Motion through fluids

Size: px
Start display at page:

Download "Motion through fluids"

Transcription

1 Motion through fluids References: 1. J. P. Owen, W.S. Ryu: The effects of linear and quadratic drag on falling spheres: an undergraduate laboratory, Eur. J. Phys. 6 (005) P. Nelson: Biological Physics, Updated 1 st. ed., Freean (008), Ch. 5. Introduction In swiing bacteria or diffusing proteins, viscous rather than inertial forces doinate the dynaics of otion. A coon easure of the ratio of the inertial to viscous forces is known as the Reynolds nuber: l v R e (1) Where ρ is the fluid density, ν is the velocity of the object, l is a characteristic length of the object, and η is the fluid viscosity. Our everyday experience is ostly with high Reynolds nuber environents where inertial forces doinate. Swiing, for exaple, is a high Reynolds nuber activity. We propel ourselves through the water by accelerating the fluid behind us; the inertial force fro a single stroke lets us glide eters before we coe to a stop. Low Reynolds nuber activities are less coon, but stirring a jar of honey with a spoon is one exaple. It's the viscosity of the honey and not the ass of the honey that akes the stirring difficult. When you let go of the spoon, does it continue to swirl around the jar? No, the spoon stops oving fairly quickly. The viscous force doinates the inertial force. Swiing can be a low Reynolds nuber activity when the length scale of the swier is sall. Microorganiss fit this category. A bacteriu such as E. coli, is about one icron (10-6 eters) in diaeter and travels around 0 μ per second, so swiing bacteria have a Reynolds nuber uch less than one and the viscous forces doinate inertial forces. To us, this is a very alien hydrodynaic world. For you to swi at an equivalent Reynolds nuber,you would need to "swi" in soething viscous like honey, at speeds of about a foot a day, while cycling our ars at about 1 stroke per hour. Theoretical background Inertial forces (F = a) are failiar, but what are viscous forces? Iagine you have a fluid between two plates. Intuitively you know that as the viscosity of the fluid increases, it requires ore force to slide the plates apart (think water versus honey). Now assue that the botto plate is fixed while the top plate, at soe distance l, is free to ove parallel to the fixed plate (see Figure 1). 1

2 Figure 1: Fluid between oving plates: Force/area = viscosity*velocity/length If a force F is applied to the top plate, it will ove at soe velocity ν, foring a velocity gradient between the top and botto plates. As the viscosity increases, it will take a larger force to for the sae velocity gradient. It is this proportionality between the force per area (also known as shear stress) and the velocity per length (shear rate) that is known as viscosity. Fro Figure 1, we can define the viscous force (F v ): F v Av l Inertial forces are in the for F i = a and for a volue of fluid V with density ρ, this can be written as: () () F i V a l Av t (3) Taking the ratio gives the Reynolds nuber: Fi l v (4) Re Fv Equations of otion In this experient, you will be following the otion of objects falling in fluids. Check out the force diagra for a sphere falling in a fluid (Fig ). Figure : A falling sphere, where g is the weight of the object, g is the buoyant force, and F d is the drag force.

3 The equation of otion is: ( ' ) g F M ' g d F d (5) Where F d is the drag force and M' is the effective ass of the object corrected for buoyancy. When the object reaches its terinal velocity (a = dυ/ = 0) and: M ' g F d (6) The for of F d depends on the Reynolds nuber. At a high Reynolds nuber, the drag force is coonly written as: 1 Fd Cd Av (7) The drag coefficient C d is easured epirically, ρ is density of fluid and A is cross-sectional area of the object, perpendicular to the direction of otion. Terinal velocity is this regie can be obtained fro the equation of otion: 1 g C d Av (8) The equation of otion can be solved analytically by separation of variables. The general for of the equation is: g cv Solution takes the for: gt v( t) v ter tanh vter Where terinal velocity v ter is given by: (9) (10) v ter g Cd A 1/ (11) Integrate (9) and solve for υ(t). Verify that solution fro (10) is correct. To solve for the constant of integration, use the initial condition, υ(0) = 0. Terinal velocity in the high Reynolds nuber regie depends on the bead radius as: v ter g C d A 1/ r r 3 1/ r 1/ (1) 3

