2 Building Blocks. There is often the need to compare two binary values.

Size: px
Start display at page:

Download "2 Building Blocks. There is often the need to compare two binary values."

Transcription

1 2 Building Blocks 2.1 Comparators There is often the need to compare two binary values. This is done using a comparator. A comparator determines whether binary values A and B are: 1. A = B 2. A < B 3. A > B Equality The XOR can be used to compare equality. It will give a 0 when the two bits are equal and a 1 when they are unequal. To get a HIGH for equality and a LOW for inequality an XNOR can be used. X Y XOR XNOR Comment Equal Not Equal Not Equal Equal One XNOR compares one bit. To compare multiple bits, we need a XNOR for each bit. The circuit to compare two nibbles (4 bits) is shown below: A0 B0 A1 B1 A2 B2 A3 B3 = 26

2 2.1.2 Integrated Circuit Comparators Many integrated circuit comparators contain outputs for: A = B A < B A > B They are designed for cascading together and contain inputs for A = B from the preceding stage A < B from the preceding stage A > B from the preceding stage The 74LS85 is a TTL 4 bit magnitude comparator. Q. How can we compare an 8 bit number? A. By cascading two 7485 comparators. One to compare the Least Significant Nibble. One to compare the Most Significant Nibble. A0 A1 A2 A3 B0 B1 B2 B3 A0 A1 A2 A3 B0 B1 B2 B3 A<Bi A=Bi A>Bi A<Bo A=Bo A>Bo A4 A5 A6 A7 B4 B5 B6 B7 A0 A1 A2 A3 B0 B1 B2 B3 A<Bi A=Bi A>Bi A<Bo A=Bo A>Bo A < B = A > B LSN MSN Stage 1 Stage 2 27

3 2.2 Decoders Decoding is taking a code (binary, BCD, hex etc) and activating a single output representing its numeric value Method to create a decoder 1. Generate a truth table 2. Find an expression for each output. (Karnaugh) to 4 decoder A 2 bit value can activate 1 of 4 possible output lines. 0 1 LSB MSB DECODER Boolean Expressions Z0 = /A. /B Z1 = /A. B Z2 = A. /B Z3 = A. B A B Z3 Z2 Z1 Z0 Expression Z0 = /A. /B Z1 = /A. B Z2 = A. /B Z3 = A. B 28

4 We can then construct the circuit for each output. A B Z0 Z1 Z2 Z3 29

5 2.3 Encoders Encoding is taking a single input representing a numeric value and converting it to its equivalent code (binary, BCD, hex etc). This is the reverse of decoding Method to create a encoder 1. Generate a truth table 2. Find an expression for each output. (Karnaugh) to 2 line binary encoder One of 4 lines is encoded into binary. 0 1 D C Encoder DECODER 2 B MSB 1 3 A LSB 0 A B C D Z1 Z Boolean Expressions Z1 = A + B Z0 = A + C Note: D is not used. 30

6 We can then construct the circuit for each output. A B Z1 C Z0 D N / C 31

7 2.4 Code Convertors Gray Code Gray code is a very useful code in electronics and is used for indicating the angular position of the shaft on a motor. Gray code allows only one bit to change when moving from one code to the next. You are familiar with this concept when writing the inputs for a Karnaugh Map. eg A B, AB, AB, AB eg 2 bit Gray code ( 00, 01, 11, 10 ) 2 bit Gray code Decimal Binary Gray Note: The Gray code can easily roll back to itself 00, 01, 11, 10 00, 01 etc. Sensors The angular position of a motor s shaft can be determined by connecting a wheel to the motor s shaft. The wheel has a code stored at different positions around it. The more codes stored on the wheel, the greater the accuracy. Each code is stored on a separate segment of the wheel. Each segment is divided into rings which allows each sector to represent a binary digit. When the motor turns, the wheel connected to the shaft also turns. Sensors in a fixed position above the wheel pick up the codes and use them to state the position of the wheel and hence the shaft. If a binary code is used then as the wheel changes from position 3 to position 0, the binary read goes from 11 to 00. If the sensors are not perfectly in line and were read on the transition from position 3 to 0, then values of 01 or 10 could occur depending upon the misalignment. Therefore there is a potential for a large error using a binary scheme. 32

