CHAPTER 3: MULTISIM 3.1 INTRODUCTION TO MULTISIM

Size: px
Start display at page:

Download "CHAPTER 3: MULTISIM 3.1 INTRODUCTION TO MULTISIM"

Transcription

1 MULTISIM CHAPTER 3: MULTISIM 3. INTRODUCTION TO MULTISIM Multisim is a virtual electronic circuit design, analysis, and simulation programme that design and analyse analogue, digital and mixed mode circuits on a PC using virtual instruments. Virtual instruments are used to measure circuit behaviour such as voltage, current, power, frequency and signals on a scope. They look just like real instruments without fear of damaging the circuit components or the instruments. The basic virtual instruments in Multisim are: a) Multimeter It measures resistance, ac/dc voltage and ac/dc current. b) Function Generator It produces sinewave, squarewave and triangular wave signals of adjustable frequencies and amplitudes. c) Wattmeter It measures the power in watts consumed in a circuit. d) Oscilloscopes (2-ch and 4-ch). They display the traces of a peak-to-peak voltage signal in a circuit. e) Bode Plotter It produces a graph of the circuit s frequency response. It is useful for analysing electronic filter circuits. f) Frequency Counter It measures the frequency of an ac voltage signal. Other virtual instruments in Multisim include a Word Generator, a Logic Analyzer, a Logic Converter, an IV Analyzer, a Distortion Analyzer, a Spectrum Analyzer, a Network Analyzer, a virtual Agilent Function Generator, Multimeter, and Oscilloscope.

2 Types of electronic components that are available to build circuits in Multisim are: a) DC and AC power sources, single phase and three phase b) Resistors, resistor packs, potentiometers c) Capacitors, single value and variable d) Inductors, single value and variable e) Switches, Connectors, Relays, Motors, Solenoids, Timers f) Transformers g) Diodes, LEDs, Zener h) Transistors, NPN, PNP, JFET, MOSFET Operational Amplifiers, A-to-D and D-to- A Converters i) IC chips, 74 TTL series, 4 CMOS series j) Lamps, LED indicators, Bar graphs k) Voltage Regulators, Transducers, Crystals, Vacuum tubes, Fuses l) And many more components in component libraries

3 3.2 INTRODUCTION TO MULTISIM INTERFACE Multisim user's interface is shown below: Figure : Multisim user's interface 3.2. Design Bar The design bar is central components of Multisim that guides user go through building, simulating, analysing and exporting design. The Component design button is selected by default. The Component Editing allows user to add or modify the components in Multisim. The Instrument design button is selected by default. The Simulate button runs/stops/pauses the simulation. The green sine wave line moves while the simulation is running.

4 The Analysis button allows user to choose the type of circuit analysis. The Postprocessor allows user to perform further operation on the simulation results. The VHDL/Verilog HDL button allows user to work with VHDL modelling. The Report button allows user to print the reports about circuit. The Transfer button allows user to communicate with and convert to PCB layout programme Controlling Circuit Display Figure 2: Controlling Circuit Display

5 3.2.3 Components Toolbar Figure 3: Components Toolbar 3.3 PLACING COMPONENTS 3.3. Placing a Battery Step : Place a Battery. To place the first component (a 5 volt battery): Place the cursor on the Sources Parts Bin button and click. The contents of the Sources Parts Bin appear:

6 2. Click on the DC Voltage Source button and move your cursor to the circuit window. Your cursor changes to indicate a part is ready to be placed. 3. Move to the top left corner of the circuit window to place the battery. Click in this general area or, to be more precise, use the page borders as a guide and click in the intersection of row A and column. The battery appears on your circuit window: Step 2: Change the Battery s Value By default, the battery is a 2V battery, but our circuit calls for a 5V battery. To change the battery s value:. Double-click on the battery. The battery s properties screen appears, with the Value tab displayed. 2. Change the 2 to a 5 and click OK.

7 3.3.2 Placing a Resistor Step : Place a Resistor To place the first resistor:. Place your cursor on the Basic Parts Bin button and, from the toolbar that appears, click the Resistor button. The Component Browser screen appears: 2. Scroll through the Component List to find the ohm resistor we need for our circuit. 3. Select the ohm resistor and click OK or double click on the component value. The cursor will appear on the circuit window as a ghost image of the resistor. 4. Move your cursor to approximately A5 and click to place the component.

