# Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E.

Save this PDF as:

Size: px
Start display at page:

Download "Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E."

## Transcription

1 Chapter 6: Energy and Oscillations 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. kwh 2. Work is not being done on an object unless the A. net force on the object is zero. B. object is being accelerated. C. speed is constant. D. object is moving. 3. A brick slides across a horizontal rough surface and eventually comes to a stop. What happened to the kinetic energy of the brick? A. Nothing, it is still in the brick but is now called potential energy. B. It was converted to other energy forms, mostly heat. C. It was converted to a potential energy of friction. D. It was simply destroyed in the process of stopping. 4. Which of the following is possessed by moving object, but not by a stationary object? A. Energy. B. Kinetic energy. C. Mass. D. Inertia. 5. The power of an engine is a measure of A. its volume. B. its ability to outperform a horse. C. the rate at which it can perform work. D. the total amount of work it can perform. 6. Which has the greater kinetic energy - a 1-ton car moving at 30 m/s, or a half-ton car moving at 60 m/s? A. a 1-ton car B. a half-ton car C. both have same kinetic energy

2 7. A 20 N ball and a 40 N ball are dropped at the same time from a height of 10 meters. Air resistance is negligible. Which of the following statements is accurate? A. After 1 second has elapsed, both balls have the same kinetic energy since they have the same acceleration. B. The heavy ball has a greater acceleration and falls faster. C. The light ball has a greater speed since it can accelerate faster than the heavy ball. D. Both balls hit the ground at the same time but gravity does more work on the heavy ball than on the light ball. 8. When work is done by a force on an object, then which of the following are true? A. The speed of the object always increases. B. The mass of the object always increases. C. The object does negative work on the force. D. The energy lost to friction is equal to the amount of work done by the force. E. The work done will be equal to the change of the total energy of the object plus energy appearing as heat, light, or sound. 9. A block sits on a slight incline, held at rest by the frictional force between the block and the incline. Which of the following statements is true? A. The frictional force performs no work since there is no motion of the block. B. The work by the frictional force is equal to the gravitational potential energy of the block. C. The work done by the frictional force is negative since the force of friction opposes the direction that the block is being tugged by gravity. D. The work done by gravity is entirely converted into heat because of the friction present. E. None of these are true. 10. A wooden block slides down a rough incline. Which of the following statements is true? A. The kinetic energy of the block is decreasing. B. The gravitational potential energy of the block is increasing. C. The mechanical energy of the block is constant. D. The mechanical energy of the block is increasing. E. The mechanical energy of the block is decreasing.

3 11. Initially, a blue automobile has twice the kinetic energy that a red automobile has. Both are braked to a stop; both have the same amount of braking force. The red auto will stop in as the blue auto. A. half the distance B. the same distance C. twice the distance D. four times the distance E. one fourth the distance 12. A mass hangs from a spring that is fixed to the ceiling. The mass is now pulled down and released so the mass oscillates up and down. Which of the following statements is true? A. The kinetic energy of the oscillating mass is a constant. B. Adding mass to the spring will make it oscillate faster. C. The restoring force of the spring is equal to the weight of the mass. D. The gravitational force on the mass oscillates at the same frequency as the mass. E. None of the above is true. 13. Jim exerts a force of 500 N against a 100-kg desk that does not move. Virgil exerts a force of 400 N against a 60-kg desk that moves 2 m in the direction of the push. Mik exerts a force of 200 N against a 50-kg desk that moves 4 m in the direction of the push. The most work is done by A. Jim. B. Virgil. C. Mik. D. Virgil and Mik, who do equal amounts of work. 14. Suppose you climb the stairs of a ten-story building, about 30 m high, and your mass is 60 kg. The gravitational potential energy you gain is about A. 270 Joule. B Joule. C Joule. D Joule.

4 15. Virgil rides a skateboard (combined mass 100 kg) at 4 m/s, and Jill rides a bicycle (combined mass 64 kg) at 5 m/s. A. Virgil has the greater kinetic energy. B. Virgil and Jill have equal kinetic energies. C. Jill has the greater kinetic energy. 16. An object with a kinetic energy of 50 J is stopped in a distance of 0.01 m. The average force that stops the object is A. 0.5 N. B. 50 N. C. 500 N. D. 5,000 N. E. 50,000 N. 17. A quarterback of mass 85 kg is running at 10 m/s. Also, a tackle of mass 100 kg is running at 9 m/s. A. The quarterback has the greater kinetic energy. B. The quarterback and the tackle have equal kinetic energies. C. The tackle has the greater kinetic energy. 18. For a 0.1-kg frog to jump to a height of 1.0 meter requires an energy of about A. 0.1 Joule. B. 0.5 Joule. C. 1.0 Joule. D. 10 Joule. 19. A 5.0-kg cat runs to the left at 10 m/s and a 10-kg dog runs to the right at 5.0 m/s. The total kinetic energy is A Joule. B. 0 C. 100 Joule. D. 375 Joule. E. 500 Joule.

