3,4,5,6... are visible to the human eye. Calculate the photon energies and wavelengths of the Balmer series for n i =3,4,5,6. These are the wavelengths you will be trying to measure. Understanding the Spectrometer A spectrometer is a device that allows precise measurements of the angle, between two rays of light. Because the light from the source to be studied is often not a narrow beam like a laser, it must be gathered and focused by lenses. The light from the source is first passed through a slit, which should be as narrow as possible, consistent with letting enough light through to be visible. The light spreads out from the slit to the collimating lens, which makes it into a parallel beam (i.e. the slit is at the focal point of the lens). The parallel beam of light then strikes the "diffraction" grating (G=600 lines/mm to within 2%). Beyond the grating, the light travels in various directions due to diffraction and interference. If light of a particular wavelength and order of interference heads in the direction of the telescope, it will be focused down to an image of the slit. Procedure If the spectrometer is properly adjusted, the image falls on cross hairs at the focusing ring. This image is then examined with an eyepiece (a short focal length converging lens) to see how closely the image coincides with the cross hairs. If the telescope is first used to locate the 0 th order of interference (straight ahead) and subsequently a first order line, then the difference in the Vernier readings is the desired angle i. Diagrams in another online document show the location of the controls. Part 1 In this part we use the red line of a hydrogen lamp with a known wavelength (656.5 nm) as the source. We wish to adjust the spectrometer and to verify that we can actually measure the wavelength by measuring the position of the first and second order maxima. Before attempting to move the telescope, be sure that the locking screw is loosened. When you are fine-setting on a line, the locking screw should be tightened and the final adjustment made with the fine-adjust screw (clockwise direction only). 1. Adjusting the eyepiece. By turning the knurled knob, adjust the eyepiece until, with your eye relaxed for distant vision, the cross hairs are in focus. (7)

4 PHY 192 Grating Spectrometer Spring Adjust the telescope focus by loosening the set screw on top, then sliding the tube in or out to focus on a distant object, so that there is no parallax between cross hairs and slit image. This can be checked by moving your eye back and forth (from left to right). The slit edges should be crisp, and wider than the cross hairs but not enormously so. You may have to open the slits up a bit for dim lines, or tighten them to see closely separated bright lines. 3. Now set the angle scale to 0 degrees at the straight-through position. 4. Swing the telescope to the first order for the red line. Use the fine adjustment to make the line coincide with the cross hair and read the Vernier. Return to the central image, set the image on the cross hair and again read the Vernier. The difference in the readings is the angle i. Now locate the first order image on the other side of the central image. How many higher orders can you locate? (Look by eye, with the telescope swung out of the way!) Estimate the accuracy of your angular reading. 5. Calculate the wavelength from the position of the maxima and compare it to what you expect. Question 3: Assume that the error in the grating constant G to be negligible and the error in the angle measurement fixed (by the Vernier scale). (this is part of your uncertainty calculation). Based on this error analysis, is it better to measure with m=1 (first order interference maximum), or m=2 (second order interference)? Is it better to measure with large grating constant G or with a small G? Part 2 Measure in first and higher orders as many hydrogen lines as you can see. If the light is favorable you may be able to see four (red, blue-green, purple and deep purple). You hope to see these 4 lines (for interference m=±1) on each side (left and right). Your analysis should compare the left and right angles for systematic effects, and average the left and right angles or wavelengths for your final analysis. You may be able to see some of the 4 lines in second order (m=±2) as well. The interpretation of these and other lines led Bohr to his model of the hydrogen atom which predicts a discrete spectrum of light emission rather than continuous. The spectrum consists of three distinct series called Balmer, Lyman and Paschen Series. Each Series represents certain energy transitions from higher levels to a specific lower level in the hydrogen atom. The specific lower levels are n = 1 for Lyman, n = 2 for Balmer and n = 3 for Paschen. As discussed previously, only the Balmer Series transitions are in the visible range of the spectrum. The Lyman Series is in the ultraviolet and Paschen Series is in the infrared. Compare the wavelengths you measure with the expected lines from the Balmer Series. Calculate the error in your measurement of the wavelength. Question 4: How much does this left-right averaging improve your error? Do you have any evidence of L/R systematic error that this cancels? What might cause such a L/R asymmetry? Calibration: Calibration is using known information to determine characteristics of your measurement instrument. You use a single diffraction grating during the whole lab. Thus its grating constant uncertainty is a systematic error for this experiment. Since the wavelength is directly proportional to d,