8 Step 2: Rotate the Resistor The resistor needs to be rotated in order to set up conveniently into a circuit.. Right-click on the resistor. A pop-up menu appears. 2. Choose 9 Counter CW from the menu. The results look like this: 3.4 EDITING A BASIC SCHEMATIC WITH MULTISIM. Click Tools Edit Components 2. From the Database Name list, the database of the component that needs to be edited can be chose. 3. From the Family Name list, the family of the component that needs to be edited can be chose. 4. From the Component Name list, the component that needs to be edited can be chose. 5. To edit, click Edit (to cancel, click Exit).

9 3.5 VIRTUAL COMPONENTS The instrument toolbar is displayed by default. To choose any of the virtual components, click the Instruments button. 3.6 LOGIC GATES AND COMBINATIONAL CIRCUITS A combinational circuit consists of logic gates whose outputs at any time are determined from the present combination of inputs. A combinational circuit performs an operation that can be specified logically by a set of Boolean functions. A combinational circuit comprises of input variables, logic gates and output variables The Inverter Operation: When the input is LOW, The output is HIGH; when the input is HIGH, the output is LOW, thereby producing an inverted output pulse. A Symbol: Truth Table: Y INPUT (A) OUTPUT (Y)

10 3.6.2 The AND Gate Operation: For a 2-input AND gate, output Y is HIGH if both input A and B are HIGH; Y is LOW if either A or B is LOW, or both A and B are LOW. Symbol: A B Y Truth Table: INPUT (A) INPUT (B) OUTPUT (Y) The OR Gate Operation: For a 2-input OR gate, output Y is HIGH if either input A or B is HIGH, or if both A and B are HIGH; Y is LOW if both A and B are LOW. Symbols: A B Truth Table: INPUT (A) Y INPUT (B) OUTPUT (Y) The NAND gate Operation: For a 2-input NAND gate, output Y is LOW if input A and B are HIGH; Y is HIGH if either A or B are LOW, or if both A and B are LOW. Symbols: A B Y

11 Truth Table: INPUT (A) INPUT (B) The NOR Gate OUTPUT (Y) Operation: For a 2-input NOR gate, output Y is LOW if either input A or B is HIGH, or if both A and B are HIGH; Y is HIGH if both A and B are LOW. A B Y Symbols: Truth Table: INPUT (A) INPUT (B) OUTPUT (Y) The XOR Gate Operation: For an exclusive-or gate, output Y is HIGH if input A is LOW and input B is HIGH, or if input A is HIGH and input B is LOW; Y is LOW if A and B are both HIGH or both LOW. A B Y Symbols: Truth Table: INPUT (A) INPUT (B) OUTPUT (Y)

12 3.6.7 The XNOR Gate Operation: For an exclusive-nor gate, output Y is LOW if input A is LOW and input B is HIGH, or if input A is HIGH and input B is LOW; Y is HIGH if A and B are both HIGH or both LOW. Symbols: A B Y Truth Table: INPUT (A) INPUT (B) OUTPUT (Y) 3.7 Basic Combinational Logic Circuits 3.7. AND-OR Logic For a 4-input AND-OR logic circuit, the output X is high () if both input A and B are high (), or both input C and D are high ().

13 3.7.2 AND-OR-Invert Logic For a 4-input AND-OR-Invert logic circuit, the output X is LOW () if both input A and input B are HIGH () or both input C and input D are HIGH () Exclusive-OR Logic Exclusive-NOR Logic

14 3.8 Functions of Combinational Logic 3.8. Multiplexer A multiplexer is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination. The basic multiplexer has several data-input lines and a single output lines. Below is the logic symbol for a 4-input multiplexer (MUX). There are two dataselect lines because with two select bits, any one of four data-input lines can be selected. A 2-bit code on the data-select (S) input will allow the data on the selected data input to pass through to the data output as table below: Data-select Inputs Input selected S S D D D2 D3 The data output is equal to the state of the selected data input The total expression for the data output is Y = DS S + DS S + D2SS + D3SS

15 This can be implemented by the circuit below: Because the data can be selected from any one of the input lines, this circuit is also referred to as a data selector The select bits of multiplexer depend on the data input, 2n Demultiplexer The DEMUX is a reverse multiplexer function. It takes digital information from one line and distributes it to a given number of output lines. It is known as data distributors. Below is the -line-to-4-line demultiplexer circuit. The data input line goes to all of the AND gates.