4 The derivation of drag force at a low Reynolds nuber is not as straightforward as the high Reynolds nuber case. However, fro the discussion of viscous forces above, one can see that F d is generally proportional to η, l, and ν. Soe specific cases have been solved exactly, such as the drag on a sphere of radius r oving at velocity ν in a fluid with viscosity η. This is known as Stokes drag: F d 6vr (13) In the following experients we will be working with objects of constant density but of different size. How should the terinal velocity vary as a function of linear diension? Fro the force equation at low Reynolds nuber, the terinal velocity of the sphere is: v ter M ' g 6 r (14) The assuption here is that the sphere's velocity is relatively constant throughout its fall. Let's check if this is expected. For an object falling at low Reynolds nuber, the equation of otion is (ignoring the buoyant force for now): g 6 rv (15) The general for of the equation of otion is: g bv (16) Separate variables and integrate. The solution is: g t / v( t) 1 e (17) 6 r Where 6 r Integrate and solve for ν(t). Verify that solution fro eq. (16) is correct. Qualitatively, we can see that the solution has the correct initial and asyptotic behaviour: At t = 0, ν = 0. At t =, ν = g/6πηr, the expected terinal velocity. How quickly the syste reaches the terinal velocity depends on the tie constant τ. Estiate τ for a 1 diaeter aluinu sphere in glycerine, r = 0.5 x 10-3, η = 1500cp, (1cp = 1centipoise = 10 - Poise), ρ =.7 g/c 3 (Aluinu). Terinal velocity in the low Reynolds nuber regie depends on the particle radius as: v ter M ' g 6 r r r 3 r (18) 4

5 The experient Notes about the procedure By easuring the vertical speed of different sized spherical particles in glycerol or water, you will deterine how the terinal velocity scales with the radius of the sphere and the viscosity of the fluid. In order to find out how fast the terinal velocity is setup, estiate τ. You will use a video tracking ethod. Open the LabView application Motion through Fluids (shortcut on the coputer desktop). Confir the default caera. The progra asks you to select the nuber of fraes to be recorded. Do the trial experients with 10 fraes; adjust the nuber according to your experiental conditions later on. The frae rate eans how any fraes per second. Try 0 (this will cover 6 seconds when cobined with 10 fraes), adjust it later. You have to provide a location for saving the *.avi file (ovie of the falling particle). Be ready to drop the bead: suberge the tweezers + bead in glycerol in order to avoid surface tension probles. Click on Start the avi ovie capture. You ll hear two short warning beeps followed by a long one: at the long one release the bead. The application will output a text file with tie (in seconds) and position (in ) of the falling bead. Correction for the wall effect* We have already discussed the forces acting on a sphere falling in a liquid. There is a gravity force, a buoyancy force, and a drag force. For the calculation of the drag force, we used Stokes law, which assues the sphere to be oving in an unbound or infinite fluid. Objects falling near a boundary (like the wall of a container) fall ore slowly than an object falling far fro a wall. You can see this for yourself by siultaneously dropping two identical spheres at the sae tie: one near the wall and one at the center of the container (try it!). To account for the effect of the container wall on the otion of the falling sphere, a correction factor has been deterined. The velocity correction for a sphere falling in the center of a fluidfilled cylinder is: v corr v d d D D (19) Where ν is the experientally easured ean velocity, d is the diaeter of the sphere, D is the diension of the container, perpendicular to the fall direction, and ν corr is the expected velocity of the sphere if it were falling in an unbounded fluid. *This is derived fro experiental easureents and taken fro Loatzsch, T., et al. Conceptual study of an absolute falling-ball viscoeter, Metrologia, 001, 38 ( ). Estiate the correction for all sizes. 5