5 20. A child riding on a swing rises to a height 1.0 m above the lowest point. Another child of equal mass whose speed at the lowest point is twice as great will rise A. to the same height. B. twice as high. C. four times as high. D. to a height which depends on the mass. 21. A box is moved 10 m across by a floor a force of 20 N acting along the direction of motion. The work done by the force is A. 2.0 J. B. 20 J. C. 30 J. D. 100 J. E. 200 J. 22. A box is moved 10 m across a smooth floor by a force making a downward angle with the floor, so that there is effectively a 10 N force acting parallel to the floor in the direction of motion and a 5 N force acting perpendicular to the floor. The work done is A. 150 J. B. 100 J. C. 50 J. D. 10 J. E. 5.0 J. 23. A box is pushed across a rough horizontal floor by a force acting parallel to the floor in the direction of motion. A force doing negative work on the body is A. gravity. B. friction. C. the applied force. D. normal reaction force of floor upward on body. E. a fictitious force. 24. A box is pushed across a rough horizontal floor by a force acting parallel to the floor in the direction of motion. A force doing no work during the motion is A. gravity. B. friction. C. the applied force.

6 25. The kinetic energy of a body is correctly given by which of the following expressions? A. mv. B. 2mv 2. C. mv 2. D. (½)mv 2. E. (½)mv. 26. A refrigerator weighing 1500 N is to be lifted onto a truck bed that is 1.0 m above the ground. When pushed up a slanting ramp 2.0 m in length a force of only 800 N is required to move it at constant velocity. Comparing the work involved in lifting the refrigerator straight up to the work in pushing it along the ramp, there is A. less work required when the ramp is employed. B. more work required when the ramp is employed. C. an equal amount of work is required in each case. 27. Which of the following is not a unit of power? A. watt B. kilowatt C. kilowatt-hour D. joule/second E. horsepower 28. If the speed of a car is doubled, the work to stop the car changes by a factor of A. 4. B. 2. C. 1. D. ½. E. ¼. 29. A painter of mass 80 kg climbs 3.0 m up a ladder. The painter s potential energy has increased by A. 240 J. B. 261 J. C. 784 J. D J. E J.

7 30. The potential energy of a spring of constant k that has been stretched a distance x is given by A. kx. B. (½)kx. C. kx 2. D. (½)kx 2. E. (½)k/x. 31. A pendulum swings through 10 cycles in 5 seconds. The frequency of the pendulum is A. 10 Hz. B. 5 Hz. C. 2 Hz. D. 0.5 Hz. E. 0.1 Hz. 32. A grandfather clock that is regulated by a pendulum is taken to the Moon where the acceleration of gravity is less. Compared to an identical clock on Earth, the grandfather clock on the Moon will A. run slow. B. keep time at the same rate. C. run fast. 33. A mass hangs on a spring held in physicist s hand. When the mass is pulled down and then released, it oscillates with a period of 2.0 s. This system is taken to the Moon where the acceleration of gravity is less. The spring on the Moon is held in astronaut s hand, and the mass, when pulled down and released, will A. oscillate with a longer period. B. oscillate with unchanged period. C. oscillate with a shorter period. D. will not oscillate at all. 34. A grandfather clock that is regulated by a pendulum is orbiting the Earth aboard the space station. Compared to an identical clock on Earth, the grandfather clock aboard the space station will A. run slow. B. keep time at the same rate. C. run fast. D. will not run at all.