16 The two data-select lines enable only one gate at a time and the data appearing on the data-input online will pass through the selected gate to the associated data-output line Decoder A decoder is a logic circuit that accepts a set of inputs that represents a binary number and activates only the output that corresponds to that input number. An AND gate can be used as a basic decoding element because it produces a HIGH output only when all inputs are HIGH. As example, to decode a binary number,, make sure that all the inputs to the AND gate are HIGH: If a NAND gate is used in place of AND gate, a LOW output will indicate the presence of the proper binary code Below is the diagram of a general decoder with N inputs and M outputs: Decoder N inputs M outputs 2N input codes only one output is high for each input code Since each of the N inputs can be either or, there are 2N possible input combinations or codes. For each of these input combinations only one of the M outputs will be active (HIGH); all other outputs are LOW. In order to decode all possible combinations of 4-bits, 6 decoding gates are required (24 = 6). This type of decoder is called a 4-line-to-6-line decoder (because there 4 inputs and 6 outputs) or a -of-6-decoder (because for any given code on the inputs, one of the 6 is activated).

17 An AND gate can be used to produce active-high outputs and NAND gate to produce active-low output. Below is the logic symbol for a 4-line-to6-line decoder with active-low output. The BIN/DEC label indicates that a binary input makes the corresponding decimal output active. The input labels 8,4,2, represent the binary weights of the input bits. Some decoders have one or more ENABLE inputs that are used to control the operation of the decoder. With the ENABLE line held HIGH, the decoder will function normally. With ENABLE held LOW, all the outputs will be forced to the LOW state regardless of the levels at the inputs. Thus, the decoder is enabled only if ENABLE is HIGH BCD to- Decimal Decoder The BCD-to-decimal decoder converts each BCD code into one of the position decimal digit indications. This decoder also is preferred as a 4-line-to--line decoder or a -of--line decoder.

18 Only decoding gates are required because the BCD code represent only decimal digits, -9. For input combinations that are invalid BCD, none of the output will be activated. The BCD-to-7-Segment Decoder- accepts the BCD code on its input and provides outputs to drive-7-segment display devices to produce a decimal readout Encoder An encoder accepts an active level on one of its inputs representing a digit, such as decimal or octal digit, and converts it to a coded output, such as BCD or binary The process of converting from familiar symbols or numbers to a coded format is called encoding The Decimal-to-BCD Encoder This type of encoder has inputs- one for each decimal digit- and four output corresponding to the BCD code as below:

19 This is -line-to-4-line encoder Decimal Numbers BCD A 3 A 2 A A Refer to the table above, the MSB of BCD code; A 3 is always a for decimal digit 8 or 9. An OR expression for bit A3 in terms of decimal digits: A 3 = Bit A 2 is always for decimal digit 4, 5, 6, 7 and can be expressed as an OR functions as: A 2 = A = A = To implement the logic circuitry required to encoding each decimal digit to a BCD code as follows: When HIGH appears on one of the decimal digit input lines, the appropriate levels occur on the four BCD output lines.

20 As example, if line 9 is HIGH this condition will produce a HIGH on outputs A and A3 and LOW on outputs A and A2, which is the BCD code () for decimal Edge-Triggered Flip-flop An Edge-Triggered Flip-flop changes state either at the POSITIVE edge (rising edge) or the NEGATIVE edge (falling edge) of the clock pulse. In this section, 3 types of Edge Triggered Flip-flop: S-R, D and J-K are covered. Top : Positive edge triggered flip-flop Bottom : Negative edge triggered flip-flop The key to identify an edge triggered flip-flop is the triangle inside the block at the clock C input. This triangle is called the Dynamic Input Indicator Edge Triggered S-R Flip Flop Excitation Table Input S Input R Input CLK Output Q NC X Comments No Change RESET SET Invalid

21 Timing Diagram Edge Triggered D Flip Flop Excitation Table Input D Input CLK Output Q Comments SET RESET Q follows D at the triggering clock edge. Timing Diagram Edge Triggered J-K Flip Flop Excitation Table Input J Input K Input CLK Output Q NC Q Comments No Change RESET SET Toggle. Q is the prior output before clock transition.