8 If a gray code was used then as the wheel changes from position 3 to position 0, the binary read goes from 10 to 00. If the sensors were misaligned and read on a transition from position 3 to position 0 then it could only read 10 or 00. This eliminates the problem. Converting Binary to Gray Code. 1. The Most Significant Bit (MSB) in the Gray code is the same as the binary number. 2. Going from the MSB to LSB (left to right), add the current bit to the next bit (right) ignoring the carry. The result of the addition is the gray code bit. For example to find the gray code for Binary Action Gray Bit MSB Therefore the Gray code for is B0 G0 B1 G1 B2 G2 B3 G3 (MSB) 33

9 Converting Gray Code to Binary. 1. The Most Significant Bit (MSB) in the Gray code is the same as the binary number. 2. Going from the MSB to LSB (left to right), add the current gray code bit to the last binary bit found ignoring the carry. The result of the addition is the binary code bit. For example to convert a gray code of to binary Gray Code Previous Action Binary Binary N/A MSB Therefore the Binary for a Gray code of is G0 B0 G1 B1 G2 G3 B2 B3 (MSB) 34

10 2.4.2 BCD to Binary BCD is a binary code that is used to represent each decimal digit. Therefore each decimal digit is represented with 0000 (0) to 1001 (9). Eg Weight: Decimal: 2 9 BCD: Binary: Therefore we must assign a weight to each bit. Wherever there is a 1 in the BCD digit we add the weight. BCD Bit Weight Binary BCD 29 is Weight Binary = Integrated Circuit Converter The is a 6 bit BCD to binary converter. 35

11 2.4.3 Binary to BCD BCD is a binary code that is used to represent each decimal digit. Therefore each decimal digit is represented with 0000 (0) to 1001 (9) A 4 bit binary code has 16 values 0000 (0) to 1111 (15). The binary numbers from 0000 (0) to 1001 (9) can represent their values. The binary numbers from 1010 (10) to 1111 (15) can be converted to BCD by adding 6. Note that this will generate a carry. Example 10: = (1) 0000 BCD: 1_0 15: = (1) 0101 BCD: 1_5 The circuit to perform the binary to BCD conversion is given below. It consists of a magnitude comparator and an adder. A B C D LO LO A1 A2 A3 A4 B1 B2 B3 B4 S1 S2 S3 S4 7483A LSB MSB LO C0 C4 9 HI LO LO HI LO HI LO A0 A1 A2 A3 B0 B1 B2 B3 A<Bi A=Bi A>Bi 7485 A<Bo A=Bo A>Bo Integrated Circuit Converter The is a 6 bit binary to BCD converter. 36

12 2.4.4 BCD to 7 segment The 7 segment display is widely used as a numeric display in many everyday devices All the digits can be constructed out of 7 lines arranged in an 8 pattern: In a 7 segment display each line is made up out of a LED or LCD bar. The bar is switched on according to pattern required by the BCD digit. A code converter is used to convert from BCD to the 7 segments. Integrated Circuit Converter The 7447 is the BCD to 7 segment converter. Exercise Draw the circuits to the BCD to 7 segment converter. There should be 7 equations. Hint: Create the truth table for each segment, minimise using Karnuagh maps, and draw the resulting circuit. 37

13 2.5 Multiplexers A multiplexer is a circuit that allows digital information from several sources to be routed onto a single line. This is the equivalent of a digital switch. Data is input into the lines D0 D1. Data select inputs determine which input is connected to the output. A multiplexor is also known as Data Selector. A 4 to 1 line multiplexor is shown below. D0 D1 D2 Z D3 S1 S0 The control lines S0 & S1 can have 4 binary settings. Therefore the output (Z) can be connected to any one of the inputs (D0 to D3). Truth Table for 4 to 1 line multiplexor S1 S0 Z 0 0 D0 0 1 D1 1 0 D2 1 1 D3 38