8 35. A mass hangs on a spring held in physicist s hand. When the mass is pulled down and then released, it oscillates with a period of 2.0 s. This system is taken to the space station orbiting the Earth. The spring is held in astronaut s hand, and the mass, when pulled down and released, will A. oscillate with a longer period. B. oscillate with unchanged period. C. oscillate with a shorter period. D. will not oscillate at all. 36. In order for a body to exhibit simple harmonic motion there must be A. a constant force pushing the body away from the center. B. a constant force drawing the body toward the center. C. a force drawing the body toward the center and increasing with distance away from the center. D. a force pushing the body away from the center and increasing with distance away from the center. E. a force drawing the body toward the center and decreasing with distance away from the center. 37. A ball at the end of a string is swinging as a simple pendulum. Assuming no loss in energy due to friction, we can say for the ball that A. the potential energy is maximum at the lowest position of the ball. B. the potential energy is maximum where the kinetic energy is a minimum. C. the potential energy is maximum where the kinetic energy is maximum. D. the kinetic energy is maximum at each end of the motion. 38. A body is suspended from a spring hanging vertically. The body is then pulled downward so the spring stretches. Consider the change in the elastic potential energy (EPE) of the spring and the change in gravitational potential energy (GPE) as the body is pulled down. A. The EPE increases but the GPE is unchanged. B. The GPE increases along with the EPE. C. The GPE decreases while the EPE increases. D. The GPE decreases but the EPE is unchanged. E. Both the GPE and the EPE decrease.

9 39. A bullet of mass kg and speed of 100 m/s is brought to rest in a wooden block after penetrating a distance of 0.10 m. The work done on the bullet by the block is A. 50 J. B. -50 J. C J. D J. E. zero 40. A spring wound clock makes use of elastic energy to drive the mechanism. Answer: potential 41. A force acts on a block moving across a smooth horizontal surface. The work done by this force results in a change of the energy of the block. Answer: kinetic 42. A ball of mass 5 kg attached to a string is swung in a horizontal circle of radius 1.0 m. If the tension in the string is 10 N the work done by the tension in one revolution is J. Answer: zero 43. Total mechanical energy of a system is conserved when there are no forces doing work on the system. Answer: non-conservative or frictional 44. The conversion of the initial potential energy of a person on a sled on a smooth icy slope into kinetic energy at the bottom is an example of the principle of conservation of. Answer: energy or total mechanical energy 45. In pole-vaulting, in addition to gravitational potential energy there is potential energy in the bent pole which is analogous to potential energy stored in a under compression. Answer: spring 46. Other things being equal, the pole-vaulter having the greatest energy prior to going into the jump should jump the highest. Answer: kinetic 47. A motor rated at 500 watts output is capable of performing joules of work in 10 seconds. Answer: 5000

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

### 1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### 10.1 Quantitative. Answer: A Var: 50+

Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Work, Energy and Power

Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### 1 of 10 11/23/2009 6:37 PM

hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### KE =? v o. Page 1 of 12

Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

### Chapter 6. Work and Energy

Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

### Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### 7. Kinetic Energy and Work

Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

### Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

### Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### POTENTIAL ENERGY AND CONSERVATION OF ENERGY

Chapter 8: POTENTIAL ENERGY AND CONSERVATION OF ENERGY 1 A good eample of kinetic energy is provided by: A a wound clock spring B the raised weights of a grandfather's clock C a tornado D a gallon of gasoline

### F13--HPhys--Q5 Practice

Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### 356 CHAPTER 12 Bob Daemmrich

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Units DEMO spring scales masses

Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

### KE = ½mv 2 PE = mgh W = Fdcosθ THINK ENERGY! (KE F + PE F ) = (KE 0 + PE 0 ) + W NC. Tues Oct 6 Assign 7 Fri Pre-class Thursday

Tues Oct 6 Assign 7 Fri Pre-class Thursday Conservation of Energy Work, KE, PE, Mech Energy Power To conserve total energy means that the total energy is constant or stays the same. With Work, we now have

### 1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### physics 111N work & energy

physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic

### Work and Energy continued

Chapter 6 Work and Energy continued Requested Seat reassignments (Sec. 1) Gram J14 Weber C22 Hardecki B5 Pilallis B18 Murray B19 White B20 Ogden C1 Phan C2 Vites C3 Mccrate C4 Demonstrations Swinging mass,

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object. b. the force is

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### 8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

### Force & Motion. Force & Mass. Friction

1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### Steps to Solving Newtons Laws Problems.

Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

### 6: Applications of Newton's Laws

6: Applications of Newton's Laws Friction opposes motion due to surfaces sticking together Kinetic Friction: surfaces are moving relative to each other a.k.a. Sliding Friction Static Friction: surfaces

### Potential / Kinetic Energy Remedial Exercise

Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:

### Q1. (a) State the difference between vector and scalar quantities (1)

Q1. (a) State the difference between vector and scalar quantities....... (1) (b) State one example of a vector quantity (other than force) and one example of a scalar quantity. vector quantity... scalar

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Name Period Chapter 10 Study Guide

Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### 1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?

Physics 2A, Sec C00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.

MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The

Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!