22 Toggle Operation When both inputs are HIGH, the output changes to the opposite state on each successive clock spike (J=, K=, Q= and repetitively). A J-K flip-flop connected for toggle operation is sometimes called T flip-flop. The functioning of J-K flip-flop is similar to S-R flip-flop except that J-K has no invalid state. Timing Diagram

23 LAB 3: COMBINATIONAL LOGIC CIRCUIT. Objectives At the end of this lab session, you should be able to: explain the logic gates and combinational circuits. construct combinational circuit in Multisim by using Logic Converter. design a combinational circuit in Multisim. 2. Logic Tools in Multisim Logic Converter button Figure L3- One of the virtual instruments in Multisim is the Logic Converter. The arrow in the figure L3- above shows the Logic Converter button.

24 Logic Converter Figure L3-2 When the Logic Converter button is clicked, the logic converter symbol is shown in the figure L3-2 above.

25 Figure L3-3 In the logic converter, most of the logic conversions needed is there. For example, if we want to obtain a circuit for the following Boolean expression, X A BC AB C Firstly, enter the Boolean expression into the logic converter as below:

26 Then, click on the Boolean expression truth table conversions option: Truth table Truth table conversion Next, the Boolean expression can be simplified by clicking for this example, the Boolean expression cannot be simplified anymore). (Note that Finally, click L3-4 below. to generate the combinational circuit which shown in figure

27 Figure L3-4 Circuit is generated 3. Exercise. Construct a three-input combinational circuit for f = m (2, 4, 5, 7) with the aid of Multisim. Show and explain all the steps in details. 2. Design a four-input combinational circuit for f = m (, 2, 4, 6, 9, 2, 4) with the aid of Multisim. Show and explain all the steps in details. 3. AB represents a two-bit binary number that can have any value (,,, or ); for example, when A = and B =, the binary number is, and so on. Similarly, CD represents another two-bit binary number. Design a logic circuit, using A, B, C, and D inputs, whose output will be HIGH whenever two binary numbers AB are equal and greater than CD. It is impossible for inputs AB and CD to be HIGH at the same time. a) Draw the logic circuit from the simplified Boolean expression (use AND, OR and NOT gates). b) Draw the logic circuit from the simplified Boolean expression (use NAND gates).

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

How To Use Multiisim On A Computer Or A Circuit Design Suite 10.0 (Aero)

How To Use Multiisim On A Computer Or A Circuit Design Suite 10.0 (Aero) MULTISIM TUTORIAL Start Click on Start All Programs National Instruments Circuit Design Suite 10.0 Multisim. Component Toolbar Ammeter/ Voltmeter Toolbar Virtual Component Toolbar Simulation Toolbar Instrument

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

More information

VCE Physics and VCE Systems Engineering: Table of electronic symbols

VCE Physics and VCE Systems Engineering: Table of electronic symbols VCE Physics and VCE Systems Engineering: Table of electronic symbols In response to requests from teachers the VCAA has produced a table of commonly used electronic symbols. Practicing teachers have provided

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

More information

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

More information

GLOLAB Two Wire Stepper Motor Positioner

GLOLAB Two Wire Stepper Motor Positioner Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Electronic WorkBench tutorial

Electronic WorkBench tutorial Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

More information

Digital Logic Elements, Clock, and Memory Elements

Digital Logic Elements, Clock, and Memory Elements Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

More information

CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

Copyright Peter R. Rony 2009. All rights reserved.

Copyright Peter R. Rony 2009. All rights reserved. Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

More information

Lab 1: Full Adder 0.0

Lab 1: Full Adder 0.0 Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify

More information

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Digital Fundamentals. Lab 8 Asynchronous Counter Applications Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

More information

Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

More information

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology. www.elabo-ts.com

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology. www.elabo-ts.com Aus- und Weiterbildung GmbH Electrical Engineering Electronics Digital Technology www.elabo-ts.com Principles of Electrical Engineering... Analysis of electrical-engineering systems on component level

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits. 2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

More information

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

Design Project: Power inverter

Design Project: Power inverter Design Project: Power inverter This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447). G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

3-Digit Counter and Display

3-Digit Counter and Display ECE 2B Winter 2007 Lab #7 7 3-Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Annex: VISIR Remote Laboratory