6 Exercise 1: Low Reynolds nuber You ll receive a box arked Glycerine with five different sizes of spherical beads ade of Aluinu or Teflon. Beads range fro 1.94 to 6.35 in diaeter. A rectangular container (9.5c 9.5c 31.0c) filled with glycerol will be provided. The container is placed in front of a dark chaber. The video caera is located at the rear of the chaber. Test your setup by dropping beads and tiing the fall using a stopwatch. This would give you a hint about the nuber of fraes and fraes/second. Do -3 easureents for each bead size. Measure the diaeter of each size, using a caliper. Calculate the ean velocity for each bead size (this is the ean terinal velocity). Correct the data for the wall effect. Calculate the Reynolds nuber. Does the value atch the low R e condition of your proble? Using Python, plot the ean terinal velocity of the spheres in glycerine as a function of radius. Fit the data using eq. (18). The slope of the plot should be close to 1. Did you notice any discrepancy? Exercise : High Reynolds Nuber You will also receive a box with Nylon beads arked Water. Measure the diaeter of each bead. Replace the large container arked Pure Glycerine with the container arked Water. Please take care not to spill glycerine (it is essy and slippery). Make sure you reove all the air bubbles fro the container walls. Test your setup again by dropping beads without the tracking software to estiate the fall tie. As you will notice, the fall of larger particles is not in a straight line. Soeties, they wobble due to water turbulence. Practice until you get the best trajectory. Take 5 easureents for each bead size using the tracking progra. Calculate the ean velocity for each bead size. Can this be interpreted as terinal velocity? Correct the data for the wall effect. Calculate the Reynolds nuber in each case. Is there a critical velocity (or a critical bead size) that confirs the high R e nuber (R e >00)? Using Python, plot ean velocity of the spheres in water, as a function of the radius. Fit the data using eq. (1). Do you notice any discrepancy with theory? Appendix (Physical Reference Data): Glycerol viscosity = 934 centipoises (cp) or 9.34 g/(c s) at 5 C Glycerol density = 1.6 (g/c 3 ) Viscosity of water 1 5 C Density of water 1 g/c 5 C Aluinu density =.7 g/c 3, Teflon density =. g/c 3, Nylon density 1.1 g/c 3. The experiental setup was built by Larry Avraidis. Larry also designed the LabView tracking progra. This guide was written by Ruxandra Serbanescu in 013. In includes aterial fro Reference 1, which was part of an experient designed by W. Ryu at Princeton University in

A Gas Law And Absolute Zero Lab 11

A Gas Law And Absolute Zero Lab 11 HB 04-06-05 A Gas Law And Absolute Zero Lab 11 1 A Gas Law And Absolute Zero Lab 11 Equipent safety goggles, SWS, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution

More information

A Gas Law And Absolute Zero

A Gas Law And Absolute Zero A Gas Law And Absolute Zero Equipent safety goggles, DataStudio, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution This experient deals with aterials that are very

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Physics 211: Lab Oscillations. Simple Harmonic Motion.

Physics 211: Lab Oscillations. Simple Harmonic Motion. Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.

More information

PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW

PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW ABSTRACT: by Douglas J. Reineann, Ph.D. Assistant Professor of Agricultural Engineering and Graee A. Mein, Ph.D. Visiting Professor

More information

The Mathematics of Pumping Water

The Mathematics of Pumping Water The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Scaling of Seepage Flow Velocity in Centrifuge Models CUED/D-SOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2

Scaling of Seepage Flow Velocity in Centrifuge Models CUED/D-SOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2 Scaling of Seepage Flow Velocity in Centrifuge Models CUED/D-SOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2 Research Student 1, Senior Lecturer 2, Cabridge University Engineering Departent

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

8. Spring design. Introduction. Helical Compression springs. Fig 8.1 Common Types of Springs. Fig 8.1 Common Types of Springs

8. Spring design. Introduction. Helical Compression springs. Fig 8.1 Common Types of Springs. Fig 8.1 Common Types of Springs Objectives 8. Spring design Identify, describe, and understand principles of several types of springs including helical copression springs, helical extension springs,, torsion tubes, and leaf spring systes.