14 2.5.1 Design of Multiplexors Using the property that X. 1 = X Selectors ANDed together to give Decide upon the number of input Data lines required 2 n = Number of data lines required 2. The number of selector lines required will be n from the above equation. 3. Generate a truth table including selector states and output. 4. For each input data line, AND it with its equivalent selector state. 5. OR the result of all the ANDs. D0 S1 S0 D1 D2 Z D3 39

15 2.5.2 Using A Multiplexer for Combinational Logic A multiplexer can be used to replace combinational logic If the expression is complex, it may require many ICs. If the logic is replaced with a single multiplexer then only one IC is required. The concept is that the inputs from the truth table form the selector for the multiplexer. Each Data line is set to the appropriate output value from the truth table. When the selector value is set, the output is connected to the associated Data Line. Hence the output line of the multiplexer passes the output value from the truth table that is associated with the input values from the truth table. Method 1. Generate a truth table. 2. The inputs in the truth table are the selectors of the Multiplexer. 3. Each output term in the truth table corresponds to one Data Input line of the Multiplexer. 4. Tie each Data Input Line to the corresponding output value from the truth table. Example Refer to the Judges scoring system example used in module 1. Green = BC + AC + AB Truth Table A B C Green MUX D D D D D D D D7 HI A B C LO D0 D1 D2 D3 D4 D5 D6 D7 A B C Y Green The original solution requires 2 x 14 pin ICs. ( 1 x 7432, 1 x 7408 ) The multiplexer solution requires 1 x 16 pin IC. 40

16 2.6 Demultiplexers A demultiplexer is a circuit that takes a single input and routes it to only one of the possible output lines. This is the equivalent of a digital switch. This acts in reverse to a multiplexer. Data is output from lines D0 D1. Data select inputs determine which output is connected to the input. A demultiplexor is also known as Data Spreader. A 1 to 4 line demultiplexor is shown below. D0 Z D1 D2 D3 S1 S0 The control lines S0 & S1 can have 4 binary settings. Therefore the input (Z) can be connected to any one of the outputs (D0 to D3). Truth Table for 1 to 4 line demultiplexor Where Z is the input data. S1 S0 D0 D1 D2 D3 0 0 Z Z Z Z 41

17 2.6.1 Design of Demultiplexers Using the property that X. 1 = X Selectors ANDed together to give Decide upon the number of output Data lines required 2 n = Number of data lines required 2. The number of selector lines required will be n from the above equation. 3. Generate a truth table including selector states and data lines. 4. Each output data line will be the input data (Z) ANDed with its equivalent selector state. Z S1 S0 D0 D1 D2 D3 42

18 2.7 Parity Errors can occur in the transmission of data from one computer to another. We need a method to determine if an error has occurred. Parity allows us to detect a single bit error in the data bits sent. Usually these are grouped in bytes. To use parity to detect errors we must append a parity bit to the data bits transmitted. Any group of bits may contain an even or odd number of 1 s. The parity bit is used to set the total number of 1 s to an even number or an odd number. Even parity uses the parity bit to make the total number of 1 s an even number. Odd parity uses the parity bit to make the total number of 1 s an odd number. Example Q What is value of the parity bit required to make 1011 (a) even parity (b) odd parity A 1011 contains three 1 s. This is an odd number of 1 s. (a) parity bit = 1 to make 4 x 1 s, an even number. (b) parity bit = 0 to make 3 x 1 s, an odd number. Error Detection We must know the type of parity used for the received data. The received data will have a parity bit. This can be checked by summing together all the bits in the data received. For even parity, the sum of all the bits including the parity bit will be 0. For odd parity the sum of all the bits including the parity bit will be 1. 43

19 The bits can be summed using XOR circuits in the following manner: A0 A1 Sum Summing 2 bits. A0 A1 A2 A3 Sum Summing 4 bits (nibble). A0 A1 A2 A3 Sum A4 A5 A6 A7 Summing 8 bits (byte). 44

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

More information

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

More information

Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

More information

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.