Annex: VISIR Remote Laboratory Open Learning Approach with Remote Experiments 518987-LLP-1-2011-1-ES-KA3-KA3MP Multilateral Projects UNIVERSITY OF DEUSTO Annex: VISIR Remote Laboratory OLAREX project report Olga Dziabenko, Unai Hernandez

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

More information

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2 UPDATED SCHEME OF EXAMS. & SYLLABI FOR B.SC. Course: Bachelor of Science (B. Sc.) 1 st year Subject: Electronic Equipment Maintenance Scheme of Examination for Semester 1 & 2 (i) Theory: Two papers of

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS Hex Invertes 74LS04 Quadruple 2 Inputs Gates 74LS00 Triple 3 Inputs Gates 74LS10 Dual 4 Inputs Gates 74LS20 8 Inputs Gates 74LS30 13 Inputs Gates

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Tutorials Drawing a 555 timer circuit

Tutorials Drawing a 555 timer circuit Step 1 of 10: Introduction This tutorial shows you how to make an electronic circuit using Livewire and PCB Wizard 3. You should follow this tutorial to learn the basic skills you will need to use Livewire

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

Figure 8-1 Four Possible Results of Adding Two Bits

Figure 8-1 Four Possible Results of Adding Two Bits CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

More information

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles

More information

Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue

Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue Build A Video Switcher Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications, Inc.,1997 BUILD A VIDEO SWITCHER FRANK MONTEGARI Watch several cameras

More information

Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

GLOLAB Universal Telephone Hold

GLOLAB Universal Telephone Hold GLOLAB Universal Telephone Hold 1 UNIVERSAL HOLD CIRCUIT If you have touch tone telephone service, you can now put a call on hold from any phone in the house, even from cordless phones and phones without

More information

Lab 1: Introduction to Xilinx ISE Tutorial

Lab 1: Introduction to Xilinx ISE Tutorial Lab 1: Introduction to Xilinx ISE Tutorial This tutorial will introduce the reader to the Xilinx ISE software. Stepby-step instructions will be given to guide the reader through generating a project, creating

More information

POCKET SCOPE 2. The idea 2. Design criteria 3

POCKET SCOPE 2. The idea 2. Design criteria 3 POCKET SCOPE 2 The idea 2 Design criteria 3 Microcontroller requirements 3 The microcontroller must have speed. 3 The microcontroller must have RAM. 3 The microcontroller must have secure Flash. 3 The

More information

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT CONSTRUCTING A VARIABLE POWER SUPPLY UNIT Building a power supply is a good way to put into practice many of the ideas we have been studying about electrical power so far. Most often, power supplies are

More information

Lab 1: Introduction to PSpice

Lab 1: Introduction to PSpice Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software

More information

Work with Arduino Hardware

Work with Arduino Hardware 1 Work with Arduino Hardware Install Support for Arduino Hardware on page 1-2 Open Block Libraries for Arduino Hardware on page 1-9 Run Model on Arduino Hardware on page 1-12 Tune and Monitor Models Running

More information

Lab 1: Study of Gates & Flip-flops

Lab 1: Study of Gates & Flip-flops 1.1 Aim Lab 1: Study of Gates & Flip-flops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. 1.2 Hardware Requirement a. Equipments -

More information

Theory of Logic Circuits. Laboratory manual. Exercise 3

Theory of Logic Circuits. Laboratory manual. Exercise 3 Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

More information

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count

More information

LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14

LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14 LOGICOS SERIE 4000 Precios sujetos a variación Ref. Part # Descripción Precio Foto Ref. A-6-1 CD4001 Quad 2-Input NOR Buffered B Series Gate / PDIP-14 $ 290 A-6-2 CD4001BCM Quad 2-Input NOR Buffered B

More information

Experiment teaching of digital electronic technology using Multisim 12.0

Experiment teaching of digital electronic technology using Multisim 12.0 World Transactions on Engineering and Technology Education Vol.12, No.1, 2014 2014 WIETE Experiment teaching of digital electronic technology using Multisim 12.0 Qiu-xia Liu Heze University Heze, Shandong,

More information

Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8. Sequential Circuits for Registers and Counters Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

Programming Logic controllers

Programming Logic controllers Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information