More information

Work, Energy, Conservation of Energy

Work, Energy, Conservation of Energy This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and non-conservative forces, with soe

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

Lesson 44: Acceleration, Velocity, and Period in SHM

Lesson 44: Acceleration, Velocity, and Period in SHM Lesson 44: Acceleration, Velocity, and Period in SHM Since there is a restoring force acting on objects in SHM it akes sense that the object will accelerate. In Physics 20 you are only required to explain

More information

( C) CLASS 10. TEMPERATURE AND ATOMS

( C) CLASS 10. TEMPERATURE AND ATOMS CLASS 10. EMPERAURE AND AOMS 10.1. INRODUCION Boyle s understanding of the pressure-volue relationship for gases occurred in the late 1600 s. he relationships between volue and teperature, and between

More information

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This print-out should have 4 questions. Multiple-choice questions ay continue on the next colun or page find all choices before aking your selection.

More information

Exercise 4 INVESTIGATION OF THE ONE-DEGREE-OF-FREEDOM SYSTEM

Exercise 4 INVESTIGATION OF THE ONE-DEGREE-OF-FREEDOM SYSTEM Eercise 4 IVESTIGATIO OF THE OE-DEGREE-OF-FREEDOM SYSTEM 1. Ai of the eercise Identification of paraeters of the euation describing a one-degree-of- freedo (1 DOF) atheatical odel of the real vibrating

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Calculating the Return on Investment (ROI) for DMSMS Management. The Problem with Cost Avoidance

Calculating the Return on Investment (ROI) for DMSMS Management. The Problem with Cost Avoidance Calculating the Return on nvestent () for DMSMS Manageent Peter Sandborn CALCE, Departent of Mechanical Engineering (31) 45-3167 sandborn@calce.ud.edu www.ene.ud.edu/escml/obsolescence.ht October 28, 21

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases ecture /. Kinetic olecular Theory of Ideal Gases ast ecture. IG is a purely epirical law - solely the consequence of eperiental obserations Eplains the behaior of gases oer a liited range of conditions.

More information

LAWS OF MOTION PROBLEM AND THEIR SOLUTION

LAWS OF MOTION PROBLEM AND THEIR SOLUTION http://www.rpauryascienceblog.co/ LWS OF OIO PROBLE D HEIR SOLUIO. What is the axiu value of the force F such that the F block shown in the arrangeent, does not ove? 60 = =3kg 3. particle of ass 3 kg oves

More information

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 2: SURFACE TENSION

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 2: SURFACE TENSION ChE 203 - Physicocheical Systes Laboratory EXPERIMENT 2: SURFACE TENSION Before the experient: Read the booklet carefully. Be aware of the safety issues. Object To deterine the surface tension of water

More information

Chapter 5. Principles of Unsteady - State Heat Transfer

Chapter 5. Principles of Unsteady - State Heat Transfer Suppleental Material for ransport Process and Separation Process Principles hapter 5 Principles of Unsteady - State Heat ransfer In this chapter, we will study cheical processes where heat transfer is

More information

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor J. Peraire, S. Widnall 16.07 Dynaics Fall 008 Lecture L6-3D Rigid Body Dynaics: The Inertia Tensor Version.1 In this lecture, we will derive an expression for the angular oentu of a 3D rigid body. We shall

More information

F=ma From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.edu

F=ma From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.edu Chapter 4 F=a Fro Probles and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, orin@physics.harvard.edu 4.1 Introduction Newton s laws In the preceding two chapters, we dealt

More information

Use of extrapolation to forecast the working capital in the mechanical engineering companies

Use of extrapolation to forecast the working capital in the mechanical engineering companies ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL 2014. Vol. 1. No. 1. 23 28 Use of extrapolation to forecast the working capital in the echanical engineering copanies A. Cherep, Y. Shvets Departent of finance

More information

Vectors & Newton's Laws I

Vectors & Newton's Laws I Physics 6 Vectors & Newton's Laws I Introduction In this laboratory you will eplore a few aspects of Newton s Laws ug a force table in Part I and in Part II, force sensors and DataStudio. By establishing

More information

Version 001 test 1 review tubman (IBII201516) 1

Version 001 test 1 review tubman (IBII201516) 1 Version 001 test 1 review tuban (IBII01516) 1 This print-out should have 44 questions. Multiple-choice questions ay continue on the next colun or page find all choices before answering. Crossbow Experient

More information

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

COMBINING CRASH RECORDER AND PAIRED COMPARISON TECHNIQUE: INJURY RISK FUNCTIONS IN FRONTAL AND REAR IMPACTS WITH SPECIAL REFERENCE TO NECK INJURIES

COMBINING CRASH RECORDER AND PAIRED COMPARISON TECHNIQUE: INJURY RISK FUNCTIONS IN FRONTAL AND REAR IMPACTS WITH SPECIAL REFERENCE TO NECK INJURIES COMBINING CRASH RECORDER AND AIRED COMARISON TECHNIQUE: INJURY RISK FUNCTIONS IN FRONTAL AND REAR IMACTS WITH SECIAL REFERENCE TO NECK INJURIES Anders Kullgren, Maria Krafft Folksa Research, 66 Stockhol,

More information

The Velocities of Gas Molecules

The Velocities of Gas Molecules he Velocities of Gas Molecules by Flick Colean Departent of Cheistry Wellesley College Wellesley MA 8 Copyright Flick Colean 996 All rights reserved You are welcoe to use this docuent in your own classes

More information

The Virtual Spring Mass System

The Virtual Spring Mass System The Virtual Spring Mass Syste J. S. Freudenberg EECS 6 Ebedded Control Systes Huan Coputer Interaction A force feedbac syste, such as the haptic heel used in the EECS 6 lab, is capable of exhibiting a

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Salty Waters. Instructions for the activity 3. Results Worksheet 5. Class Results Sheet 7. Teacher Notes 8. Sample results. 12

Salty Waters. Instructions for the activity 3. Results Worksheet 5. Class Results Sheet 7. Teacher Notes 8. Sample results. 12 1 Salty Waters Alost all of the water on Earth is in the for of a solution containing dissolved salts. In this activity students are invited to easure the salinity of a saple of salt water. While carrying

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer

Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer Experient Index of refraction of an unknown liquid --- Abbe Refractoeter Principle: The value n ay be written in the for sin ( δ +θ ) n =. θ sin This relation provides us with one or the standard ethods

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex.

Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex. MATH 008: Angles Angle: An angle is the union of two line segents (or two rays) with a coon endpoint, called a vertex. A B C α Adjacent angles: Adjacent angles are two angles that share a vertex, have

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

They may be based on a number of simplifying assumptions, and their use in design should tempered with extreme caution!

They may be based on a number of simplifying assumptions, and their use in design should tempered with extreme caution! 'Rules o Mixtures' are atheatical expressions which give soe property o the coposite in ters o the properties, quantity and arrangeent o its constituents. They ay be based on a nuber o sipliying assuptions,

More information

Physics for the Life Sciences: Fall 2008 Lecture #25

Physics for the Life Sciences: Fall 2008 Lecture #25 Physics for the Life Sciences: Fall 2008 Lecture #25 Real fluids: As we have mentioned several times, real fluids are more complex than the ideal fluids described by the continuity equation and Bernoulli

More information

An Innovate Dynamic Load Balancing Algorithm Based on Task

An Innovate Dynamic Load Balancing Algorithm Based on Task An Innovate Dynaic Load Balancing Algorith Based on Task Classification Hong-bin Wang,,a, Zhi-yi Fang, b, Guan-nan Qu,*,c, Xiao-dan Ren,d College of Coputer Science and Technology, Jilin University, Changchun

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

Lecture 09 Nuclear Physics Part 1

Lecture 09 Nuclear Physics Part 1 Lecture 09 Nuclear Physics Part 1 Structure and Size of the Nucleus Νuclear Masses Binding Energy The Strong Nuclear Force Structure of the Nucleus Discovered by Rutherford, Geiger and Marsden in 1909

More information

How To Get A Loan From A Bank For Free

How To Get A Loan From A Bank For Free Finance 111 Finance We have to work with oney every day. While balancing your checkbook or calculating your onthly expenditures on espresso requires only arithetic, when we start saving, planning for retireent,

More information

Teil I. Student Laboratory Manuals

Teil I. Student Laboratory Manuals Teil I Student Laboratory Manuals 1 IR1 5. Fluid friction in liquids 5.1 Introduction Generally the term fluid is understood to be matter either in the gaseous or liquid state. The physics involved on

More information

SOME APPLICATIONS OF FORECASTING Prof. Thomas B. Fomby Department of Economics Southern Methodist University May 2008

SOME APPLICATIONS OF FORECASTING Prof. Thomas B. Fomby Department of Economics Southern Methodist University May 2008 SOME APPLCATONS OF FORECASTNG Prof. Thoas B. Foby Departent of Econoics Southern Methodist University May 8 To deonstrate the usefulness of forecasting ethods this note discusses four applications of forecasting

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Experiment # 3: Pipe Flow

Experiment # 3: Pipe Flow ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York 1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

More information

ELECTRIC SERVO MOTOR EQUATIONS AND TIME CONSTANTS

ELECTRIC SERVO MOTOR EQUATIONS AND TIME CONSTANTS ELECIC SEO MOO EQUAIONS AND IME CONSANS George W. Younkin, P.E. Life FELLOW IEEE Industrial Controls Consulting, Div. Bulls Eye Marketing, Inc Fond du c, Wisconsin In the analysis of electric servo drive

More information

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find: HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

PHYSICS 151 Notes for Online Lecture 2.2

PHYSICS 151 Notes for Online Lecture 2.2 PHYSICS 151 otes for Online Lecture. A free-bod diagra is a wa to represent all of the forces that act on a bod. A free-bod diagra akes solving ewton s second law for a given situation easier, because

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

On the Mutual Coefficient of Restitution in Two Car Collinear Collisions

On the Mutual Coefficient of Restitution in Two Car Collinear Collisions //006 On the Mutual Coefficient of Restitution in Two Car Collinear Collisions Milan Batista Uniersity of Ljubljana, Faculty of Maritie Studies and Transportation Pot poorscako 4, Sloenia, EU ilan.batista@fpp.edu

More information

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD 130 Experiment-366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No-610, Tata Nagar, Bengaluru-560092.

More information

Media Adaptation Framework in Biofeedback System for Stroke Patient Rehabilitation

Media Adaptation Framework in Biofeedback System for Stroke Patient Rehabilitation Media Adaptation Fraework in Biofeedback Syste for Stroke Patient Rehabilitation Yinpeng Chen, Weiwei Xu, Hari Sundara, Thanassis Rikakis, Sheng-Min Liu Arts, Media and Engineering Progra Arizona State

More information

Homework 8. problems: 10.40, 10.73, 11.55, 12.43

Homework 8. problems: 10.40, 10.73, 11.55, 12.43 Hoework 8 probles: 0.0, 0.7,.55,. Proble 0.0 A block of ass kg an a block of ass 6 kg are connecte by a assless strint over a pulley in the shape of a soli isk having raius R0.5 an ass M0 kg. These blocks

More information

Chapter 31. Current and Resistance. What quantity is represented by the symbol J?

Chapter 31. Current and Resistance. What quantity is represented by the symbol J? Chapter 31. Current and Resistance Lights, sound systes, icrowave ovens, and coputers are all connected by wires to a battery or an electrical outlet. How and why does electric current flow through a wire?

More information

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0 Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley Norton 0 Norton 1 Abstract The charge of an electron can be experimentally measured by observing an oil

More information

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013 Calculation Method for evaluating Solar Assisted Heat Pup Systes in SAP 2009 15 July 2013 Page 1 of 17 1 Introduction This docuent describes how Solar Assisted Heat Pup Systes are recognised in the National

More information

Reliability Constrained Packet-sizing for Linear Multi-hop Wireless Networks

Reliability Constrained Packet-sizing for Linear Multi-hop Wireless Networks Reliability Constrained acket-sizing for inear Multi-hop Wireless Networks Ning Wen, and Randall A. Berry Departent of Electrical Engineering and Coputer Science Northwestern University, Evanston, Illinois

More information

Construction Economics & Finance. Module 3 Lecture-1

Construction Economics & Finance. Module 3 Lecture-1 Depreciation:- Construction Econoics & Finance Module 3 Lecture- It represents the reduction in arket value of an asset due to age, wear and tear and obsolescence. The physical deterioration of the asset

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

From Last Time Newton s laws. Question. Acceleration of the moon. Velocity of the moon. How has the velocity changed?

From Last Time Newton s laws. Question. Acceleration of the moon. Velocity of the moon. How has the velocity changed? Fro Last Tie Newton s laws Law of inertia F=a ( or a=f/ ) Action and reaction Forces are equal and opposite, but response to force (accel.) depends on ass (a=f/). e.g. Gravitational force on apple fro

More information

and that of the outgoing water is mv f

and that of the outgoing water is mv f Week 6 hoework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign ersions of these probles, arious details hae been changed, so that the answers will coe out differently. The ethod to find the solution is

More information

ALLOWABLE STRESS DESIGN OF CONCRETE MASONRY BASED ON THE 2012 IBC & 2011 MSJC. TEK 14-7C Structural (2013)

ALLOWABLE STRESS DESIGN OF CONCRETE MASONRY BASED ON THE 2012 IBC & 2011 MSJC. TEK 14-7C Structural (2013) An inforation series fro the national authority on concrete asonry technology ALLOWABLE STRESS DESIGN OF CONCRETE MASONRY BASED ON THE 2012 IBC & 2011 MSJC TEK 14-7C Structural (2013) INTRODUCTION Concrete

More information

Image restoration for a rectangular poor-pixels detector

Image restoration for a rectangular poor-pixels detector Iage restoration for a rectangular poor-pixels detector Pengcheng Wen 1, Xiangjun Wang 1, Hong Wei 2 1 State Key Laboratory of Precision Measuring Technology and Instruents, Tianjin University, China 2

More information

Project Evaluation Roadmap. Capital Budgeting Process. Capital Expenditure. Major Cash Flow Components. Cash Flows... COMM2501 Financial Management

Project Evaluation Roadmap. Capital Budgeting Process. Capital Expenditure. Major Cash Flow Components. Cash Flows... COMM2501 Financial Management COMM501 Financial Manageent Project Evaluation 1 (Capital Budgeting) Project Evaluation Roadap COMM501 Financial Manageent Week 7 Week 7 Project dependencies Net present value ethod Relevant cash flows

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phs0 Lectures 4, 5, 6 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 9-,,3,4,5,6,7,8,9. Page Moentu is a vector:

More information

Estimation of mass fraction of residual gases from cylinder pressure data and its application to modeling for SI engine

Estimation of mass fraction of residual gases from cylinder pressure data and its application to modeling for SI engine Journal of Applied Matheatics, Islaic Azad University of Lahijan, Vol.8, No.4(31), Winter 2012, pp 15-28 ISSN 2008-6083 Estiation of ass fraction of residual gases fro cylinder pressure data and its application

More information

Internet Electronic Journal of Molecular Design

Internet Electronic Journal of Molecular Design ISSN 1538 6414 Internet Electronic Journal of Molecular Design June 2003, Volue 2, Nuber 6, Pages 375 382 Editor: Ovidiu Ivanciuc Special issue dedicated to Professor Haruo Hosoya on the occasion of the

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

The Research of Measuring Approach and Energy Efficiency for Hadoop Periodic Jobs

The Research of Measuring Approach and Energy Efficiency for Hadoop Periodic Jobs Send Orders for Reprints to reprints@benthascience.ae 206 The Open Fuels & Energy Science Journal, 2015, 8, 206-210 Open Access The Research of Measuring Approach and Energy Efficiency for Hadoop Periodic

More information

More Unit Conversion Examples

More Unit Conversion Examples The Matheatics 11 Copetency Test More Unit Conversion Exaples In this docuent, we present a few ore exaples of unit conversions, now involving units of easureent both in the SI others which are not in

More information

Collision of a small bubble with a large falling particle

Collision of a small bubble with a large falling particle EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin

More information

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller Research Article International Journal of Current Engineering and Technology EISSN 77 46, PISSN 347 56 4 INPRESSCO, All Rights Reserved Available at http://inpressco.co/category/ijcet Design of Model Reference

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

ENZYME KINETICS: THEORY. A. Introduction

ENZYME KINETICS: THEORY. A. Introduction ENZYME INETICS: THEORY A. Introduction Enzyes are protein olecules coposed of aino acids and are anufactured by the living cell. These olecules provide energy for the organis by catalyzing various biocheical

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Pressure in Fluids. Introduction

Pressure in Fluids. Introduction Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

More information

Pure Bending Determination of Stress-Strain Curves for an Aluminum Alloy

Pure Bending Determination of Stress-Strain Curves for an Aluminum Alloy Proceedings of the World Congress on Engineering 0 Vol III WCE 0, July 6-8, 0, London, U.K. Pure Bending Deterination of Stress-Strain Curves for an Aluinu Alloy D. Torres-Franco, G. Urriolagoitia-Sosa,

More information

Experimental and Theoretical Modeling of Moving Coil Meter

Experimental and Theoretical Modeling of Moving Coil Meter Experiental and Theoretical Modeling of Moving Coil Meter Prof. R.G. Longoria Updated Suer 010 Syste: Moving Coil Meter FRONT VIEW Electrical circuit odel Mechanical odel Meter oveent REAR VIEW needle

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

Modeling Parallel Applications Performance on Heterogeneous Systems

Modeling Parallel Applications Performance on Heterogeneous Systems Modeling Parallel Applications Perforance on Heterogeneous Systes Jaeela Al-Jaroodi, Nader Mohaed, Hong Jiang and David Swanson Departent of Coputer Science and Engineering University of Nebraska Lincoln

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as: 12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes

More information

6.055J/2.038J (Spring 2009)

6.055J/2.038J (Spring 2009) 6.055J/2.038J (Spring 2009) Solution set 05 Do the following warmups and problems. Due in class on Wednesday, 13 May 2009. Open universe: Collaboration, notes, and other sources of information are encouraged.

More information

A magnetic Rotor to convert vacuum-energy into mechanical energy

A magnetic Rotor to convert vacuum-energy into mechanical energy A agnetic Rotor to convert vacuu-energy into echanical energy Claus W. Turtur, University of Applied Sciences Braunschweig-Wolfenbüttel Abstract Wolfenbüttel, Mai 21 2008 In previous work it was deonstrated,

More information

Viscosity (VIS) Topic: Mechanics. Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law

Viscosity (VIS) Topic: Mechanics. Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law Seite 1 Viscosity Topic: Mechanics 1 Key words Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law 2 Literatur L. Bergmann, C. Schäfer, Lehrbuch der Experimentalphysik, Band

More information