More information

2011, The McGraw-Hill Companies, Inc. Chapter 3

2011, The McGraw-Hill Companies, Inc. Chapter 3 Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

More information

Understanding Logic Design

Understanding Logic Design Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1

More information

EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits. Module #2 Number Systems EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

More information

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking

More information

Combinational circuits

Combinational circuits Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (High-level view)

More information

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012 Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology

More information

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

More information

Digital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Digital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lab 1: Study of Gates & Flip-flops

Lab 1: Study of Gates & Flip-flops 1.1 Aim Lab 1: Study of Gates & Flip-flops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. 1.2 Hardware Requirement a. Equipments -

More information

Number and codes in digital systems

Number and codes in digital systems Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number

More information

Figure 8-1 Four Possible Results of Adding Two Bits

Figure 8-1 Four Possible Results of Adding Two Bits CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Digital Fundamentals. Lab 8 Asynchronous Counter Applications Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

More information

Binary Numbers. Binary Octal Hexadecimal

Binary Numbers. Binary Octal Hexadecimal Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr Grading 1st Midterm -

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004

Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004 Gray Code Generator and Decoder by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Design of a Gray Code Generator and

More information

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count

More information

Two-level logic using NAND gates

Two-level logic using NAND gates CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place

More information

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447). G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

More information

Combinational Logic Design

Combinational Logic Design Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra

More information

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Fundamentals of Digital Electronics

Fundamentals of Digital Electronics Fundamentals of Digital Electronics by Professor Barry Paton Dalhousie University March 998 Edition Part Number 32948A- Fundamentals of Digital Electronics Copyright Copyright 998 by National Instruments

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

(1) /30 (2) /30 (3) /40 TOTAL /100

(1) /30 (2) /30 (3) /40 TOTAL /100 Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1

Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1 Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

5 Combinatorial Components. 5.0 Full adder. Full subtractor

5 Combinatorial Components. 5.0 Full adder. Full subtractor 5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations - addition, subtraction, multiplication and division. logic operations - AND, OR,

More information

Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.

Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal. Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -

We r e going to play Final (exam) Jeopardy! Answers: Questions: - 1 - . (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)

More information

Digital Systems Laboratory

Digital Systems Laboratory Eskişehir Osmangazi University Digital Systems Laboratory Rev 3.01 February 2011 LIST OF EXPERIMENTS 1. BINARY AND DECIMAL NUMBERS 2. DIGITAL LOGIC GATES 3. INTRODUCTION TO LOGICWORKS 4. BOOLEAN ALGEBRA

More information

Number Systems. Introduction / Number Systems

Number Systems. Introduction / Number Systems Number Systems Introduction / Number Systems Data Representation Data representation can be Digital or Analog In Analog representation values are represented over a continuous range In Digital representation

More information

Chapter 1: Digital Systems and Binary Numbers

Chapter 1: Digital Systems and Binary Numbers Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching

More information

3.Basic Gate Combinations

3.Basic Gate Combinations 3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and

More information

Gates, Plexers, Decoders, Registers, Addition and Comparison

Gates, Plexers, Decoders, Registers, Addition and Comparison Introduction to Digital Logic Autumn 2008 Gates, Plexers, Decoders, Registers, Addition and Comparison karl.marklund@it.uu.se ...open up a command shell and type logisim and press enter to start Logisim.

More information

LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14

LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14 LOGICOS SERIE 4000 Precios sujetos a variación Ref. Part # Descripción Precio Foto Ref. A-6-1 CD4001 Quad 2-Input NOR Buffered B Series Gate / PDIP-14 $ 290 A-6-2 CD4001BCM Quad 2-Input NOR Buffered B

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

TIMING, COUNTING, AND DATA-HANDLING INSTRUCTIONS. Key Points

TIMING, COUNTING, AND DATA-HANDLING INSTRUCTIONS. Key Points M O D U L E F O U R TIMING, 4 COUNTING, AND DATA-HANDLING INSTRUCTIONS Key Points This module is a further exploration of the MicroLogix s programming instructions. Module 3 covered basic relay instructions,

More information

RDF1. RF Receiver Decoder. Features. Applications. Description. Ordering Information. Part Number Description Packages available

RDF1. RF Receiver Decoder. Features. Applications. Description. Ordering Information. Part Number Description Packages available RDF1 RF Receiver Decoder Features Complete FM Receiver and Decoder. Small Form Factor Range up to 200 Metres* Easy Learn Transmitter Feature. Learns 40 transmitter Switches 4 Digital and 1 Serial Data