5 PHY 192 Grating Spectrometer Spring calculate the ratio λ/ λ_expected for the H lines you observe, and use this to find a best value for d. As a check, you should also report λ/ λ_expected after the calibration (see Question 5 below). Question 5: How much does this calibration improve your uncertainty in the H lines? Compare δλ/ λ before and after calibration. Is the calibrated value of d compatible with the stated uncertainty, if you test by t value? Part 3 Select a Hg light source from the ones that are available and measure the wavelength of a few of the strongest lines. You should use the calibrated value of d from part 2. (does this improve your agreement with the expected wavelengths for Hg?) You may in addition look at and describe another lamp with different atoms. Use the links below, or a Handbook of Chemistry and Physics to identify the prominent lines in Hg you picked, and compare them to your measurements. (a published paper, though for a pure isotope) In deciding whether your line coincides with the line of an element, you must have some estimate of the precision of your measurement. You must also consider only the most intense lines in the tables. Question 6: Which interference maximum gives the most accurate results? Does this agree with you answer to question 3? If not, why not? Vernier Angle Scale: You can read the angle from a precise protractor scale on the outer rim of the table. Use the Vernier scale with the little magnifying glass to read the angle to the nearest arc minute. (1 arcmin = 1' = 1/ 60 degree.) The following is an example: Figure 5 In this example, the zero reference line of the Vernier scale (the upper scale) is between 40.5 and 41, so the angle is somewhere between 40 30' and 41. The Vernier scale tells exactly where in between. Look along the Vernier for the line that exactly lines up with the line below it. In this case, it's the 17' line. So the angle is 40 47', which we get by adding 17' to 40 30'. In order to use this measurement, we must convert it to decimal degrees: 40 + (47/60) degrees =

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

GRID AND PRISM SPECTROMETERS

FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

Bohr s Model and Emission Spectra of Hydrogen and Helium

PHYS-01 LAB-03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms

Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

Emission Spectra of Elements

Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

O6: The Diffraction Grating Spectrometer

2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer

5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

STUDENT SPECTROMETER. Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A. Copyright January 1991 \$7.50 012-02135F 10/03

Instruction Manual and Experiment Guide for the PASCO scientific Model SP-9268A 012-02135F 10/03 STUDENT SPECTROMETER Copyright January 1991 \$7.50 10101 Foothills Blvd. P.O. Box 619011 Roseville, CA 95678-9011

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

Solution Derivations for Capa #14

Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

Lab 9. Optics. 9.1 Introduction

Lab 9 Name: Optics 9.1 Introduction Unlike other scientists, astronomers are far away from the objects they want to examine. Therefore astronomers learn everything about an object by studying the light

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

Interference. Physics 102 Workshop #3. General Instructions

Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from

Experiment IV: Atomic Spectra and the Bohr model

P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we

Building your own Spectroscope 0-0.341-0.445-0.606-0.872-1.36 Lyman Balmer Paschen n=4 n=8 n=7 n=6 n=5 n=4 ENERGY/10-19 J -2.42-5.45 E 5 2 E 4 2 E 3 2 E E 5 3 4 3 n=3 n=2 (Many other transitions beyond

Electron Energy and Light

Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

RESOLVING POWER OF A READING TELESCOPE

96 Lab Experiments Experiment-255 RESOLVING POWER OF A READING TELESCOPE S Dr Jeethendra Kumar P K KamalJeeth Instrumentation & Service Unit, No-60, TATA Nagar, Bangalore-560 092, INDIA. Email:jeeth_kjisu@rediffmail.com

Name: Class: Date: ID: A

Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

Introduction to spectroscopy

Introduction to spectroscopy How do we know what the stars or the Sun are made of? The light of celestial objects contains much information hidden in its detailed color structure. In this lab we will separate

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

Chapter 7: The Quantum-Mechanical Model of the Atom

C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

GEOMETRICAL OPTICS. Lens Prism Mirror

GEOMETRICAL OPTICS Geometrical optics is the treatment of the passage of light through lenses, prisms, etc. by representing the light as rays. A light ray from a source goes in a straight line through

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

CHARGE TO MASS RATIO OF THE ELECTRON

CHARGE TO MASS RATIO OF THE ELECTRON In solving many physics problems, it is necessary to use the value of one or more physical constants. Examples are the velocity of light, c, and mass of the electron,

Emission of Light & Atomic Models 1

Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

LAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG

LAUE DIFFRACTION INTRODUCTION X-rays are electromagnetic radiations that originate outside the nucleus. There are two major processes for X-ray production which are quite different and which lead to different

Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

An Introduction to the Cathode-Ray Tube

March 7, 2005 An Introduction to the Cathode-Ray Tube Prepared for Ann Holms University of California, Santa Barbara Prepared by Student Name University of California, Santa Barbara Abstract The cathode-ray

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

Friday 18 January 2013 Morning

Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied

Fraunhofer Diffraction

Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

Diffraction of Laser Light

Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

LAB 8: Electron Charge-to-Mass Ratio

Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

Teaching Time: Two 50-minute periods

Lesson Summary In this lesson, students will build an open spectrograph to calculate the angle the light is transmitted through a holographic diffraction grating. After finding the desired angles, the

The Early History of Quantum Mechanics

Chapter 2 The Early History of Quantum Mechanics In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie, Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

Lenses and Telescopes

A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

CALIBRATION FOR LAL20X & LAL24X

CALIBRATION AND FAULT FINDING FOR LAL20X & LAL24X DUMPY LEVELS MEASURING EXPERTS SINCE 1869 How The LAL20X & LAL24X Works The Automatic level is called Automatic because it requires only a simple basic

THE COMPOUND MICROSCOPE

THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how

How is LASER light different from white light? Teacher Notes

How is LASER light different from white light? Teacher Notes Concepts: (1) Light is a type of energy that travels as waves. [6.2.3.1.1] (2) Laser light is different from traditional light sources and must

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24

PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24 V112712 1 Collimation and Secondary Spacing Procedure The CDK optical design has four optical elements shown in Figure 1. The primary mirror

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

Geometric Optics Physics 118/198/212. Geometric Optics

Background Geometric Optics This experiment deals with image formation with lenses. We will use what are referred to as thin lenses. Thin lenses are ordinary lenses like eyeglasses and magnifiers, but

Bohr's Theory of the Hydrogen Atom

OpenStax-CNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

Chapter 23. The Refraction of Light: Lenses and Optical Instruments

Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging

Spectrum of the Hydrogen Atom

Chapter 5. Hydrogen Atom Spectrum 29 5 Spectrum of the Hydrogen Atom Objective To calculate the Rydberg constant from the spectrum of atomic hydrogen. Preparation Overview 1. Read all of this write-up.

Experiment 5. Lasers and laser mode structure

Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

PROPERTIES OF THIN LENSES. Paraxial-ray Equations

PROPERTIES OF THIN LENSES Object: To measure the focal length of lenses, to verify the thin lens equation and to observe the more common aberrations associated with lenses. Apparatus: PASCO Basic Optical

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 6.9 What are the basic SI units for? (a) the wavelength of light meters, although colors are usually reported in 3 digit

FirstView 3 Reflector Telescope Owner s Manual

FirstView 3 Reflector Telescope Owner s Manual 1. Horizontal Locking Auxiliary Screw 2. Main Mount 3. Pitching Auxiliary Knob 4. Pitching Shaft Screw 5. Rack and Pinion Focusing Knob 6. Thumb Nut for Finder

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

Atomic Theory. Chapter 3. History of the Atom. Structure & Models of Atoms

Chapter 3 Atoms Atomic Theory As early as 400 BC scientists have believed in an atomic theory thanks to Democritus. Atoms were the building blocks of matter. 2000 years later we can see the atom! History

Microscope Lab Introduction to the Microscope Lab Activity

Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

The parts of the SIPS are labeled in Figure 1. (The eyepiece is not included!)

Introduction Thank you for purchasing the Starlight Integrated Paracorr System (referred to as SIPS hereafter), which incorporates all the benefits of the Paracorr Type 2. SIPS is the only combination

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

Care and Use of the Compound Microscope

Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

Infrared Spectroscopy: Theory

u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

Measure the Distance Between Tracks of CD and DVD

University of Technology Laser & Optoelectronics Engineering Department Laser Eng Branch Laser application Lab. The aim of work: Experiment (9) Measure the Distance Between Tracks of CD and DVD 1-measure

Assembly & Use Instructions -- Stanford Spectrographs

Assembly & Use Instructions -- Stanford Spectrographs Instructions You ll need: Spectrograph poster, diffraction grating, adhesive tape NOTE: Try not to touch the grating material, since the oils on your

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

RAY OPTICS II 7.1 INTRODUCTION

7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

hypothesis of Louis de Broglie (1924): particles may have wave-like properties

Wave properties of particles hypothesis of Louis de Broglie (1924): particles may have wave-like properties note: it took almost 20 years after noting that waves have particle like properties that particles

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently