Method of Moments Estimation in Linear Regression with Errors in both Variables J.W. Gillard and T.C. Iles

Size: px
Start display at page:

Download "Method of Moments Estimation in Linear Regression with Errors in both Variables J.W. Gillard and T.C. Iles"

Transcription

1 Method of Moment Etimation in Linear Regreion with Error in both Variable by J.W. Gillard and T.C. Ile Cardiff Univerity School of Mathematic Technical Paper October 005 Cardiff Univerity School of Mathematic, Senghennydd Road, Cardiff, CF4 4AG

2 Content 1. Introduction 3. Literature Survey 6 3. Statitical aumption 9 4. Firt and econd order moment equation 1 5. Etimator baed on the firt and econd order moment Etimator making ue of third order moment Etimator making ue of fourth order moment 1 8. Variance and covariance of the etimator 4 9. Dicuion A ytematic approach for fitting line with error in both variable Reference Appendice Figure 43

3 1. Introduction The problem of fitting a traight line to bivariate (x, y) data where the data are cattered about the line i a fundamental one in tatitic. Method of fitting a line are decribed in many tatitic text book, for example Draper and Smith (1998) and Kleinbaum et al (1997). The uual way of fitting a line i to ue the principle of leat quare, finding the line that ha the minimum um of the quare of ditance of the point to the line in the vertical y direction. Thi line i called the regreion line of y on x. In the jutification of the choice of thi line it i aumed that deviation of the obervation from the line are caued by unexplained random variation that i aociated with the variable y. Implicitly it i aumed that the variable x i meaured without error or other variation. Clearly, if it i felt that deviation from the line are due to variation in x alone the appropriate method would be to ue the regreion line of x on y, minimiing the um of quare in the horizontal direction. The random deviation of the obervation from the uppoed underlying linear relationhip are uually called the error. Although the word error i a very common term it i an unfortunate choice of word; the variation may incorporate not jut meaurement error but any other ource of unexplained variation that reult in catter from the line. Some author have uggeted that other term might be ued, diturbance, departure, perturbation, noie and random component being amongt the uggetion. In thi report, however, becaue of the wide ue of the word, the variation from the line will be decribed a error. In many invetigation the catter of the obervation arie becaue of error in both meaurement. Thi problem i known by many name, the commonet being error in variable regreion and meaurement error model. The former name i ued throughout thi report. Caella and Berger (1990) wrote of thi problem, '(it) i o different from imple linear regreion... that it i bet thought of a a completely different topic'. There i a very extenive literature on the ubject, but publihed work i mainly in the form of article in the technical journal, mot of which deal with a particular apect of the problem. Relatively few tandard text book on regreion theory contain comprehenive decription of olution to the problem. A brief literature urvey i given in the next ection. 3

4 We believe that the error in variable regreion problem i potentially of wide practical application in the analyi of experimental data. One of the aim of thi report therefore i to give ome guidance for practitioner in deciding how an error in variable traight line hould be fitted. We give imple formula that a practitioner can ue to etimate the lope and intercept of an optimum line together with variance term that are alo included in the model. Very few previou author have given formula for the tandard error of thee etimator, and we offer ome advice regarding thee. Indeed, a detailed expoition on the variance covariance matrice for mot of the etimator in thi report i included in Gillard and Ile (006). In our approach we make a few aumption a are neceary to obtain etimator that are reliable. We have found that traightforward etimator of the parameter and their aymptotic variance can be found uing the method of moment principle. Thi approach ha the advantage of being imple to follow for reader who are not principally intereted in the methodology itelf. The method of moment technique i decribed in many book of mathematical tatitic, for example Caella and Berger (1990), although here, a elewhere, the treatment i brief. In common with many other mathematical tatitical text, they gave greater attention to the method of maximum likelihood. Bowman and Shenton (1988) wrote that 'the method of moment ha a long hitory, involve an enormou literature, ha been through period of evere turmoil aociated with it ampling propertie compared to other etimation procedure, yet urvive a an effective tool, eaily implemented and of wide generality'. Method of moment etimator can be criticied becaue they are not uniquely defined, o that if the method i ued it i neceary to chooe amongt poible etimator to find one that bet uit the data being analyed. Thi prove to be the cae when the method i ued in error in variable regreion theory. Neverthele the method of moment ha the advantage of implicity, and alo that the only aumption that have to be made are that low order moment of the ditribution decribing the obervation exit. We alo aume here that thee ditribution are mutually uncorrelated. It i relatively eay to work out the theoretical aymptotic variance and covariance of the etimator uing the delta method outlined by Cramer (1946). The information in thi report will enable a practitioner to fit the line and calculate approximate confidence interval for the 4

5 aociated parameter. Significance tet can alo be done. A limitation of the formula i that they are aymptotic reult, o they hould only be ued for moderate or large data et. 5

6 . Literature Survey A mentioned above, the error in variable regreion problem i rarely included in tatitical text. There are two text devoted entirely to the error in variable regreion problem, Fuller (1987) and Cheng and van Ne (1999). Caella and Berger (1990) ha an informative ection on the topic, Sprent (1969) contain chapter on the problem, a do Kendall and Stuart (1979) and Dunn (004). Draper and Smith (1998) on the other hand, in their book on regreion analyi, devoted only 7 out of a total of almot 700 page to error in variable regreion. The problem i more frequently decribed in Econometric text, for example Judge et al (1980). In thee text the method of intrumental variable i often given prominence. Intrumental variable are uncorrelated with the error ditribution, but are highly correlated with the predictor variable. The extra information that thee variable contain enable a method of etimating the parameter of the line to be obtained. Carroll et al (1995) decribed error in variable model for non-linear regreion, and Seber and Wild (1989) included a chapter on thi topic. Probably the earliet work decribing a method that i appropriate for the error in variable problem wa publihed by Adcock (1878). He uggeted that a line be fitted by minimiing the um of quare of ditance between the point and the line in a direction perpendicular to the line, the method that ha come to be known a orthogonal regreion. Kummel (1879) took the idea further, generaliing to a line that ha minimum um of quare of ditance of the obervation from the line in a direction other than perpendicular. Pearon (1901) generalied the error in variable model to that of multiple regreion, where there are two or more different x variable. He alo pointed out that the lope of the orthogonal regreion line i between thoe of the regreion line of y on x and that of x on y. The idea of orthogonal regreion wa included in Deming' book (1943), and orthogonal regreion i ometime referred to a Deming regreion. Another method of etimation that ha been ued in error in variable regreion i the method of moment. Geary (194, 1943, 1948 and 1949) wrote a erie of paper on the method, but uing cumulant rather than moment in the later paper. Drion (1951), in a paper that i infrequently cited, ued the method of moment, and gave 6

7 ome reult concerning the variance of the ample moment ued in the etimator that he uggeted. More recent work uing the moment approach ha been written by Pal (1980), van Montfort et al (1987), van Montfort (1989) and Cragg (1997). Much of thi work centre on a earch for optimal etimator uing etimator baed on higher moment. Dunn (004) gave formula for many of the etimator of the lope that we decribe later in thi report uing a method of moment approach. However, he did not give information about etimator baed on higher moment and it turn out that thee are the only moment baed etimator that can be ued unle there i ome information about the relationhip additional to the (x, y) obervation. Neither did he give information about the variance of the etimator. Another idea, firt decribed by Wald (1940) and taken further by Bartlett (1949), i to group the data, ordered by the true value of the predictor variable, and ue the mean of the group to obtain etimator of the lope. The intercept i then etimated by chooing the line that pae through the centroid ( x,y) of the complete data et. A difficulty of the method, noted by Wald himelf, i that the grouping of the data cannot, a may at firt be thought, be baed on the oberved value without making further aumption. In order to preerve the propertie of the random variable underlying the method it i neceary that the grouping be baed on ome external knowledge of the ordering of the data. In depending on thi extra information, Wald' grouping method i a pecial cae of an intrumental variable method, the intrumental variable in thi cae being the ordering of the true value. Gupta and Amanullah (1970) gave the firt four moment of the Wald etimator and Gibon and Jowett (1957) invetigated optimum way of grouping the obervation. Madanky (1959) reviewed ome apect of grouping method. Lindley (1947) and many ubequent author approached the problem of error in variable regreion from a likelihood perpective. Kendall and Stuart (1979), Chapter 9, reviewed the literature and outlined the likelihood approach. A diadvantage of the likelihood method in the error in variable problem i that it i only tractable if all of the ditribution decribing variation in the data are aumed to be Normal. In thi cae a unique olution i only poible if additional aumption are made concerning the parameter of the model, uually aumption about the error variance. 7

8 Neverthele, maximum likelihood etimator have certain optimal propertie and it i poible to work out the aymptotic variance-covariance matrix of the etimator. Thee were given for a range of aumption by Hood et al (1999). The likelihood approach wa alo ued by Dolby and Lipton (197), Dolby (1976) and Cox (1976) to invetigate the error in variable regreion problem where there are replicate meaured value at the ame true value of the predictor variable. Lindley and el Sayyad (1968) decribed a Bayeian approach to the error in variable regreion problem and concluded that in ome repect the likelihood approach may be mileading. A decription of a Bayeian approach to the problem, with a critical comparion with the likelihood method, i given by Zellner (1980). Golub and van Loan (1980), van Huffel and Vanderwalle (1991) and van Huffel and Lemmerling (00) have developed a theory that they have called total leat quare. Thi method allow the fitting of linear model where there are error in the predictor variable a well a the dependent variable. Thee model include the linear regreion one. The idea i linked with that of adjuted leat quare, that ha been developed by Kukuh et al (003) and Markovky et al (00, 003). Error in variable regreion ha ome imilaritie with factor analyi, a method in multivariate analyi decribed by Lawley and Maxwell (1971) and Johnon and Wichern (199) and elewhere. Factor analyi i one of a family, called latent variable method (Skrondal and Rabe-Heketh, 004), that include the error in variable regreion problem. Dunn and Robert (1999) ued a latent variable approach in an error in variable regreion etting, and more recently extenion combining latent variable and generalied linear model method have been devied (Rabe-Heketh et al, 000, 001). Over the year everal author have written review article on error in variable regreion. Thee include Kendall (1951), Durbin (1954), Madanky (1959), Moran (1971) and Anderon (1984). Rigg et al (1978) performed imulation exercie comparing ome of the lope etimator that have been decribed in the literature. 8

9 3. Statitical Aumption The notation in the literature for the error in variable regreion problem differ from author to author. In thi report we ue a notation that i imilar to that ued by Cheng and van Ne (1999), and that appear to be finding favour with other modern author. It i, unfortunately, different from that ued by Kendall and Stuart (1979), and ubequently adopted by Hood (1998) and Hood et al (1999). We uppoe that there are n individual in the ample with true value (ξ i, η i ) and oberved value (x i, y i ). It i believed that there i a linear relationhip between the two variable ξ and η. η i = α + βξ i (1) However, there i variation in both variable that reult in a deviation of the obervation (x i, y i ) from the true value (ξ i, η i ) reulting in a catter about the traight line. Thi catter i repreented by the addition of random error repreenting the variation of the oberved from the true value. x i = ξ i + i () y i = η i + i = α + βξ i + i (3) The error i and i are aumed to have zero mean and variance that do not change with the uffix i. E[ i ] = 0, Var[ i ] = E[ i ] = 0, Var[ i ] = We aume that higher moment alo exit. E[ 3 i. ] = µ 3, E[ ] = µ 4 E[ 3 i ] = µ 3, E[ 4 i ] = µ 4. 4 i We alo aume that the error are mutually uncorrelated and that the error i are uncorrelated with i. E[ i j ] = 0, E[ i j ] = 0 (i j) E[ i j ] = 0 for all i and j (including i = j). 9

10 Some author have treed the importance of a concept known a equation error. Further detail are given by Fuller (1987) and Carroll and Ruppert (1996). Equation error introduce an extra term on the right hand ide of equation (3). y i = η i + ω i + i = α + βξ i +ω i + i Dunn (004) decribed the additional equation error term ω i a '(a) new random component (that) i not necearily a meaurement error but i a part of y that i not related to the contruct or characteritic being meaured'. It i not intended to model a mitake in the choice of equation to decribe the underlying relationhip between ξ and η. Auming that the equation error term have a variance ω that doe not change with i and that they are uncorrelated with the other random variable in the model the practical effect of the incluion of the extra term i to increae the apparent variance of y by the addition of ω. We do not conider in thi report method for ue where there may be expected to be erial correlation amongt the obervation. Sprent (1969) included a ection on thi topic and Karni and Weiman (1974) ued a method of moment approach, making ue of the firt difference of the obervation, auming that a non zero autocorrelation i preent in the erie of obervation. In much of the literature on error in variable regreion a ditinction i drawn between the cae where the ξ i are aumed to be fixed, albeit unknown, quantitie and the cae where ξ i are aumed to be a random ample from a population. The former i known a the functional and the latter the tructural model. Caella and Berger (1990) decribed the theoretical difference in thee two type of model. Uing the approach adopted in thi report it i not neceary to make the ditinction. All that i aumed i that the ξ are mutually uncorrelated, are uncorrelated with the error and that the low order moment exit. Neither the problem of etimation of each individual ξ i in the functional model nor the problem of predicting y i invetigated in thi report. Whether the ξ are aumed to be fixed or a random ample we find only etimator for the low order moment. 10

11 The aumption that we make about the variable ξ are a follow. E[ξ i ] = µ, Var[ξ i ] =. In ome of the work that i decribed later the exitence of higher moment of ξ i alo aumed. E[(ξ i - µ) 3 ] = µ ξ3, E[(ξ i - µ) 4 ] = µ ξ4 The variable ξ i are aumed to be mutually uncorrelated and uncorrelated with the error term and. E[(ξ i - µ)(ξ j - µ)] = 0 (i j) E[(ξ i - µ) j ] = 0 and E[(ξ i - µ) j ] = 0 for all i and j. In order to etimate variance and covariance it i neceary later in thi report to aume the exitence of moment of ξ of order higher than the fourth. The rth moment r i denoted byµ = E[( ξ µ )]. ξr i 11

12 4. Firt and Second Order Moment Equation The firt order ample moment are denoted by x = and y =. n n The econd order moment are notated by (x x)(y y) i i xy =. n x i (x x) i xx =, n y i (y y) i yy = and n No mall ample correction for bia i made, for example by uing (n - 1) a a divior for the variance rather than n. Thi i becaue the reult on variance and covariance that we give later on in the report are reliable only for moderately large ample ize, generally 50 or more, where the adjutment for bia i negligible. Moreover, the algebra needed for the mall ample adjutment complicate the formula omewhat. The moment equation in the error in variable etting are given in the equation below. A tilde i placed over the ymbol for a parameter to denote the method of moment etimator. We have ued thi ymbol in preference to the circumflex, often ued for etimator, to ditinguih between method of moment and maximum likelihood etimator. Firt order moment: x =µ (4) y =α+βµ (5) Second order moment: xx yy xy = + (6) =β + (7) (8) =β It can readily be een from equation (6), (7) and (8) that there i a hyperbolic relationhip between method of moment etimator and of the error variance. Thi wa called the Frich hyperbola by van Montfort (1989). 1

13 ( )( ) = ( ) (9) xx yy xy Thi i a ueful equation in that it relate pair of etimator of and that atify equation (6), (7) and (8). The potential application of the Frich hyperbola are dicued further in Section 9. One of the difficultie with the error in variable regreion problem i apparent from an examination of equation (4) - (8). There i an identifiability problem if thee equation alone are ued to find etimator. There are five moment equation of firt or econd order but there are ix unknown parameter. It i therefore not poible to olve the equation to find unique olution without making additional aumption. One poibility i to ue higher moment, and thi i decribed later in the report. Another poibility i to ue additional information in the form of an intrumental variable. A third poibility, and the one that i invetigated firt, i to aume that there i ome prior knowledge of the parameter that enable a retriction to be impoed. Thi then allow the five equation to be olved. There i a comparion with thi identifiability problem and the maximum likelihood approach. In thi approach, the only tractable aumption i that the ditribution of i, i and ξ i, are all Normal. Thi in turn lead to the bivariate random variable (x, y) having a bivariate Normal ditribution. Thi ditribution ha five parameter, and the maximum likelihood etimator for thee parameter are identical to the method of moment etimator baed on the five firt and econd moment equation. In thi cae therefore it i not poible to find olution to the likelihood equation without making an additional aumption, reticting the parameter pace. The retriction that we decribe in Section 5 below are one that have been ued by previou author uing the likelihood method. The likelihood function for any other ditribution than the Normal i complicated and the method i difficult to apply. However the method of moment approach uing higher moment and without auming a retiction in the parameter pace, can be ued without making the aumption of Normality. 13

14 5. Etimator Baed on the Firt and Second Moment So that etimating equation tand out from other numbered equation, they are marked by an aterik. Equation (1) give the etimator for µ directly µ=x (10)* The etimator for all the remaining parameter are eaily expreed in term of the etimator β of the lope. Equation (4) and (5) can be ued to give an equation for the intercept α in term of β. α= y β x (11)* Thu the fitted line in the (x, y) plane pae through the centroid ( x, y) of the data, a feature that i hared by the imple linear regreion equation. Equation (8) yield an equation for, with β alway having the ame ign a xy. = β xy (1)* If the error variance i unknown, it i etimated from equation (6). = (13)* xx Finally if i unknown, it i etimated from equation (7) and the etimator for β. = (14)* yy β Since variance are never negative there are retriction on permiible parameter value, depending on the value taken by the ample econd moment. Thee 14

15 condition are often called admiibility condition. The traightforward condition, enabling non negative variance etimate to be obtained are given below. xx > yy > Alone, thee condition are not ufficient to enure that the variance etimator are non negative. The error in variable lope etimator mut lie between the y on x and x on y lope etimator xy xx and yy xy repectively. Other admiibility condition, relevant in pecial cae, are given in Table 1. Admiibility condition are dicued in detail by Kendall and Stuart (1979), Hood (1998), Hood et al (1999) and Dunn (004). We now turn to the quetion of the etimation of the lope. There i no ingle etimator for the lope that can be ued in all cae in error in variable regreion. Each of the retriction aumed on the parameter pace to to get around the identifiability problem dicued above i aociated with it own etimator of the lope. In order to ue an etimator baed on the firt and econd order moment alone it i neceary for the practitioner to decide on the bai of knowledge of the invetigation being undertaken which retriction i likely to uit the purpoe bet. Table 1 ummarie the implet etimator of the lope parameter β derived by auming a retriction on the parameter. With one exception thee etimator have been decribed previouly; mot were given by Kendall and Stuart (1979), Hood et al (1999) and, in a method of moment context, by Dunn (1989). 15

16 Table 1: Etimator of the lope parameter b baed on firt and econd moment Retriction Intercept α known Etimator y α β 1 = x Admiibility Condition x 0 Variance Variance known known Reliability ratio κ= known + Variance ratio λ= known β = xy xx β = 3 yy xy xy β 4 = κ xx { } 1/ ( λ ) + ( λ ) + 4 λ( ) yy xx yy xx xy β 5 = xy xx > ( ) xy yy > xx yy > ( ) xy xx > yy None None λ ν= known ( ν 1) + ign( ){( ν 1) ( ) + 4ν } 1/ β xy xy xy xx yy β = 6 ν xx xx 0 Both variance and known. yy β = ign( ) 7 xy xx 1/ xx yy > > There i an ambiguity in the ign to be ued in the equation for β 6 and β 7. Thi i reolved by auming that the lope etimator alway ha the ame ign a xy, a mentioned above to enure that equation (11)* give a non negative etimate of the variance. A dicuion of thee etimator i given in Section 9. 16

17 It may eem that the retriction leading to the etimator β 6 i not one that would often be made on the bai of a priori evidence. The reaon for the incluion of thi etimator, which eem not to have been previouly uggeted, i that it i a generaliation of an etimator that ha been widely recommended, the geometric mean etimator. Thi i the geometric mean of the lope of the regreion of y on x and the reciprocal of the regreion of x on y. Section 9 contain further dicuion. Aymptotic variance concerning thi etimator will not be included in thi report. The aumption that both error variance and are known i omewhat different from the other cae. By auming that two parameter are known there are only four remaining unknown parameter, but five firt and econd moment equation that could be ued to etimate them. One poibility of obtaining a olution i to ue only four of the five equation (4) to (8) incluive, or a imple combination of thee. If equation (6) i excluded, the etimator for the lope β i β 3, but then the aumed value of will almot certainly not agree exactly with the value that would be obtained from equation (1)*. If equation (7) i excluded, the etimator for the lope i β, but then it i mot unlikely that the aumed value of will agree exactly with the value obtained from equation (13)*. If equation (6) and (7) are combined, uing the known ratio λ=, the etimator β 5 i obtained, and then neither of equation (1)* and (13)* will be atified by the a priori value aumed for and. Another poibility that lead to a imple etimator for the lope β i to exclude equation (8), and it i thi that lead to the etimator β 7 in Table 1. 17

18 6. Etimate Making Ue of the Third Moment The third order moment are written a follow. xxx xxy xyy (xi x) = n = 3 (xi x) (yi y) n (xi x)(yi y) = n (y y) 3 i yyy =. n The four third moment equation take a imple form. Some detail on the derivation of thee expreion i given in Appendix 1. (15) xxx =µ ξ3 +µ 3 =βµ (16) xxy ξ3 =βµ (17) xyy ξ3 (18) 3 yyy =βµ ξ3+µ 3 Together with the firt and econd moment equation, equation (4) - (8) incluive, there are now nine equation in nine unknown parameter. The additional parameter introduced here are the third moment µ ξ3, µ 3 and µ 3. There are therefore unique etimator for all nine parameter. However, it i unlikely in practice that there i a much interet in thee third moment a there i in the firt and econd moment, more epecially, the lope and intercept of the line. Thu a impler way of proceeding i probably of more general value. The implet way of making ue of thee equation i to make a ingle further aumption, namely that µ ξ3 i non zero. There i a practical requirement aociated with thi aumption, and thi i that the ample third moment hould be ignificantly different from 0. It i thi requirement that ha probably led to the ue of third moment etimator receiving relatively little attention in recent literature. It i not 18

19 alway the cae that the oberved value of x and y are ufficiently kewed to allow thee equation to be ued with any degree of confidence. Moreover ample ize needed to identify third order moment with a practically ueful degree of preciion are omewhat larger than i the cae for firt and econd order moment. However, if the aumption can be jutified from the data then a traightforward etimator for the lope parameter i obtained without auming anything known a priori about the value taken by any of the parameter. Thi etimator i obtained by dividing equation (17) by equation (16). xyy β 8 = (19)* xxy The value for β obtained from thi equation can then be ubtituted in equation (11)* - (14)* to etimate the intercept α and all three variance moment µ ξ3 can be etimated from equation (16)., and. The third µ = xxy ξ3 β 8 (0)* Etimator for µ 3 and µ 3 may be obtained from equation (15) and (18) repectfully. Other imple way of etimating the lope are obtained if the additional aumption µ 3 = 0 and µ 3 = 0 are made. Thee would be appropriate aumption to make if the ditribution of the error term and are ymmetric. Note, however, that thi doe not imply that the ditribution of ξ i ymmetric. The obervation have to be kewed to allow the ue of etimator baed on the third moment. With thee aumption the lope β could be etimated by dividing equation (16) by (15) or by dividing equation (18) and (17). β= β= xxy xxx yyy xyy 19

20 We do not invetigate thee etimator further in thi report, ince we feel that etimator that make fewet aumption are likely to be of the mot practical value. 0

21 7. Etimate Making Ue of the Fourth Moment The fourth order moment are written a xxxx xxxy xxyy xyyy yyyy (xi x) = n = 4 3 (xi x) (yi y) n (xi x) (y y) = n i (xi x)(yi y) = n (yi y) = n 4 3 By uing a imilar approach to the one adopted in deriving the third moment etimating equation, the fourth moment equation can be derived. =µ + 6 +µ (1) xxxx ξ4 4 =βµ + 3β () xxxy ξ4 (3) xxyy =βµ ξ4 +β ++ =βµ + 3β (4) 3 xyyy ξ4 =βµ + 6β+µ (5) 4 yyyy ξ4 4 Together with the firt and econd moment equation thee form a et of ten equation, but there are only nine unknown parameter. The fourth moment equation have introduced three additional parameter µ ξ4 µ 4 and µ 4, but four new equation. One of the equation i therefore not needed. The eaiet practical way of etimating the parameter i to ue equation () and (4), together with equation (6), (7) and (8). Equation () i multiplied by β and ubtracted from equation (4). 1

22 β = 3 β ( β ) xxxy xyyy Equation (6) i multiplied by β and ubtracted from equation (7). β =β xx yy Thu, making ue alo of equation (8) an etimating equation i obtained for the lope parameter β. 1/ 3 xyyy xy yy β 9 = (6)* xxxy 3xyxx There may be a practical difficulty aociated with the ue of equation (6)* if the random variable ξ i Normally ditributed. In thi cae the fourth moment i equal to 3 time the quare of the variance. A random variable for which thi property doe not hold i aid to be kurtotic. A cale invariant meaure of kurtoi i given by the following expreion µ γ = (7) If the ditribution of ξ ha zero meaure of kurtoi the average value of the five ample moment ued in equation (6)* are a follow. 3 4 E[ xyyy ] = 3β + 3β 4 E[ xxxy] = 3β + 3β E[ xx] yy = + E[ ] =β + E[ ]=β xy Then it can be een that the average value of the numerator of equation (6)* i approximately equal to zero, a i the average value of the denominator. Thu there i

23 an additional aumption that ha to be made for thi equation to be reliable a an etimator, and that i that equation (7) doe not hold, µ ξ4 mut be different from 3 4. In practical term, both the numerator and the denominator of the right hand ide of equation (6)* mut be ignificantly different from zero. If a reliable etimate of the lope β can be obtained from equation (6)*, equation (10)* - (13)* enable the intercept α and the variance, and to be etimated. The fourth moment µ ξ4 of ξ can then be etimated from equation (), and the fourth moment µ 4 and µ 4 of the error term and can be etimated from equation (0) and (4) repectively, though etimate of thee higher moment of the error term are le likely to be of practical value. Although β 9 ha a compact cloed form, it variance i rather cumberome. Indeed, the variance of β 9 depend on the ixth central moment of ξ. Since it i impractical to etimate thi moment with any degree of accuracy, there will be no dicuion of the aymptotic variance of thi etimator. 3

Unit 11 Using Linear Regression to Describe Relationships

Unit 11 Using Linear Regression to Describe Relationships Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory

More information

A technical guide to 2014 key stage 2 to key stage 4 value added measures

A technical guide to 2014 key stage 2 to key stage 4 value added measures A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool

More information

Introduction to the article Degrees of Freedom.

Introduction to the article Degrees of Freedom. Introduction to the article Degree of Freedom. The article by Walker, H. W. Degree of Freedom. Journal of Educational Pychology. 3(4) (940) 53-69, wa trancribed from the original by Chri Olen, George Wahington

More information

Assessing the Discriminatory Power of Credit Scores

Assessing the Discriminatory Power of Credit Scores Aeing the Dicriminatory Power of Credit Score Holger Kraft 1, Gerald Kroiandt 1, Marlene Müller 1,2 1 Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Gottlieb-Daimler-Str. 49, 67663 Kaierlautern,

More information

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems, MANAGEMENT SCIENCE Vol. 54, No. 3, March 28, pp. 565 572 in 25-199 ein 1526-551 8 543 565 inform doi 1.1287/mnc.17.82 28 INFORMS Scheduling Arrival to Queue: A Single-Server Model with No-Show INFORMS

More information

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare

More information

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

More information

Partial optimal labeling search for a NP-hard subclass of (max,+) problems

Partial optimal labeling search for a NP-hard subclass of (max,+) problems Partial optimal labeling earch for a NP-hard ubcla of (max,+) problem Ivan Kovtun International Reearch and Training Center of Information Technologie and Sytem, Kiev, Uraine, ovtun@image.iev.ua Dreden

More information

TIME SERIES ANALYSIS AND TRENDS BY USING SPSS PROGRAMME

TIME SERIES ANALYSIS AND TRENDS BY USING SPSS PROGRAMME TIME SERIES ANALYSIS AND TRENDS BY USING SPSS PROGRAMME RADMILA KOCURKOVÁ Sileian Univerity in Opava School of Buine Adminitration in Karviná Department of Mathematical Method in Economic Czech Republic

More information

Mixed Method of Model Reduction for Uncertain Systems

Mixed Method of Model Reduction for Uncertain Systems SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol 4 No June Mixed Method of Model Reduction for Uncertain Sytem N Selvaganean Abtract: A mixed method for reducing a higher order uncertain ytem to a table reduced

More information

A Resolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networks

A Resolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networks A Reolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networ Joé Craveirinha a,c, Rita Girão-Silva a,c, João Clímaco b,c, Lúcia Martin a,c a b c DEEC-FCTUC FEUC INESC-Coimbra International

More information

Profitability of Loyalty Programs in the Presence of Uncertainty in Customers Valuations

Profitability of Loyalty Programs in the Presence of Uncertainty in Customers Valuations Proceeding of the 0 Indutrial Engineering Reearch Conference T. Doolen and E. Van Aken, ed. Profitability of Loyalty Program in the Preence of Uncertainty in Cutomer Valuation Amir Gandomi and Saeed Zolfaghari

More information

Morningstar Fixed Income Style Box TM Methodology

Morningstar Fixed Income Style Box TM Methodology Morningtar Fixed Income Style Box TM Methodology Morningtar Methodology Paper Augut 3, 00 00 Morningtar, Inc. All right reerved. The information in thi document i the property of Morningtar, Inc. Reproduction

More information

Redesigning Ratings: Assessing the Discriminatory Power of Credit Scores under Censoring

Redesigning Ratings: Assessing the Discriminatory Power of Credit Scores under Censoring Redeigning Rating: Aeing the Dicriminatory Power of Credit Score under Cenoring Holger Kraft, Gerald Kroiandt, Marlene Müller Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Thi verion: June

More information

Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Review of Multiple Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Review of Multiple Regreion Richard William, Univerity of Notre Dame, http://www3.nd.edu/~rwilliam/ Lat revied January 13, 015 Aumption about prior nowledge. Thi handout attempt to ummarize and yntheize

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

FEDERATION OF ARAB SCIENTIFIC RESEARCH COUNCILS

FEDERATION OF ARAB SCIENTIFIC RESEARCH COUNCILS Aignment Report RP/98-983/5/0./03 Etablihment of cientific and technological information ervice for economic and ocial development FOR INTERNAL UE NOT FOR GENERAL DITRIBUTION FEDERATION OF ARAB CIENTIFIC

More information

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents

MSc Financial Economics: International Finance. Bubbles in the Foreign Exchange Market. Anne Sibert. Revised Spring 2013. Contents MSc Financial Economic: International Finance Bubble in the Foreign Exchange Market Anne Sibert Revied Spring 203 Content Introduction................................................. 2 The Mone Market.............................................

More information

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected.

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected. 12.1 Homework for t Hypothei Tet 1) Below are the etimate of the daily intake of calcium in milligram for 38 randomly elected women between the age of 18 and 24 year who agreed to participate in a tudy

More information

2. METHOD DATA COLLECTION

2. METHOD DATA COLLECTION Key to learning in pecific ubject area of engineering education an example from electrical engineering Anna-Karin Cartenen,, and Jonte Bernhard, School of Engineering, Jönköping Univerity, S- Jönköping,

More information

POSSIBILITIES OF INDIVIDUAL CLAIM RESERVE RISK MODELING

POSSIBILITIES OF INDIVIDUAL CLAIM RESERVE RISK MODELING POSSIBILITIES OF INDIVIDUAL CLAIM RESERVE RISK MODELING Pavel Zimmermann * 1. Introduction A ignificant increae in demand for inurance and financial rik quantification ha occurred recently due to the fact

More information

T-test for dependent Samples. Difference Scores. The t Test for Dependent Samples. The t Test for Dependent Samples. s D

T-test for dependent Samples. Difference Scores. The t Test for Dependent Samples. The t Test for Dependent Samples. s D The t Tet for ependent Sample T-tet for dependent Sample (ak.a., Paired ample t-tet, Correlated Group eign, Within- Subject eign, Repeated Meaure,.. Repeated-Meaure eign When you have two et of core from

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS Chritopher V. Kopek Department of Computer Science Wake Foret Univerity Winton-Salem, NC, 2709 Email: kopekcv@gmail.com

More information

Availability of WDM Multi Ring Networks

Availability of WDM Multi Ring Networks Paper Availability of WDM Multi Ring Network Ivan Rado and Katarina Rado H d.o.o. Motar, Motar, Bonia and Herzegovina Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Univerity

More information

Brand Equity Net Promoter Scores Versus Mean Scores. Which Presents a Clearer Picture For Action? A Non-Elite Branded University Example.

Brand Equity Net Promoter Scores Versus Mean Scores. Which Presents a Clearer Picture For Action? A Non-Elite Branded University Example. Brand Equity Net Promoter Score Veru Mean Score. Which Preent a Clearer Picture For Action? A Non-Elite Branded Univerity Example Ann Miti, Swinburne Univerity of Technology Patrick Foley, Victoria Univerity

More information

Evaluating Teaching in Higher Education. September 2008. Bruce A. Weinberg The Ohio State University *, IZA, and NBER weinberg.27@osu.

Evaluating Teaching in Higher Education. September 2008. Bruce A. Weinberg The Ohio State University *, IZA, and NBER weinberg.27@osu. Evaluating Teaching in Higher Education September 2008 Bruce A. Weinberg The Ohio State Univerity *, IZA, and NBER weinberg.27@ou.edu Belton M. Fleiher The Ohio State Univerity * and IZA fleiher.1@ou.edu

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS G. Chapman J. Cleee E. Idle ABSTRACT Content matching i a neceary component of any ignature-baed network Intruion Detection

More information

1 Introduction. Reza Shokri* Privacy Games: Optimal User-Centric Data Obfuscation

1 Introduction. Reza Shokri* Privacy Games: Optimal User-Centric Data Obfuscation Proceeding on Privacy Enhancing Technologie 2015; 2015 (2):1 17 Reza Shokri* Privacy Game: Optimal Uer-Centric Data Obfucation Abtract: Conider uer who hare their data (e.g., location) with an untruted

More information

Unobserved Heterogeneity and Risk in Wage Variance: Does Schooling Provide Earnings Insurance?

Unobserved Heterogeneity and Risk in Wage Variance: Does Schooling Provide Earnings Insurance? TI 011-045/3 Tinbergen Intitute Dicuion Paper Unoberved Heterogeneity and Rik in Wage Variance: Doe Schooling Provide Earning Inurance? Jacopo Mazza Han van Ophem Joop Hartog * Univerity of Amterdam; *

More information

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test Report 4668-1b Meaurement report Sylomer - field tet Report 4668-1b 2(16) Contet 1 Introduction... 3 1.1 Cutomer... 3 1.2 The ite and purpoe of the meaurement... 3 2 Meaurement... 6 2.1 Attenuation of

More information

A note on profit maximization and monotonicity for inbound call centers

A note on profit maximization and monotonicity for inbound call centers A note on profit maximization and monotonicity for inbound call center Ger Koole & Aue Pot Department of Mathematic, Vrije Univeriteit Amterdam, The Netherland 23rd December 2005 Abtract We conider an

More information

HUMAN CAPITAL AND THE FUTURE OF TRANSITION ECONOMIES * Michael Spagat Royal Holloway, University of London, CEPR and Davidson Institute.

HUMAN CAPITAL AND THE FUTURE OF TRANSITION ECONOMIES * Michael Spagat Royal Holloway, University of London, CEPR and Davidson Institute. HUMAN CAPITAL AND THE FUTURE OF TRANSITION ECONOMIES * By Michael Spagat Royal Holloway, Univerity of London, CEPR and Davidon Intitute Abtract Tranition economie have an initial condition of high human

More information

Unusual Option Market Activity and the Terrorist Attacks of September 11, 2001*

Unusual Option Market Activity and the Terrorist Attacks of September 11, 2001* Allen M. Potehman Univerity of Illinoi at Urbana-Champaign Unuual Option Market Activity and the Terrorit Attack of September 11, 2001* I. Introduction In the aftermath of the terrorit attack on the World

More information

Multi-Objective Optimization for Sponsored Search

Multi-Objective Optimization for Sponsored Search Multi-Objective Optimization for Sponored Search Yilei Wang 1,*, Bingzheng Wei 2, Jun Yan 2, Zheng Chen 2, Qiao Du 2,3 1 Yuanpei College Peking Univerity Beijing, China, 100871 (+86)15120078719 wangyileipku@gmail.com

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

A Note on Profit Maximization and Monotonicity for Inbound Call Centers

A Note on Profit Maximization and Monotonicity for Inbound Call Centers OPERATIONS RESEARCH Vol. 59, No. 5, September October 2011, pp. 1304 1308 in 0030-364X ein 1526-5463 11 5905 1304 http://dx.doi.org/10.1287/opre.1110.0990 2011 INFORMS TECHNICAL NOTE INFORMS hold copyright

More information

6. Friction, Experiment and Theory

6. Friction, Experiment and Theory 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal

More information

Acceleration-Displacement Crash Pulse Optimisation A New Methodology to Optimise Vehicle Response for Multiple Impact Speeds

Acceleration-Displacement Crash Pulse Optimisation A New Methodology to Optimise Vehicle Response for Multiple Impact Speeds Acceleration-Diplacement Crah Pule Optimiation A New Methodology to Optimie Vehicle Repone for Multiple Impact Speed D. Gildfind 1 and D. Ree 2 1 RMIT Univerity, Department of Aeropace Engineering 2 Holden

More information

Support Vector Machine Based Electricity Price Forecasting For Electricity Markets utilising Projected Assessment of System Adequacy Data.

Support Vector Machine Based Electricity Price Forecasting For Electricity Markets utilising Projected Assessment of System Adequacy Data. The Sixth International Power Engineering Conference (IPEC23, 27-29 November 23, Singapore Support Vector Machine Baed Electricity Price Forecating For Electricity Maret utiliing Projected Aement of Sytem

More information

Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow

Senior Thesis. Horse Play. Optimal Wagers and the Kelly Criterion. Author: Courtney Kempton. Supervisor: Professor Jim Morrow Senior Thei Hore Play Optimal Wager and the Kelly Criterion Author: Courtney Kempton Supervior: Profeor Jim Morrow June 7, 20 Introduction The fundamental problem in gambling i to find betting opportunitie

More information

Queueing Models for Multiclass Call Centers with Real-Time Anticipated Delays

Queueing Models for Multiclass Call Centers with Real-Time Anticipated Delays Queueing Model for Multicla Call Center with Real-Time Anticipated Delay Oualid Jouini Yve Dallery Zeynep Akşin Ecole Centrale Pari Koç Univerity Laboratoire Génie Indutriel College of Adminitrative Science

More information

Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progress 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools Progre 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool July 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre 8 5 Expiry or review

More information

G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences

G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences Behavior Reearch Method 007, 39 (), 75-9 G*Power 3: A flexible tatitical power analyi program for the ocial, behavioral, and biomedical cience FRAZ FAUL Chritian-Albrecht-Univerität Kiel, Kiel, Germany

More information

12.4 Problems. Excerpt from "Introduction to Geometry" 2014 AoPS Inc. Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES

12.4 Problems. Excerpt from Introduction to Geometry 2014 AoPS Inc.  Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES HTER 1. IRLES N NGLES Excerpt from "Introduction to Geometry" 014 os Inc. onider the circle with diameter O. all thi circle. Why mut hit O in at leat two di erent point? (b) Why i it impoible for to hit

More information

THE IMPACT OF MULTIFACTORIAL GENETIC DISORDERS ON CRITICAL ILLNESS INSURANCE: A SIMULATION STUDY BASED ON UK BIOBANK ABSTRACT KEYWORDS

THE IMPACT OF MULTIFACTORIAL GENETIC DISORDERS ON CRITICAL ILLNESS INSURANCE: A SIMULATION STUDY BASED ON UK BIOBANK ABSTRACT KEYWORDS THE IMPACT OF MULTIFACTORIAL GENETIC DISORDERS ON CRITICAL ILLNESS INSURANCE: A SIMULATION STUDY BASED ON UK BIOBANK BY ANGUS MACDONALD, DELME PRITCHARD AND PRADIP TAPADAR ABSTRACT The UK Biobank project

More information

Bidding for Representative Allocations for Display Advertising

Bidding for Representative Allocations for Display Advertising Bidding for Repreentative Allocation for Diplay Advertiing Arpita Ghoh, Preton McAfee, Kihore Papineni, and Sergei Vailvitkii Yahoo! Reearch. {arpita, mcafee, kpapi, ergei}@yahoo-inc.com Abtract. Diplay

More information

Sector Concentration in Loan Portfolios and Economic Capital. Abstract

Sector Concentration in Loan Portfolios and Economic Capital. Abstract Sector Concentration in Loan Portfolio and Economic Capital Klau Düllmann and Nancy Machelein 2 Thi verion: September 2006 Abtract The purpoe of thi paper i to meaure the potential impact of buine-ector

More information

Tax Evasion and Self-Employment in a High-Tax Country: Evidence from Sweden

Tax Evasion and Self-Employment in a High-Tax Country: Evidence from Sweden Tax Evaion and Self-Employment in a High-Tax Country: Evidence from Sweden by Per Engtröm * and Bertil Holmlund ** Thi verion: May 17, 2006 Abtract Self-employed individual have arguably greater opportunitie

More information

Progress 8 and Attainment 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools

Progress 8 and Attainment 8 measure in 2016, 2017, and 2018. Guide for maintained secondary schools, academies and free schools Progre 8 and Attainment 8 meaure in 2016, 2017, and 2018 Guide for maintained econdary chool, academie and free chool September 2016 Content Table of figure 4 Summary 5 A ummary of Attainment 8 and Progre

More information

Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling

Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling Control of Wirele Network with Flow Level Dynamic under Contant Time Scheduling Long Le and Ravi R. Mazumdar Department of Electrical and Computer Engineering Univerity of Waterloo,Waterloo, ON, Canada

More information

Exposure Metering Relating Subject Lighting to Film Exposure

Exposure Metering Relating Subject Lighting to Film Exposure Expoure Metering Relating Subject Lighting to Film Expoure By Jeff Conrad A photographic expoure meter meaure ubject lighting and indicate camera etting that nominally reult in the bet expoure of the film.

More information

A Spam Message Filtering Method: focus on run time

A Spam Message Filtering Method: focus on run time , pp.29-33 http://dx.doi.org/10.14257/atl.2014.76.08 A Spam Meage Filtering Method: focu on run time Sin-Eon Kim 1, Jung-Tae Jo 2, Sang-Hyun Choi 3 1 Department of Information Security Management 2 Department

More information

REDUCTION OF TOTAL SUPPLY CHAIN CYCLE TIME IN INTERNAL BUSINESS PROCESS OF REAMER USING DOE AND TAGUCHI METHODOLOGY. Abstract. 1.

REDUCTION OF TOTAL SUPPLY CHAIN CYCLE TIME IN INTERNAL BUSINESS PROCESS OF REAMER USING DOE AND TAGUCHI METHODOLOGY. Abstract. 1. International Journal of Advanced Technology & Engineering Reearch (IJATER) REDUCTION OF TOTAL SUPPLY CHAIN CYCLE TIME IN INTERNAL BUSINESS PROCESS OF REAMER USING DOE AND Abtract TAGUCHI METHODOLOGY Mr.

More information

Project Management Basics

Project Management Basics Project Management Baic A Guide to undertanding the baic component of effective project management and the key to ucce 1 Content 1.0 Who hould read thi Guide... 3 1.1 Overview... 3 1.2 Project Management

More information

Resource allocation, productivity and growth in Portugal 1

Resource allocation, productivity and growth in Portugal 1 Article 61 Reource allocation, productivity and growth in Portugal 1 Daniel A. Dia 2 Carlo Robalo Marque 3 Chritine Richmond 4 Abtract Allocative efficiency in the Portuguee economy trongly deteriorated

More information

A Life Contingency Approach for Physical Assets: Create Volatility to Create Value

A Life Contingency Approach for Physical Assets: Create Volatility to Create Value A Life Contingency Approach for Phyical Aet: Create Volatility to Create Value homa Emil Wendling 2011 Enterprie Rik Management Sympoium Society of Actuarie March 14-16, 2011 Copyright 2011 by the Society

More information

Name: SID: Instructions

Name: SID: Instructions CS168 Fall 2014 Homework 1 Aigned: Wedneday, 10 September 2014 Due: Monday, 22 September 2014 Name: SID: Dicuion Section (Day/Time): Intruction - Submit thi homework uing Pandagrader/GradeScope(http://www.gradecope.com/

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science aachuett Intitute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric achinery Cla Note 10: Induction achine Control and Simulation c 2003 Jame L. Kirtley Jr. 1 Introduction

More information

Problem 1: The Pearson Correlation Coefficient (r) between two variables X and Y can be expressed in several equivalent forms; one of which is

Problem 1: The Pearson Correlation Coefficient (r) between two variables X and Y can be expressed in several equivalent forms; one of which is PubH 7405: BIOSTATISTICS REGRESSION, 011 PRACTICE PROBLEMS FOR SIMPLE LINEAR REGRESSION (Some are new & Some from Old eam; lat 4 are from 010 Midterm) Problem 1: The Pearon Correlation Coefficient (r)

More information

Estimating V s(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths 30 m)

Estimating V s(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths 30 m) Bulletin of the Seimological Society of America, Vol. 94, No. 2, pp. 591 597, April 4 Etimating V () (or NEHRP Site Clae) from Shallow Velocity Model (Depth m) by David M. Boore Abtract The average velocity

More information

INFORMATION Technology (IT) infrastructure management

INFORMATION Technology (IT) infrastructure management IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, MAY 214 1 Buine-Driven Long-term Capacity Planning for SaaS Application David Candeia, Ricardo Araújo Santo and Raquel Lope Abtract Capacity Planning

More information

TRADING rules are widely used in financial market as

TRADING rules are widely used in financial market as Complex Stock Trading Strategy Baed on Particle Swarm Optimization Fei Wang, Philip L.H. Yu and David W. Cheung Abtract Trading rule have been utilized in the tock market to make profit for more than a

More information

MBA 570x Homework 1 Due 9/24/2014 Solution

MBA 570x Homework 1 Due 9/24/2014 Solution MA 570x Homework 1 Due 9/24/2014 olution Individual work: 1. Quetion related to Chapter 11, T Why do you think i a fund of fund market for hedge fund, but not for mutual fund? Anwer: Invetor can inexpenively

More information

A New Optimum Jitter Protection for Conversational VoIP

A New Optimum Jitter Protection for Conversational VoIP Proc. Int. Conf. Wirele Commun., Signal Proceing (Nanjing, China), 5 pp., Nov. 2009 A New Optimum Jitter Protection for Converational VoIP Qipeng Gong, Peter Kabal Electrical & Computer Engineering, McGill

More information

DMA Departamento de Matemática e Aplicações Universidade do Minho

DMA Departamento de Matemática e Aplicações Universidade do Minho Univeridade do Minho DMA Departamento de Matemática e Aplicaçõe Univeridade do Minho Campu de Gualtar 47-57 Braga Portugal www.math.uminho.pt Univeridade do Minho Ecola de Ciência Departamento de Matemática

More information

Morningstar Fixed-Income Style Box TM Methodology

Morningstar Fixed-Income Style Box TM Methodology Morningtar Fixed-Income Style Box TM Methodology Morningtar Methodology Paper April 30, 01 01 Morningtar, Inc. All right reerved. The information in thi document i the property of Morningtar, Inc. Reproduction

More information

RISK MANAGEMENT POLICY

RISK MANAGEMENT POLICY RISK MANAGEMENT POLICY The practice of foreign exchange (FX) rik management i an area thrut into the potlight due to the market volatility that ha prevailed for ome time. A a conequence, many corporation

More information

SENSING IMAGES. School of Remote Sensing and Information Engineering, Wuhan University, 129# Luoyu Road, Wuhan, China,ych@whu.edu.

SENSING IMAGES. School of Remote Sensing and Information Engineering, Wuhan University, 129# Luoyu Road, Wuhan, China,ych@whu.edu. International Archive of the Photogrammetry, Remote Sening and Spatial Information Science, Volume X-/W, 3 8th International Sympoium on Spatial Data Quality, 3 May - June 3, Hong Kong COUD DETECTION METHOD

More information

Growth and Sustainability of Managed Security Services Networks: An Economic Perspective

Growth and Sustainability of Managed Security Services Networks: An Economic Perspective Growth and Sutainability of Managed Security Service etwork: An Economic Perpective Alok Gupta Dmitry Zhdanov Department of Information and Deciion Science Univerity of Minneota Minneapoli, M 55455 (agupta,

More information

Linear energy-preserving integrators for Poisson systems

Linear energy-preserving integrators for Poisson systems BIT manucript No. (will be inerted by the editor Linear energy-preerving integrator for Poion ytem David Cohen Ernt Hairer Received: date / Accepted: date Abtract For Hamiltonian ytem with non-canonical

More information

Independent Samples T- test

Independent Samples T- test Independent Sample T- tet With previou tet, we were intereted in comparing a ingle ample with a population With mot reearch, you do not have knowledge about the population -- you don t know the population

More information

QUANTIFYING THE BULLWHIP EFFECT IN THE SUPPLY CHAIN OF SMALL-SIZED COMPANIES

QUANTIFYING THE BULLWHIP EFFECT IN THE SUPPLY CHAIN OF SMALL-SIZED COMPANIES Sixth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2008) Partnering to Succe: Engineering, Education, Reearch and Development June 4 June 6 2008,

More information

AN OVERVIEW ON CLUSTERING METHODS

AN OVERVIEW ON CLUSTERING METHODS IOSR Journal Engineering AN OVERVIEW ON CLUSTERING METHODS T. Soni Madhulatha Aociate Preor, Alluri Intitute Management Science, Warangal. ABSTRACT Clutering i a common technique for tatitical data analyi,

More information

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,

More information

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE Progre In Electromagnetic Reearch Letter, Vol. 3, 51, 08 BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE S. H. Zainud-Deen Faculty of Electronic Engineering Menoufia

More information

Simulation of Power Systems Dynamics using Dynamic Phasor Models. Power Systems Laboratory. ETH Zürich Switzerland

Simulation of Power Systems Dynamics using Dynamic Phasor Models. Power Systems Laboratory. ETH Zürich Switzerland X SEPOPE 2 a 25 de maio de 26 May 2 rt to 25 th 26 FLORIANÓPOLIS (SC) BRASIL X SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA X SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL

More information

A model for the relationship between tropical precipitation and column water vapor

A model for the relationship between tropical precipitation and column water vapor Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L16804, doi:10.1029/2009gl039667, 2009 A model for the relationhip between tropical precipitation and column water vapor Caroline J. Muller,

More information

Section 5.2 - Random Variables

Section 5.2 - Random Variables MAT 0 - Introduction to Statitic Section 5. - Random Variable A random variable i a variable that take on different numerical value which are determined by chance. Example 5. pg. 33 For each random experiment,

More information

Brokerage Commissions and Institutional Trading Patterns

Brokerage Commissions and Institutional Trading Patterns rokerage Commiion and Intitutional Trading Pattern Michael Goldtein abon College Paul Irvine Emory Univerity Eugene Kandel Hebrew Univerity and Zvi Wiener Hebrew Univerity June 00 btract Why do broker

More information

A Comparison of Three Probabilistic Models of Binary Discrete Choice Under Risk

A Comparison of Three Probabilistic Models of Binary Discrete Choice Under Risk A Comparion of Three Probabilitic Model of Binary Dicrete Choice Under Rik by Nathaniel T. Wilcox * Abtract Thi paper compare the out-of-context predictive ucce of three probabilitic model of binary dicrete

More information

Towards Control-Relevant Forecasting in Supply Chain Management

Towards Control-Relevant Forecasting in Supply Chain Management 25 American Control Conference June 8-1, 25. Portland, OR, USA WeA7.1 Toward Control-Relevant Forecating in Supply Chain Management Jay D. Schwartz, Daniel E. Rivera 1, and Karl G. Kempf Control Sytem

More information

Health Insurance and Social Welfare. Run Liang. China Center for Economic Research, Peking University, Beijing 100871, China,

Health Insurance and Social Welfare. Run Liang. China Center for Economic Research, Peking University, Beijing 100871, China, Health Inurance and Social Welfare Run Liang China Center for Economic Reearch, Peking Univerity, Beijing 100871, China, Email: rliang@ccer.edu.cn and Hao Wang China Center for Economic Reearch, Peking

More information

CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY

CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Annale Univeritati Apuleni Serie Oeconomica, 2(2), 200 CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Sidonia Otilia Cernea Mihaela Jaradat 2 Mohammad

More information

NETWORK TRAFFIC ENGINEERING WITH VARIED LEVELS OF PROTECTION IN THE NEXT GENERATION INTERNET

NETWORK TRAFFIC ENGINEERING WITH VARIED LEVELS OF PROTECTION IN THE NEXT GENERATION INTERNET Chapter 1 NETWORK TRAFFIC ENGINEERING WITH VARIED LEVELS OF PROTECTION IN THE NEXT GENERATION INTERNET S. Srivatava Univerity of Miouri Kana City, USA hekhar@conrel.ice.umkc.edu S. R. Thirumalaetty now

More information

Mobile Network Configuration for Large-scale Multimedia Delivery on a Single WLAN

Mobile Network Configuration for Large-scale Multimedia Delivery on a Single WLAN Mobile Network Configuration for Large-cale Multimedia Delivery on a Single WLAN Huigwang Je, Dongwoo Kwon, Hyeonwoo Kim, and Hongtaek Ju Dept. of Computer Engineering Keimyung Univerity Daegu, Republic

More information

Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures

Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures Analyi of Meotructure Unit Cell Compried of Octet-tru Structure Scott R. Johnton *, Marque Reed *, Hongqing V. Wang, and David W. Roen * * The George W. Woodruff School of Mechanical Engineering, Georgia

More information

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning

More information

CHAPTER 5 BROADBAND CLASS-E AMPLIFIER

CHAPTER 5 BROADBAND CLASS-E AMPLIFIER CHAPTER 5 BROADBAND CLASS-E AMPLIFIER 5.0 Introduction Cla-E amplifier wa firt preented by Sokal in 1975. The application of cla- E amplifier were limited to the VHF band. At thi range of frequency, cla-e

More information

The Nonlinear Pendulum

The Nonlinear Pendulum The Nonlinear Pendulum D.G. Simpon, Ph.D. Department of Phyical Science and Enineerin Prince Geore ommunity ollee December 31, 1 1 The Simple Plane Pendulum A imple plane pendulum conit, ideally, of a

More information

Scheduling of Jobs and Maintenance Activities on Parallel Machines

Scheduling of Jobs and Maintenance Activities on Parallel Machines Scheduling of Job and Maintenance Activitie on Parallel Machine Chung-Yee Lee* Department of Indutrial Engineering Texa A&M Univerity College Station, TX 77843-3131 cylee@ac.tamu.edu Zhi-Long Chen** Department

More information

Using Graph Analysis to Study Networks of Adaptive Agent

Using Graph Analysis to Study Networks of Adaptive Agent Uing Graph Analyi to Study Network of Adaptive Agent Sherief Abdallah Britih Univerity in Dubai, United Arab Emirate Univerity of Edinburgh, United Kingdom hario@ieee.org ABSTRACT Experimental analyi of

More information

Bi-Objective Optimization for the Clinical Trial Supply Chain Management

Bi-Objective Optimization for the Clinical Trial Supply Chain Management Ian David Lockhart Bogle and Michael Fairweather (Editor), Proceeding of the 22nd European Sympoium on Computer Aided Proce Engineering, 17-20 June 2012, London. 2012 Elevier B.V. All right reerved. Bi-Objective

More information

INTERACTIVE TOOL FOR ANALYSIS OF TIME-DELAY SYSTEMS WITH DEAD-TIME COMPENSATORS

INTERACTIVE TOOL FOR ANALYSIS OF TIME-DELAY SYSTEMS WITH DEAD-TIME COMPENSATORS INTERACTIVE TOOL FOR ANALYSIS OF TIMEDELAY SYSTEMS WITH DEADTIME COMPENSATORS Joé Lui Guzmán, Pedro García, Tore Hägglund, Sebatián Dormido, Pedro Alberto, Manuel Berenguel Dep. de Lenguaje y Computación,

More information

IEEE Engineering in Medicine and Biology Society Conference Proceedings. Copyright IEEE.

IEEE Engineering in Medicine and Biology Society Conference Proceedings. Copyright IEEE. Title Trancription factor activity etimation baed on particle warm optimization and fat networ component analyi Author() Chen, W; Chang, C; Hung, YS Citation 00 Annual International Conference Of The Ieee

More information

The Arms Race on American Roads: The Effect of SUV s and Pickup Trucks on Traffic Safety

The Arms Race on American Roads: The Effect of SUV s and Pickup Trucks on Traffic Safety The Arm Race on American Road: The Effect of SUV and Pickup Truck on Traffic Safety Michelle J. White Univerity of California, San Diego, and NBER Abtract Driver have been running an arm race on American

More information

January 21, 2015. Abstract

January 21, 2015. Abstract T S U I I E P : T R M -C S J. R January 21, 2015 Abtract Thi paper evaluate the trategic behavior of a monopolit to influence environmental policy, either with taxe or with tandard, comparing two alternative

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

Turbulent Mixing and Chemical Reaction in Stirred Tanks

Turbulent Mixing and Chemical Reaction in Stirred Tanks Turbulent Mixing and Chemical Reaction in Stirred Tank André Bakker Julian B. Faano Blend time and chemical product ditribution in turbulent agitated veel can be predicted with the aid of Computational

More information

Socially Optimal Pricing of Cloud Computing Resources

Socially Optimal Pricing of Cloud Computing Resources Socially Optimal Pricing of Cloud Computing Reource Ihai Menache Microoft Reearch New England Cambridge, MA 02142 t-imena@microoft.com Auman Ozdaglar Laboratory for Information and Deciion Sytem Maachuett

More information

Measuring the Ability of Score Distributions to Model Relevance

Measuring the Ability of Score Distributions to Model Relevance Meauring the Ability of Score Ditribution to Model Relevance Ronan Cummin Department of Information Technology National Univerity of Ireland, Galway ronan.cummin@nuigalway.ie Abtract. Modelling the core

More information