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

1.Eastron SDM220Modbus Smart Meter Modbus Protocol Implementation V1.0

1.Eastron SDM220Modbus Smart Meter Modbus Protocol Implementation V1.0 1.Eastron SDM220Modbus Smart Meter Modbus Protocol Implementation V1.0 1.1 Modbus Protocol Overview This section provides basic information for interfacing the Eastron Smart meter to a Modbus Protocol

More information

Part Number Description Packages available

Part Number Description Packages available Features 3 digital I/O Serial Data output Connects directly to RF Modules Easy Enc / Dec Pairing Function Minimal External Components Required Performs all encoding/decoding of data for Reliable Operation.

More information

Standart TTL, Serie 74... Art.Gruppe 13.15. 1...

Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... 7400 Quad 2-Input Nand Gate (TP) DIL14 7402 Quad 2 Input Nor Gate (TP) DIL14 7403 Quad 2 Input Nand Gate (OC) DIL14 7404 Hex Inverter

More information

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS Hex Invertes 74LS04 Quadruple 2 Inputs Gates 74LS00 Triple 3 Inputs Gates 74LS10 Dual 4 Inputs Gates 74LS20 8 Inputs Gates 74LS30 13 Inputs Gates

More information

Lab 17: Building a 4-Digit 7-Segment LED Decoder

Lab 17: Building a 4-Digit 7-Segment LED Decoder Phys2303 L.A. Bumm [Nexys 1.1.2] Lab 17 (p1) Lab 17: Building a 4-Digit 7-Segment LED Decoder In this lab your will make 4 test circuits, the 4-digit 7-segment decoder, and demonstration circuit using

More information

Seven-Segment LED Displays

Seven-Segment LED Displays Seven-Segment LED Displays Nicholas Neumann 11/19/2010 Abstract Seven-segment displays are electronic display devices used as an easy way to display decimal numerals and an alterative to the more complex

More information

RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY

RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The Input-Control/Output-Display

More information

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

More information

Binary Numbering Systems

Binary Numbering Systems Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

Course Requirements & Evaluation Methods

Course Requirements & Evaluation Methods Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:

More information

NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.

NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell. CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache

More information

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

More information

earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder.

earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder. The circuit created is an 8-bit adder. The 8-bit adder adds two 8-bit binary inputs and the result is produced in the output. In order to create a Full 8-bit adder, I could use eight Full -bit adders and

More information

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS CHAPTER IX-1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249-275 FROM MANO AN KIME CHAPTER IX-2 INTROUCTION -INTROUCTION Like combinational building blocks, we can also develop

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

More information

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1 UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1 This work covers part of outcome 2 of the Edexcel standard module. The material is

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

ENGI 241 Experiment 5 Basic Logic Gates

ENGI 241 Experiment 5 Basic Logic Gates ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

Online Development of Digital Logic Design Course

Online Development of Digital Logic Design Course Online Development of Digital Logic Design Course M. Mohandes, M. Dawoud, S. Al Amoudi, A. Abul Hussain Electrical Engineering Department & Deanship of Academic Development King Fahd University of Petroleum

More information

Binary, Hexadecimal, Octal, and BCD Numbers

Binary, Hexadecimal, Octal, and BCD Numbers 23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal

More information

Lecture 11: Number Systems

Lecture 11: Number Systems Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number

More information

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated

More information

Copyright Peter R. Rony 2009. All rights reserved.

Copyright Peter R. Rony 2009. All rights reserved. Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering

More information

HOMEWORK # 2 SOLUTIO

HOMEWORK # 2 SOLUTIO HOMEWORK # 2 SOLUTIO Problem 1 (2 points) a. There are 313 characters in the Tamil language. If every character is to be encoded into a unique bit pattern, what is the minimum number of bits required to

More information

Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

More information

Interfacing To Alphanumeric Displays

Interfacing To Alphanumeric Displays Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Today s topics. Digital Computers. More on binary. Binary Digits (Bits)

Today s topics. Digital Computers. More on binary. Binary Digits (Bits) Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro

More information